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We present a systematic study of the complex dynamics of a

quantum dot (QD) laser subjected to optical feedback from a

short external cavity. Our model consists of a Lang–Kobayashi

like model for the electric field combined with a microscopi-

cally based rate equation system. We separately treat electron

and hole dynamics in the QDs and the surrounding wetting layer

(WL). By tuning the phase–amplitude coupling and the optical

confinement factor we are able to discuss various scenarios of
the dynamics on the route towards conventional quantum well

(QW) lasers. Due to the optical feedback, multistability occurs

in our model in form of external cavity modes (ECMs) or delay-

induced intensity pulsations. In dependence of the feedback

strength we analyze complex bifurcation scenarios for the

intensity of the emitted laser light as well as time series, power

spectra, and phase portraits of all dynamic variables in order to

elucidate the internal dynamics of the laser.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Quantum dot (QD) injection lasers are
an important optoelectronic application of self-organized
semiconductor QD structures [1]. Based on their density
of states they exhibit unique properties like low threshold
current, large temperature stability, and low feedback
sensitivity [2]. A microscopic theory of QD light emitters
is reviewed in Ref. [3]. Experimental results with QD lasers
subjected to optical feedback showed that due to the smaller
a-factor and the strongly suppressed relaxation oscillations
(ROs) QD lasers show stable operation for a wider range of
optical feedback strength [4–6] and the route to chaos can be
observed more clearly [7]. While optical feedback can lead
to instabilities in laser applications it can also significantly
improve the modulation bandwidth of directly modulated
lasers [8]. Moreover the self-pulsations of a semiconductor
laser subjected to optical feedback can be useful for signal
processing applications [9]. A comprehensive overview of
the topic is given in Ref. [10]. A review from the nonlinear
dynamics point of view focusing on the laser instabilities is
given in Ref. [11] and for optical injection in Ref. [12]. Such
systems with optical feedback also provide examples for the
stabilization of steady states (cw emission) or periodic
oscillations (self-pulsations) by time delayed feedback
control [13–17] or bubbling in coupled lasers [18].
In this work we will systematically model the complex
dynamics of a QD laser with optical feedback using a
microscopically based rate equation system for the carrier
dynamics as described in Ref. [19] and the Lang–Kobayashi
model for the electric field in the cavity [20]. In the literature
a lot of attention has been paid to the bifurcation scenarios of
conventional quantum well (QW) lasers with optical feed-
back [21–25], however, besides the work of [26] regarding
the long-cavity regime, systematic studies of the dynamics of
QD laser in the short-cavity regime are still missing. Our
simulations focus on this regime as introduced by Schunk
and Petermann [27]. The authors define an external cavity as
short if the product of the RO frequency and the external
cavity round-trip time is considerably less than unity. Our
focus to the short cavity regime is motivated as follows. On
the one hand the short cavities are of great interest for
technologic applications, where multi-section devices with
short integrated cavities are dominant. On the other hand the
short cavity regime is interesting from a dynamical system
point of view, because of its medium complexity. In the short
cavity regime the stability of the laser output depends on the
phase of the light that is coupled back into the cavity [28].
Instead of low frequency fluctuations (LFFs) [22, 29] and
coherence collapse (CC) found in QW devices with
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 (online color at: www.pss-b.com) Energy diagram of the
QD and WL system.
feedback, the QD laser system displays regular intensity
pulsation in a certain range of the feedback strength which
we show to be strictly regular for small linewidth enhance-
ment factor a. For increasing a more irregular pulses are
found that resemble those found in Ref. [30] for QW lasers
with a short external cavity length.

The paper is organized as follows: after introducing our
model approach in Section 2 and the external cavity modes
(ECMs) in Section 3, we will study the bifurcation scenarios
of the laser output that occur by changing the feedback
strength K in Section 4. In Section 5 the impact of the
linewidth enhancement factor a and the optical confinement
factor G on the first laser instability will be discussed. In
Section 6 we compare the stability properties of the QD laser
to those of a QW laser described by a conventional three-
variable Lang–Kobayashi model, before we conclude in
Section 7.

2 Quantum dot laser model with feedback In
order to model the dynamics of the QD laser with optical
feedback we consider a two-section device, consisting of a
gain section of length L that contains the layers of self-
organized QDs as active medium, and a feedback section
given by a mirror at a distance l to the end facet of the QD
laser, reflecting light back into the gain region. The
schematic setup is shown in Fig. 1. The gain section of the
QD laser is modeled by a microscopically based rate
equation system as described in Refs. [19, 31]. It allows for
separate treatment of electron and hole dynamics in the QDs
as well as in the surrounding wetting layer (WL) and has been
shown to yield quantitative agreement with turn-on exper-
iments of QD lasers [32]. The energy scheme of the QD laser
is shown in Fig. 2.

However, the introduction of an optical feedback
requires a model that takes into account also the phase of
the electrical field and not only the photon density, thus the
field equation has to be complex. We use a Lang–Kobayashi
like equation for the slowly varying amplitude of the
electrical field [20], because it has been shown that despite
several limitations it describes even complex phenomena for
QW lasers remarkably well [25], including bifurcation
scenarios of stable cw emission, periodic behavior, regular,
and irregular pulse packages. A derivation and the necessary
approximations of the Lang–Kobayashi model can be found
Figure 1 (online color at: www.pss-b.com) Schematic setup of the
considered QD laser device with optical feedback from a short
external cavity.

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
in Ref. [33]. Combined with the QD laser gain model from
Ref. [19] the field equation is given by:
_E ¼ ð1 � iaÞ 1

2
fGWAðne þ nh � NQDÞ � 2kg

þ K

tin
eiQEtec þ FEðtÞ: (1)
Here E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NphðtÞ

p
e�ifðtÞ is the normalized slowly

varying complex amplitude of the electrical field given in
polar coordinates by the photon number Nph and the phase f.
The linear gain GWAðne þ nh � NQDÞ contains the optical
confinement factor G, the Einstein coefficient W, the area of
the active region A, and the inversion ne þ nh � NQD, given
by the two-dimensional electron and hole density in the QDs
ne and nh, respectively. NQD denotes twice the density of the
active QDs, taking into account spin degeneracy. The optical
intensity loss is given by 2k, and a is the linewidth
enhancement factor.K is the strength of the optical feedback.
The phase shift of the light during one round trip in the
external cavity (tec ¼ 2l=c) is given by Q ¼ vthtec with vth

denoting the frequency of the solitary laser at the lasing
threshold. For the modeling Q is treated as an independent
variable. This is justified because for the considered optical
wavelength of l ¼ 1:3mm a small variation of the cavity
length l has large impact on the phase Q without
considerably changing tec. The field labeled by the subscript
tec, Etec , and therewith nph;tec and ftec , are the electric field
amplitude, the photon density, and the optical phase taken at
the delayed time t � tec. The time tin is given by the single-
pass time of the gain region tin ¼ L=cm where cm is the speed
of light inside the gain region.

The spontaneous emission in the field Eq. (1) is taken
into account by a complex Gaussian white noise term
FEðtÞ ¼ F0

EðtÞ þ iF00
EðtÞ, where F0

EðtÞ is the real part of the
complex stochastic variable and F00

E ðtÞ is its imaginary part.
Evaluated at any time t these are real normal distributed
random variables with zero mean that are uncorrelated:
FEðtÞF�
Eðt0Þ

� �
¼ bARspdðt � t0Þ
www.pss-b.com
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FaðtÞFbðt Þ ¼
2
bARspdabdðt � t Þ:
In the above equations the asterisk � denotes the complex
conjugate, b is the spontaneous emission factor, Rsp is the
spontaneous emission rate, and Fa,b are chosen as real- or
imaginary parts of FE . Thus the field equation is a complex
stochastic differential equation (SDE) (Langevin equation).
The goal is to transform the complex SDE for E (Eq. 1) into
two real SDEs for the photon density nph ¼ Nph=A and the
phase f. Neglecting the stochastic term this is just a
transformation to polar coordinates. Including the additive
noise term Ito’s formula [34] can be used. In Ref. [14] a
precise description is given how to apply Ito’s formula in this
case. Averaging over the stochastic terms after the Ito
transformation the final rate equations for the photon density
nph, the phase of the electric fieldf, and the four equations for
the densities of electrons and holes in the QDs (ne and nh) and
in the WL (we and wh) read:
_nph ¼ �2knph þ GRindðne; nh; nphÞ þ bRspðne; nhÞ

þ2
K

tin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nph;tecnph

p
cosðf� ftec þQÞ

(2a)
S
_f ¼ a

2
fGWAðne þ nh � NQDÞ � 2kg

� K

tin

ffiffiffiffiffiffiffiffiffiffiffi
nph;tec
nph

r
sinðf� ftec þQÞ

(2b)
_ne ¼ � ne
teðwe;whÞ

þ Sine ðwe;whÞNQD

�Rindðne; nh; nphÞ � Rspðne; nhÞ
(2c)
_nh ¼ � nh
thðwe;whÞ

þ Sinh ðwe;whÞNQD

�Rindðne; nh; nphÞ � Rspðne; nhÞ
(2d)
Table 1 Numerical parameters used in the simulation unless
stated otherwise (same parameters as in Ref. [19]).

symbol value symbol value
_we ¼
jðtÞ
e0

þ ne
teðwe;whÞ

Nsum

NQD

�Sine ðwe;whÞNsum � ~Rspðwe;whÞ
(2e)
�1 �5 2
W 0.7 ns A 4� 10 cm
a 0.9 NQD 0.6� 1010 cm�2

2k 0.1 ps�1 Nsum 20� 1010 cm�2

Gg 0:075 b 5� 10�6

G 2.25� 10�3 BS 540 ns�1 nm2

Q p tinðLÞ 24 ps (1 nm)
_wh ¼
jðtÞ
e0

þ nh
thðwe;whÞ

Nsum

NQD

�Sinh ðwe;whÞNsum � ~Rspðwe;whÞ
(2f)
T 300 K tecðlÞ 160 ps (25 nm)
DEe 101 meV DEh 54 meV
me 0.043 m0 mh 0.45 m0

l 1.3mm vth=2p 230 THz
According to Ref. [19] the induced processes of
absorption and emission are modeled by a linear gain
Rindðne; nh; nphÞ ¼ WAðne þ nh � NQDÞnph. The spon-
taneous emission rate in the QDs is approximated by
.pss-b.com
bimolecular recombination Rspðne; nhÞ ¼ ðW=NQDÞnenh.
The spontaneous emission rate in the WL is given by
~Rspðwe;whÞ ¼ BSwewh where BS is the band–band recombi-
nation coefficient in the WL. G ¼ G gN

QD=Nsum is the
optical confinement factor. It is the product of the geometric
confinement factorG g (i.e., the ratio of the volume of all QDs
and the optical mode volume) and the ratioNQD=Nsum, where
the density Nsum is twice the total QD density as given by
experimental surface imaging (accounting for reduced gain
because due to the size distribution of the QDs only a
subgroup of all QDs, namely the active QDs NQD, match the
mode energy for lasing). j is the injection current density and
e0 is the elementary charge. The values of all the parameters
used in our simulations are listed in Table 1.

Another crucial contribution to the dynamics in the gain
region is given by the non-radiative carrier–carrier scattering
rates Sine and Sinh for electron and hole capture from the WL
into the QD levels, Soute and South for carrier escape from the
QD levels, and scattering times te ¼ ðSine þ Soute Þ�1

and
th ¼ ðSinh þ South Þ�1

. Microscopically, the electron in- and
out-scattering rates can be calculated as:
Sine ¼
X
klmb 0

W in
klmb 0 fkflð1 � fmÞ ðk ! QD; l ! mÞ
out
e ¼

X
klmb 0

Wout
klmb 0 ð1 � fkÞð1 � flÞfm ðQD ! k; m ! lÞ
where the transition probabilities W
in=out
klmb 0 contain the screen-

ed Coulomb matrix elements and the energy-conserving
d-function [31], and fk, fl, and fm are the occupation
probabilities of the respective WL states, and analogously
for holes. Note that those rates depend nonlinearly on the
WL carrier densities we and wh. Assuming quasi-equili-
brium within the four ensembles of carriers, i.e., electrons
and holes in the QDs and electrons and holes in the WL, but
non-equilibrium between these ensembles, the in- and out-
scattering rates can be related within the framework of
detailed balance (see Ref. [19] for a thorough discussion):
Sine ¼ Soute exp
FWL
e � EQD

e

kT

� �
, (3)
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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EQD � FWL
( )
� 20
Sinh ¼ South exp h h

kT
: (4)
In the above equationsEQD
e andEQD

h are the confined QD
electron and hole energy levels, respectively. The quasi-
Fermi levels FWL

b (see Fig. 2) for electrons (b¼ e) and holes
(b¼ h) in the WL depend on the carrier densities in the WL
wb. They are given by:
FWL
e ðweÞ ¼ EWL

e þ kT ln exp
we

rekT

� �
� 1

� 	
, (5)
FWL
h ðwhÞ ¼ EWL

h � kT ln exp
wh

rhkT

� �
� 1

� 	
: (6)
Here, EWL
b denote the WL band-edges, rb ¼ mb=ðp�h2Þ

are the 2D effective densities of states in the WL with
the parameters mb used for the effective masses (in units of
the electron mass m0), T is temperature and k is the
Boltzmann constant. Introducing the energy differences
DEe ¼ EWL

e � EQD
e and DEh ¼ EQD

h � EWL
h (see Table 1),

the relation between the in- and out-scattering rates can be
expressed as:
Sinb ðwe;whÞ ¼ Soutb ðwe;whÞ eDEb=kT ewb=rbkT � 1
h i

: (7)
The corresponding analytic fitting functions for the
microscopically calculated scattering rates [19] are given in
Appendix A.

3 External cavity modes Basic solutions of Eq. (2a–
f) are special rotating wave solutions of the electric field.
They are called ECMs and will be explained in the following.
The total optical fieldE is normalized to the square root of the
number of photons in the cavity jEj2 ¼ Nph. As mentioned
above the field is taken in the slowly varying envelope
approximation:
EðtÞ ¼ EðtÞ e�ivtht, (8)
i.e., assuming the field to be a product of the slowly varying
amplitude E and a fast oscillating carrier wave e�ivtht that
oscillates with the frequency of the solitary laser at the laser
threshold vth. It is important to note that the phase fðtÞ of
the complex field amplitude is also time dependent. Thus,
the actual frequency of the laser deviates in general from vth

due to the influence of the optical feedback.
For the analysis of the fixed points of the system

we first note, that the dynamical system consisting of the
Eqs. (1) and (2c)–(2d) is invariant under the continuous
symmetry group of all rotations in the complex plane
S1 � fc 2 Cwith jcj ¼ 1g. That means that the rotation over
any angle u ¼ argðcÞ of the trajectory is again a trajectory.
Thus a solution of the dynamical equations is either S1

invariant itself, or it is not isolated but comes as a rotational
family parametrized by the elements of S1. Such a family of
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
solutions:
S1 � ðE;ne;nh;we;whÞt1t0 ¼ fðcE;ne;nh;we;whÞt1t0 jc 2 S1g,

(9)
is called a group orbit. It consists of all images of the
trajectory starting at t0 and ending up at t1 under all rotations
of S1 [35].

The S1 symmetry is a consequence of two properties: one
is the linearity of the field Eq. (1) with respect to E, and the
other is the fact that only the modulus jEj of the electrical
field amplitude enters into the carrier Eqs. (2e) and (2f)
through the photon density nph ¼ jEj2=A [10]. The simplest
solutions that are S1 invariant are the ECMs, which are
continuous wave (cw) solutions with constant photon
number Nph,s and carrier densities ne,s, nh,s, we,s, wh,s, and a
phase f that varies linearly with time:
ðEðtÞ; neðtÞ; nhðtÞ;weðtÞ;whðtÞÞ
¼ ð

ffiffiffiffiffiffiffiffiffiffi
Nph;s

p
e�iDvst; ne;s; nh;s;we;s;wh;sÞ:

(10)
An ECM oscillates with the deviation from the solitary
laser threshold frequency Dvs ¼ v� vth. Each ECM is a
group orbit of the S1-symmetry, which means that in a
projection on a hyperplane spanned by the photon density nph

and the carrier densities it is just one point. That is why ECMs
are often referred to as steady state solutions in the literature.
A complete discussion of the symmetries for conventional
and phase conjugated optical feedback is given in Ref. [36].

Neglecting spontaneous emission bRsp below the laser
threshold, a ‘‘trivial’’ solution with E � 0 is stable. At the
laser threshold this solution changes stability and ECM
solutions have to be considered [17]. Inserting the ECM
ansatz Eq. (10) into the dynamical equations (2a)–(2f) yields:
0 ¼ fGWAðne;s þ nh;s � NQDÞ � 2kgnph;s

þ 2
K

tin
nph;s cosðDvstec þQÞ, (11a)
Dvs ¼
a

2
fGWAðne;s þ nh;s � NQDÞ � 2kg

� K

tin
sinðDvstec þQÞ, (11b)
_ne ¼ _nh ¼ _we ¼ _wh ¼ 0: (11c)
Here we have introduced the steady state photon density
nph,s. Using the condition nph;s 6¼ 0 that is valid above
threshold and inserting Eq. (11a) into Eq. (11b) yields the
following form of the transcendental equation for the
frequency deviations Dvs:
Dvs ¼ � K

tin
fa cosðDvstec þQÞ � sinðDvstec þQÞg:

(12)
www.pss-b.com



Phys. Status Solidi B 247, No. 4 (2010) 833

Feature

Article
This can be rewritten as:
www
Dvs ¼ �Keff

tec
sinðDvstec þQþ arctanðaÞÞ, (13)
where we have introduced an effective feedback strength:
Keff ¼ K
tec

tin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2

p
: (14)
Solving the transcendental Eq. (13) yields the ECM
frequencies as a function of the feedback strength K, the
internal cavity single-pass time tin, the a-factor and the
phase with which the light is coupled back into the cavity Q.
For Keff< 1 Eq. (13) has only one solution. This is the ECM,
which develops out of the solitary laser mode at K¼ 0. For
gradually increasing K new ECMs are created pairwise in
saddle-node bifurcations. (The first pair is created at
Keff ¼ 1.) In the literature the node solutions are often
referred to as modes and the saddle solutions as antimodes.
Figure 3ii and iv shows the ECM frequencies Dvs of the
modes (blue solid) and antimodes (blue dotted) as a function
of K for a¼ 0.9 and 3.2, respectively. One branch of
solutions (antimodes) is always unstable due to destructive
interference between laser field and delayed field (inner
branches closest to Dvs ¼ 0 dashed in Fig. 3ii and iv), and
the other branch (modes) is stable but may eventually
experience a change of stability through a Hopf bifurcation
[21, 37, 38].

4 Bifurcation scenarios This section will discuss
the dynamics of the QD laser as a function of feedback
strength K and the linewidth enhancement factor a. As
mentioned above modeling the short cavity regime
results in sensitivity of the laser output to the phase Q
of the electric field. The feedback phase is fixed to Q ¼ p
and is only treated as a tunable parameter in Section 4.1.3
below. Numerically obtained bifurcation diagrams as well as
time series, power spectra, andphaseportraits will be discussed
in order to elucidate the internal dynamics of the laser.

4.1 Bifurcation cascade for aa ¼ 0:9 (small) In the
following simulations the gain section of the QD laser with
feedback is pumped at a current of j¼ 2.5jth ( jth is the
threshold current density without feedback) starting at time
t¼ 0. To illustrate the influence of the optical feedback Fig. 4
shows the response of the photon density nph to a rectangular
current density j(t) without feedbackK¼ 0 (blue dashed line)
and with feedback K¼ 0.98 (red dash-dotted line). The
current starts at t¼ 0 and has a width of 10 ns. After a delay
time of 0.8 ns where the laser builds up the inversion the laser
performs ROs. Without feedback (K¼ 0) they are
strongly damped as it is typical for QD lasers [19]. With
increasing K the ROs become weakly damped as shown for
K¼ 0.98.

4.1.1 Intensity pulsations For gradually increasing
feedback strength K the local minima and maxima of the
.pss-b.com
laser output, i.e., of the photon density, are recorded between
t¼ 300 and 350 ns and plotted in a bifurcation diagram as
shown in Fig. 3i. Note that the long integration time is chosen
in order to avoid transient effects of the turn-on dynamics in
the laser output. For small K < Kc ¼ 0:099 the laser shows
stable cw operation at the first ECM. At Kc¼ 0.099 the ECM
loses stability in a supercritical Hopf bifurcation leading to a
small stable limit cycle, i.e., to a solution with periodically
modulated photon density (self-sustained intensity pulsa-
tion). Thus, the bifurcation diagram for K>Kc (see Fig. 3i
and the blowup Fig. 3v) shows two branches: the maxima and
minima of the limit cycle oscillations. The two branches
scale like the square root of the distance from the bifurcation
point. This is the signature of a Hopf bifurcation. For
K¼ 0.11 time series and power spectrum of these periodic
pulsations are shown in Fig. 5a (corresponding to the vertical
blue dash-dotted line (a) in Fig. 3v). The frequency of
nROðK ¼ 0:11Þ ¼ 2:46GHz is the RO frequency as expected
for higher pump currents [37] and can be recognized by the
most prominent peak in the power spectrum in Fig. 5a.
Higher frequency peaks are higher harmonics. (Note that
Ref. [37] also discussed the Lang–Kobayashi equations
in the limit of very small pump currents close to the
threshold and showed that the frequency of the instability
is determined by the external cavity roundtrip time.)
Projections of the trajectory onto the (ne=h, nph)-planes as
well as onto the (we=h,nph)-planes show motions on a stable
limit cycle. This can be seen in the first row of Fig. 6 where
the four different phase space projections are displayed.
The value of the cw laser operation directly before the
Hopf bifurcation is indicated by black dots in the phase
space projections. Due to the fact that in our model
electrons and holes have separate degrees of freedom
described by different microscopic scattering rates S

in=out
e=h ,

the shape of the projected limit cycles is different for
electrons and holes.

With further increase of the feedback strength K the
system undergoes a period doubling route to chaos with
windows of period two and three at K¼ 0.17 and 0.203
that are indicated as vertical blue dash-dotted lines (b)
and (c) in the bifurcation diagram (Fig. 3v). The correspond-
ing time series and power spectra are depicted in Fig. 5b and
c, respectively. In the power spectra the peaks at
n1

2
ROð0:17Þ ¼ 1:42GHz and n1

3
ROð0:203Þ ¼ 1:03GHz and

n2
3
ROð0:203Þ ¼ 2:09GHz on the lower frequency sides of the

dominant peaks of the ROs (nROð0:17Þ ¼ 2:84GHz and
nROð0:203Þ ¼ 3:14GHz) can be observed clearly. They
correspond to twofolded and threefolded limit cycles in the
phase space projection shown in Fig. 6b and c. At K¼ 0.21
(d) the laser output is chaotic (dense dots at fixed K in the
bifurcation diagram Fig. 3i and 3v), which can also be seen in
the broad power spectrum of Fig. 5d and the large chaotic
attractor in the phase space projections (Fig. 6d). The time
series displays irregular pulse packages, that are modulated
with the frequency of the ROs. Two distinct frequencies are
still observable in the power spectrum: the main peak can be
attributed to the ROs at nROð0:21Þ ¼ 3:22GHz and the lower
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 3 (online color at: www.pss-b.com) Bifurcation diagrams of the photon density nph (red) and frequency deviations Dvs of the
possible external cavity modes (blue) in dependence of the feedback strengthK for smalla¼ 0.9 (i and ii) and largea¼ 3.2 (iii and iv). Blue
solid and dotted lines denote ECMmodes and anti-modes, respectively. Panel (v) showsa blowup of the bifurcation cascade for smalla¼ 0.9
and (vi and vii) show blowups of the first and the third bifurcation cascade for large a¼ 3.2.
frequency peak at nPPð0:21Þ ¼ 0:69GHz belongs to the
envelope of the pulse packages.

4.1.2 Regular pulse packages So far the discussion
was limited to the regime of feedback strengthsKwhere only
one ECM, i.e., the one that can be continued out of the
solitary laser solution, is available to the QD laser. This is
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
proven by Fig. 3ii that depicts the solutions for the frequency
deviationDvs determined from Eq. (13). AtK¼ 0.215 a new
pair of ECMs (mode and antimode) is born in a saddle-node
bifurcation. In all cases the electrons and holes clearly
display desynchronized dynamics. Thus, a new stable fixed
point (node) as well as a saddle-point are available to the
system dynamics. As a consequence we observe another
www.pss-b.com
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Figure 5 (online color at: www.pss-b.com) Time series (left) and
power spectra (right) for selected feedback strengths K: rows (a–e)
correspond to K¼ 0.11� 0.2295 as indicated by vertical blue dash-
dotted lines (a–e) in the bifurcation cascade for small a¼ 0.9 and
G¼ 0.00225 in Fig. 3v. T denotes the interpulse interval time.

Figure 4 (online color at: www.pss-b.com) Response of photon
density nph to a rectangular current density j(t) of 10 ns width (brown
line) for a feedback strength of K¼ 0.98 (red dash-dotted line) and
without feedback K¼ 0 (blue dashed line). j(t) is normalized to the
thresholdcurrentdensitywithout feedback jth.Otherparametersas in
Table 1.
drastic change of the laser dynamics towards stable cw
operation: at the bifurcation point Kbif ¼ 0:2305 a global
bifurcation takes place. Due to the typical scaling discussed
later, we presume it to be a homoclinic bifurcation of a limit
cycle. This can be seen in the bifurcation diagram in Fig. 3i
and the blowup Fig. 3v that show only one single branch
beyond Kbif. In a small range of K values before these global
bifurcation we observe bistability: trajectories starting close
to the saddle-point of the first ECM are attracted by a delay-
induced limit cycle, whereas trajectories starting elsewhere
(not shown here) end up in a stable node.

In the output of the laser this delay induced limit cycle is
manifested by regular pulse packages as they are depicted in
Fig. 5e. Looking at the phase space projections of Fig. 6e it
can be seen that starting from a maximum intensity point of
one pulse package the excursion through the (ne, nph)-space
is similar to the turn-on dynamics of the QD-laser as the
trajectory spirals towards a certain point in phase space [19].
However, in this case it is a saddle-focus (the first ECM has
already lost its stability), which is the reason why the
trajectory does not reach the fixed point but is repelled to a
low intensity region along the unstable manifold of the
saddle. What follows is a re-injection ending at the same
maximum photon intensity, which completes the cycle. As
the second ECM solution already exists, trajectories starting
close to this will not enter the limit cycle but directly
approach the stable fixed point of the second ECM
(bistability). The steady state photon- and carrier-densities
of the first ECM laser solution at Kc (directly before it
becomes unstable) are indicated by black dots in Fig. 6. Open
brown circles denote the steady state densities of the second
ECM mode at K¼ 0.2295. The high frequency modulation
of the pulse packages is still the RO frequency
nROð0:2295Þ ¼ 3:66GHz, however, the lower frequency
given by the interpulse interval depends strongly on the
feedback strength K and thus on the distance to the global
bifurcation. In Fig. 7 the distance in time between two pulse
packages T (interpulse interval time) is plotted as a function
of lnjK � Kbif j (see also Fig. 6e). The points lie on a straight
line, thus T scales like T / a lnjðK � KbifÞj with a¼�1.23,
www.pss-b.com
underlining the logarithmic scaling of the period of the
limit cycle with the distance to the bifurcation point Kbif.
This behavior is typical for a homoclinic bifurcation of
limit cycles. Near this bifurcation the system scales like
T � �l�1

m lnjK � Kbif j, where lm is the real part of the least
unstable eigenvalue of the saddle-focus [39]. It is important
to note that the center of the spiral motion of the trajectory in
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 6 (online color at: www.pss-b.com) Phase space projections of the trajectory onto planes spanned by the photon density nph and the
carrier densities ne, nh,we, andwh (column 1–4). Rows (a–e) correspond toK¼ 0.11� 0.2295 as indicated by vertical blue dash-dotted lines
(a–e) in the bifurcation cascade for small a¼ 0.9 andG¼ 0.00225 in Fig. 3v. Black dots indicate the steady state of the first ECM before the
supercritical Hopf bifurcation at Kc¼ 0.099. Brown circles indicate the second stable ECM at K¼ 0.2295.

Figure 7 (online color at: www.pss-b.com) Scaling of the inter-
pulse interval timeTnear the homoclinic bifurcation (Kbif¼ 0.2305)
for small a¼ 0.9 and G¼ 0.00225.

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 6e, representing the regular intensity pulsations, does
not match with the steady state densities of the second ECM
(open brown circles). The reason is that for the chosen initial
conditions the system can only access this new attractor after
the homoclinic bifurcation [40]. Comparing the projections
of the attractor of the chaotic trajectories atK¼ 0.21 (vertical
dash-dotted line (d) in Fig. 3v) shown in the four phase space
projections in Fig. 6d with the limit cycle projections in
Fig. 6e striking similarities can be found. The only difference
is that during one period the trajectory of the regular pulses
closes up while in the case of the periodic attractor it is
smeared out. Thus what we see at K¼ 0.21 is Shilnikov
chaos associated with the saddle-focus which later on
undergoes the homoclinic bifurcation at which the stable
and the unstable manifolds merge.

Note that the pulse packages found by Heil et al. [30] for
QW lasers with short external cavity are not identical to those
just described. The two main difference are: at first their
modulation frequency is the external round trip time which
www.pss-b.com
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Figure 8 (online color at: www.pss-b.com) Bifurcation diagrams
of the photon density (i, iii, and v) and frequency deviations of the
possible ECMs (ii, iv, and vi) as a function of the feedback strengthK
for three different values of the feedback phase Q. (i and ii):
Q ¼ 0:77p, (iii and iv): Q ¼ 0, and (v and vi): Q ¼ 1:77p. Param-
eters: a¼ 0.9 and G¼ 0.00225.
can be attributed to the much lower pump current as discussed
in Ref. [37]. Second, the pulses are only close to regular and do
not form closed limit cycles. Simulations show that in our QD
model the homoclinic bifurcation forming the strictly regular
pulses cannot be found for a-factor higher than 0.9 meaning
that this parameter plays a crucial role. For a¼ 3.2, as will be
discussed in Section 4.2, we find pulse packages similar to the
ones reported in Ref. [30].

4.1.3 Phase dependence As Heil et al. [25] have
shown for QW lasers with short external cavity, the
sensitivity of the laser to optical feedback depends strongly
on the phaseQ of the electric field after the round trip through
the external cavity. So far the phase was set to Q ¼ p,
however, in this section we will discuss changes of the laser
output that are related to changes in Q.

To avoid confusions with existing literature note that a
lot of studies about the Lang–Kobayashi system ([24, 33, 38, 41]
use the phase F ¼ Qþ arctanðaÞ for their analytic discus-
sions. This is motivated by the transcendental Eq. (13)
because it yields symmetric results for F ¼ 0 and F ¼ p.
For the chosen a¼ 0.9 this corresponds to Q ¼ 1:77p and
0:77p, respectively.

We start our discussion of the phase dependence with the
phase Q ¼ 0:77p. As depicted in Fig. 8ii the ECM solution
for the electric field is first described by Dvs ¼ 0 before two
more solutions are born in a pitchfork bifurcation at
Kc¼ 0.11. In contrast to the case Q ¼ p that was discussed
earlier, the bifurcation diagram shows stable cw operation of
the laser for all feedback strengths (see the continuous line in
Fig. 8i). Only a kink at Kc is observed which accounts for the
fact that the laser operation changes to the maximum gain
mode at the bitchfork bifurcation point.

If the phase is further decreased to Q ¼ 0 as was done in
Fig. 8iii and iv (corresponding to constructive interference
between E and Etec ) we observe stable laser operation until
Kc¼ 0.537. Behind this point we find one bifurcation
cascade that is shown in the bifurcation diagram of
Fig. 8iii. If compared to the previously discussed case of
Q ¼ p (shown in Fig. 3ii) several changes have to be
marked. To begin with, the first ECM is stable over a large
range of feedback strength K and loses stability via a
subcritical Hopf bifurcation atKc. The system directly jumps
to a stable limit cycle (like in Ref. [42]) and does not show the
square root like increase of the limit cycle amplitude. This
indicates a subcritical Hopf bifurcation, which can be
explained by the mode structure of the ECMs. Contrary to
the case of Q ¼ p, where the first ECM pair appears at
positive frequency shifts Dvs, the first saddle-node bifur-
cation appears for positive Dvs (referring to a low gain
mode). Only later on at K¼ 0.57 the ECM pair with higher
gain is born as depicted in Fig. 8iv. At K¼ 0.547 the system
undergoes a quasiperiodic route to chaos. The time series
shows oscillations at the RO frequency modulated slightly
(like in the case ofK¼ 0.66) but less regularly, with irregular
power dropouts. At K¼ 0.567 an interior crisis takes place.
The attractor collides with a saddle and the system settles
www.pss-b.com � 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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down to a period-one limit cycle. At K¼ 0.5932 a
supercritical Hopf (Neimark–Sacker) bifurcation introduces
another incommensurate frequency. In the phase space
projections the trajectories now roll up densely on the surface
of a torus and in the bifurcation diagram of Fig. 8iii we
observe a broadening of the maxima and minima of the
oscillations. The time series shows ROs modulated by the
lower newly introduced incommensurate frequency. With
increasing K the modulation become more pronounced
forming fairly regular pulse packages. In the phase space
projections the torus gains in volume. However the power
spectra suggest that the system does not become chaotic but
stays quasiperiodic. At K¼ 0.5986 a homoclinic bifurcation
of limit cycles takes places, similar to the one for Q ¼ p
shown in Fig. 3v, point (e). We find again the typical
logarithmic scaling of the interpulse interval time with the
distance of the bifurcation point. For largerK the laser settles
down to the ECM (the stable node solution of the ECM-pair)
and performs cw operation up to the maximum physically
relevant feedback strength of K¼ 1.0.

If we further decrease the phase toQ ¼ 1:77p ��0:23p
the ECMs again show the Dvs ¼ 0 solution over a wide
range of feedback strength. At K¼ 0.49 two simultaneous
saddle-node bifurcations take place and lead to the
emergence of two saddle and two node solutions
(see Fig. 8vi). The corresponding bifurcation diagram of
Fig. 8v shows the same main features as discussed forQ ¼ 0,
only the first instability at a lower feedback strength of
Kc¼ 0.4 is a supercritical Hopf bifurcation. It is followed by
a quasiperiodic route to chaos at K¼ 0.45, an interior crisis,
and a torus bifurcation at K¼ 0.5. At K¼ 0.515 the unstable
operation ends with a homoclinic bifurcation with the typical
logarithmic scaling of the interpulse interval.

If we proceed the path of decreasing phase, the critical
feedback strength Kc further decreases and the bifurcations
observed in the cascade become more complex (see the case
Q ¼ p � �p discussed in the previous sections and shown
in Fig. 3ii). Further decreasing the phase Q closes the 2p
interval and arrives at the already discussed symmetric case
Q ¼ 0:77p � �2:77p. Here the critical feedback strength is
minimal, however at this point it is not a Hopf bifurcation
point as the laser stays stable. Beyond this value of the phase
the critical feedback strength Kc is again very high and
describes a subcritical Hopf bifurcation.

To sum up, experiments measuring the sensitivity of a
QD laser to optical feedback in the short cavity regime have
to be aware of the phase Q in order to give comparable
results. Our results show that for a¼ 0.9 the value Q ¼
0:77p allows to stabilize the laser over the whole range of
feedback strength.

4.2 Bifurcation cascades for a¼ 3.2 (large) The
most important features of QD lasers if compared to QW
lasers are the internal carrier dynamics resulting in strongly
damped RO oscillations and the much smaller coupling
between phase and amplitude of the light field. Therefore the
last section presented the results for ‘‘typical’’ QD lasers with
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
small a¼ 0.9. For a more systematic understanding and
comparison to QW lasers this section will elucidate the
influence of the linewidth enhancement factor a and discuss
the bifurcation scenarios for a¼ 3.2.

Figure 3iii presents the bifurcation diagram of the photon
density fora¼ 3.2 as a function of the feedback strength. The
frequency deviations of the ECMs Dvs in Fig. 3iv are
calculated numerically from Eq. (12). At first glance two
striking differences can be seen compared to the ‘‘typical’’
QD laser case in Fig. 3i and ii: first, the sensitivity to the
feedback is increased (the stable regions are much shorter)
which results in a series of bifurcation cascades, and second,
the number of ECM solutions that are available to the laser is
augmented by a factor of 2. The larger number of ECMs is the
reason for the larger number of bifurcation cascades, because
with increasing K each initially stable ECM eventually loses
stability via a Hopf bifurcation [24] followed by a route to
chaos. The first two cascades perform a period-doubling
route to chaos while the third and the fourth cascade
take a quasiperiodic route to chaos. Similar bifurcation
diagrams have also been found numerically and experimen-
tally for QW lasers in the short cavity regime [23, 25].
However, besides the larger a-factor our laser model still
contains the material equations of the QD laser. This allows
us to focus on the internal dynamics of the laser and clarify its
impact.

In the first bifurcation cascade the laser performs a
period-doubling route to chaos starting at Kc¼ 0.048 with a
supercritical Hopf bifurcation (brown vertical dash-dotted
line in Fig. 3iii and iv. An enlargement of the first bifurcation
cascade is shown in Fig. 3vi. The blue vertical dash-dotted
lines (f–i) indicate the value of the feedback strength K, at
which time series, power spectra, and phase space
projections are evaluated. For K¼ 0.08 Fig. 9f depicts the
regular pulsation of the photon output at a frequency of
nROð0:08Þ ¼ 2:71GHz, which are the undamped ROs after
the first supercritical Hopf bifurcation. All phase space
projections in Fig. 10f show period-one limit cycles with
small amplitude. The shape of the limit cycles is slightly
deformed by the reminiscence of the attractor of the first
ECM for K<Kc. Such ‘‘attractor-ruins’’ have already been
suggested by Mørk et al. [21]. The steady state densities of
this ECM directly before Kc are indicated by black dots in
Fig. 10. As it can be seen in Fig. 3iv a new pair of ECMs is
created at K¼ 0.117. Behind this point the system shows
multistability. At K¼ 0.088 the second period doubling
bifurcation takes place. Figure 10g shows a period-2
limit circle at K¼ 0.1276 (vertical line (g) in Fig. 3vi).
The small loop in the projection onto the (nph, nh)-plane is
again caused by the ghost of the attractor for K<Kc. This
loop corresponds to the small maxima in the time series in
Fig. 9g. The power spectrum shows the peak of the RO’s at
nROð0:1276Þ ¼ 2:36GHz and a lower frequency peak at
n1

2
ROð0:1276Þ ¼ 1:20GHz, which indicates that a period-

doubling bifurcation has taken place. The other peaks are
higher harmonics and sums and differences of these basic
frequencies. While the dynamics of electrons and holes in the
www.pss-b.com
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Figure 9 (online color at: www.pss-b.com) Time series (left) and
power spectra (right) for selected feedback strengths K: rows (f–i)
correspond to K¼ 0.08� 0.16 as indicated by vertical blue dash-
dotted lines (f–i) in the first bifurcation cascade for largea¼ 3.2 and
G¼ 0.00225 in Fig. 3vi.
QDs is still decoupled, the phase space projections of the
trajectory onto the (nph, we)- and (nph, wh) planes show much
less differences.

With increasing feedback strength the system becomes
chaotic by period-doubling. For example at a feedback rate
of K¼ 0.138 (h) the period-2 limit cycle has evolved into a
strange attractor as can be seen in Fig. 10h. This attractor
covers a larger phase space volume, but its shape is still
similar to the one of the period-2 cycle. The time evolution is
chaotic as can be seen in Fig. 9h, however, it still contains
the old mode structure. On top of the broad power spectrum
the RO peak at nROð0:138Þ ¼ 2:36GHz and the peak at half
the RO frequency n1

2
ROð0:138Þ ¼ 1:2GHz are still visible.

Increasing K further we find a periodic window followed by
another chaotic region. At K¼ 0.1564 (i), directly before the
www.pss-b.com
breakdown of the chaotic attractor, the time series shows
fairly regular intensity pulsations that are interrupted by
short irregular spiking (see Fig. 9i). This indicates inter-
mittency, with the period-2 pulsations as laminar phase and
the spiking as short chaotic outbursts. The phase space
projections in Fig. 10i show that the attractor has still the
shape of a broadened period-2 orbit. After the bifurcation
cascade the system settles down to the second ECM that is
stable since its creation at K¼ 0.117. To show that both
attractors do not merge the steady state densities of this mode
have been indicated by brown circles in the (nph, ne,h)-planes
in Fig. 10i. The corresponding WL carrier densities
we ¼ 2:19Nsum and wh ¼ 2:56Nsum are outside the plot
range and therefore not visible in the (nph, we,h)-projections
of Fig. 10i.

The second ECM becomes unstable in a supercritical
Hopf bifurcation at K¼ 0.225. This triggers the start of the
second bifurcation cascade. The route to chaos is interrupted
by frequency locking in a window fromK¼ 0.384 to 0.398 as
can be seen in the bifurcation diagram Fig. 3iii. At K¼ 0.41
the bifurcation diagram shows a sudden increase of the
attractor volume. According to Sano [22] this is an interior
crisis, a global bifurcation where the chaotic attractor of the
second ECM merges with the newly born saddle of the third
ECM. At the end of the second cascade we observe a
boundary crisis. In this global bifurcation the chaotic
attractor collides with its basin boundary.

For the third bifurcation cascade we find a quasiperiodic
route to chaos which is qualitatively different to the route of
the two cascades that have been discussed so far. An
enlargement of the bifurcation diagram is shown in Fig. 3vii,
again containing the blue dash-dotted lines (j–m) that
represent the K values at which the laser dynamics is
evaluated. At K¼ 0.512 the fourth ECM changes stability in
a supercritical Hopf bifurcation, giving rise to delay-induced
intensity pulsations (undamped ROs). These are shown as
time series and power spectra in Fig. 11j for K¼ 0.62. The
frequency of the RO oscillations is nROð0:62Þ ¼ 4:99GHz
(main peak in the power spectrum). The phase space
projections in Fig. 12j show the corresponding limit cycle
that is slightly deformed due to the reminiscence of the
attractor of the fourth ECM which is stable until the Hopf
bifurcation at K¼ 0.5122. This ‘‘attractor-ruin’’ is shown by
the black dots in Fig. 12, indicating the steady state densities
of the fourth ECM directly before its first Hopf bifurcation.
AtK¼ 0.61 a new frequency is introduced into the system by
a secondary Hopf (Neimark–Sacker) bifurcation. As a
consequence the attractor becomes a torus. Contrary to the
period-doubling route to chaos this frequency is incommen-
surate to the RO frequency. Thus trajectories do not close up
and hence they are rolling up densely on the surface of the
torus. Figure 11k shows the time series and the power
spectrum for this motion. The main oscillation with the RO
frequency nROð0:66Þ ¼ 4:99GHz is modulated by a much
lower frequency of nPPð0:66Þ ¼ 1:02 GHz. This frequency is
roughly the difference between the external cavity roundtrip
frequency nec ¼ 6:25GHz and the RO frequency. With
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 10 (onlinecolor at:www.pss-b.com) Phasespace projections of the trajectory ontoplanes spanned by the photon densitynph and the
carrier densities ne, nh,we, andwh (column 1–4). Rows (f–i) correspond toK¼ 0.08� 0.1564 as indicated by vertical blue dash-dotted lines
(f–i) in thefirstbifurcationcascadefor largea¼ 3.2andG¼ 0.00225inFig.3vi.Blackdots indicate thesteadystateof thefirstECMbefore the
supercritical Hopf bifurcation at Kc¼ 0.048. Brown circles indicate the second stable ECM at K¼ 0.1564.
increasing K the modulation will become more and more
pronounced forming fairly regular pulse packages towards
the end of the bifurcation cascade. The corresponding phase
portraits are depicted in Fig. 12k. They show the projections
of a torus with similar shape as the limit cycle after the first
Hopf bifurcation. The small additional maxima in the time
series and the dips in the phase space projections are still due
to the attractor-ruin of the fourth ECM.

For increasing K the torus continuously gains height and
covers a larger area of the phase space. This process is
interrupted by periodic windows, which are created by
frequency locking. That means that the two frequencies nRO
and nPP become commensurate and thus the trajectories
lock up on the surface of the torus forming a stable limit
cycle. For K¼ 0.687 we find, for example, a cycle of period-
6. Its time series in Fig. 11l displays regular pulse
packages. The corresponding power spectrum shows the
characteristic peaks at 1=6, 2=6, . . ., of the RO frequency
nROð0:687Þ ¼ 5:7GHz. The phase space projections are
shown in Fig. 12l. The shape of the limit cycle is rather
complicated due to the complicated mode structure that
exists in the cavity at this high feedback rate.

At K¼ 0.719 the torus breaks up into a chaotic attractor.
This is accompanied by an abrupt increase in the size of the
attractor. Heil et al. [25] who also observed this global
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
bifurcation by varying the feedback phase identified it as an
interior crisis, i.e., with a collision of the chaotic attractor of
the ECM that became unstable in the cascade with a saddle-
point of an other ECM pair. In our case that could be the
collision of the fourth ECM with the saddle-point (antimode)
of the sixth ECM pair that is created at K¼ 0.66. For
K� 0.719 the saddle is absorbed into the chaotic attractor,
resulting in an attractor of much larger size. For K� 0.691,
directly after the periodic window (see Fig. 3vii), the system
starts to exhibit bistability between the attractor that
developed out of the fourth mode and the stable sixth mode.

The time series and power spectra of the laser output at
K¼ 0.79, shortly before the breakdown of the attractor at
K¼ 0.7905 are shown in Fig. 11m. We observe pulse
packages that are quite regular. They are not completely
regular like those found for low a¼ 0.9, because trajectories
of adjacent pulse packages do not close up exactly (see
Fig. 12m). So each package starts with slightly different
initial conditions. In between the pulses the output power
drops to 0. Thus, this behavior resembles the LFFs found in
QW lasers [23]. The power spectrum still shows the ghost of
the old mode structure. The trajectories of these almost
regular pulse packages cover a large volume in phase space
(see Fig. 12m). Note the larger scale of the ordinate of
Fig. 12m in comparison to the other plots of this figure. The
www.pss-b.com
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Figure 11 (online color at: www.pss-b.com) Time series (left) and
power spectra (right) for selected feedback strengths K: rows (j–m)
correspond to K¼ 0.62� 0.79 as indicated by vertical blue dash-
dotted lines (j–m) in the third bifurcation cascade for large a¼ 3.2
and G¼ 0.00225 in Fig. 3vi.
pulse packages for large a are completely different from the
regular pulse packages found in Section 4.1 for small a,
which resulted from a homoclinic bifurcation. Thus we do
not find a scaling law for the interpulse interval close
to the bifurcation point. Instead the frequency of the
envelope of the pulse packages nPPð0:79Þ ¼ 0:58GHz is
close to the difference of the frequency corresponding to the
external cavity roundtrip time and the RO frequency
nec � nROð0:79Þ ¼ ð6:25 � 5:6ÞGHz ¼ 0:65GHz, demon-
strating that the pulse packages develop out of a torus.
Mørk et al. [21] observed experimentally a similar scenario
for a QW laser, which they studied also theoretically within a
Lang–Kobayashi model. Throughout the third bifurcation
cascade the attractor develops ‘‘around’’ the steady state
densities of the fourth ECM measured before its Hopf
bifurcation point (black dots in Fig. 12). Only after the
www.pss-b.com
breakdown of the attractor the system jumps to the stable fifth
ECM. Its steady state densities at K¼ 0.79 are indicated by
brown circles in the (nph, ne,h)-planes. The steady state WL
carrier densities we ¼ 2:15Nsum and wh ¼ 2:45Nsum are
outside the plot range. At K¼ 0.7905 a boundary crisis takes
place. This is a global bifurcation in which the chaotic
attractor collides with its basin boundary. Directly after the
bifurcation we find long chaotic transients (transient chaos)
before the system settles down to stable cw operation at the
fifth ECM. This is typical for this kind of bifurcation [43].
The fourth bifurcation cascade displays also a quasiperiodic
route to chaos similar to the third cascade. Generally, for
larger a-factor the ranges of bistability are larger.

5 Dependence of first laser instability on a- and
G-factor In this section we will focus on the first laser
instability and its dependence on the a-factor as well as on
the confinement factor G. This critical quantity is important
because it allows one to quantify the feedback sensitivity of
the laser. In Fig. 13a we plot the value of the first Hopf
instability (Kc in the bifurcation diagrams of Fig. 3) as a
density plot in dependence on the confinement factor G
and the linewidth enhancement factor a. The value of Kc

is color coded: darker color corresponds to higher values of
Kc. Thus, the black regions indicate the most stable
operation. At first we discuss the dependence on a: using
asymptotic methods Levine et al. [41] derived an analytic
expression for the lowest bound of the critical feedback
strength Kc at which the first ECM loses stability via a Hopf
bifurcation:
Kc �
2lRffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2

p : (15)
Here, lR is the damping rate of the ROs, which will be
considered later in this section. Equation (15) basically states
that the critical feedback strength decreases with the number
of ECMs, since the number of ECMs increases with a. This
functional dependence of Kc on a is reproduced in our
numeric simulations as can be seen in Fig. 13b that shows the
decrease of Kc with a. The solid red line is a fit according to
Eq. (15). We also found that changes in the internal QD
configuration (different scattering rates and hence different
damping rates) have an influence on the bifurcation diagram.
Simulations for a QD laser with lower damping rate showed a
decreased critical feedback strength Kc as well as small
changes in the bifurcation diagram.

The discussion of the confinement parameter G is more
involved. Figure 13c depicts the dependence of Kc on G for
two different a-factors. Note that in order to change G we
varied the geometric confinement factor Gg which is
accessible in experiments by changing the number of QD
layers. As can be seen in this picture the value of Kc first
decreases with G before it increases for G> 0.0038. Thus,
we have two competing processes that have an influence on
the critical feedback strength. First, a variation of G is
accompanied by a change of the WL carrier densities we
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 12 (onlinecolor at:www.pss-b.com) Phasespace projections of the trajectory ontoplanes spanned by the photon densitynph and the
carrierdensitiesne,nh,we,andwh(column1–4).Rows(j–m)correspondtoK¼ 0.62� 0.79asindicatedbytheverticaldash-dottedlines(j–m)
in the third bifurcation cascade for largea¼ 3.2 andG¼ 0.00225 in Fig. 3vi. Black dots indicate the steady state of the fourth ECM before the
supercritical Hopf bifurcation at Kc¼ 0.512. Brown circles indicate the sixth stable ECM at K¼ 0.79.
and wh at steady state. The higher G, the lower are the WL
carrier densities which then give rise to larger scattering
times te and th (see Ref. [19] for a detailed discussion).
Following the asymptotic expansion of Levine et al. [41] the
critical feedback is proportional to the damping rate
lR ¼ 1=2 t�1

c þ jP0


 �
where P0 is the photon number, tc is

the carrier lifetime (here given by te and th) and j is the
differential gain (in our model given by j ¼ GWA). Thus the
increase of the scattering times withG nicely explains why at
first Kc decreases with G. Note that this effect cannot be
found with a conventional Lang–Kobayashi model with
constant carrier lifetime.

However, with further increase of G the damping rate is
dominated by the second term jP0, which is linearly
dependent on G and is therefore responsible for the increase
of Kc that is observed for higher G.
6 Comparison of QD and QW lasers In this
section we compare the stability properties of a QD laser
to those of a QW laser. To model the QW laser we use a
conventional Lang–Kobayashi type model with three
dynamical variables, namely the photon density nph, the
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
phase f, and the carrier density n:
_nph ¼ �2knph þ Gg0ðn� n0Þnph þ bRQW
sp ðnÞ

þ 2
K

tin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nph;tecnph

p
cosðf� ftec þQÞ (16a)
_ a

f ¼

2
fGg0ðn� n0Þ � 2kg

� K

tin

ffiffiffiffiffiffiffiffiffiffiffi
nph;tec
nph

r
sinðf� ftec þQÞ (16b)
_n ¼ jðtÞ
e0

� 1

tc
n� g0ðn� n0Þnph: (16c)
For this QW laser model we assume electrons and holes
to have the same dynamics. In Eq. (16) n0 denotes the
transparency concentration, which is equal to NQD/2 for the
QD model, if we set n ¼ ðne þ nhÞ=2. To compare both
lasers the following parameters are used for the QW laser
(see Table 1 for numerical values): the linear gain coefficient
is set to g0¼WA, the rate of spontaneous emission is
modeled by bimolecular recombination RQW

sp ¼ BSn2, and
www.pss-b.com
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Figure 13 (online color at: www.pss-b.com) (a) Density plot
of the critical feedback strength Kc (color coded) at which the
first supercritical Hopf bifurcation occurs in dependence of the a-
and the G-factor. (b) Sections for G¼ 0.00225 fixed and a varying
from 0:6 to 5. (c) Sections fora¼ 0.9 or 3.2 fixed andGvarying from
0:001 to 0:01.

Figure 14 (online color at: www.pss-b.com) Response of photon
density to a rectangular current density j(t) pulse of 6 ns width and
j/jth ¼ 2.5(browndash-dottedline)foraQDlaser(solidblueline)and
a QW laser (red dashed line). j(t) is normalized to the threshold
current density of the laser. For both cases the parameters of Table 1
areused.Additionally thesteadystatephotondensityof theQWlaser
has been set to the value of the QD laser (K¼ 0).
carrier and photon lifetimes tc ¼ W�1 and tph ¼ ð2kÞ�1
,

respectively, are used. Furthermore, the same a-factors and
confinement factors G as for QD lasers are used in order to
enable a direct comparison. (Note, however, that in the case
of small a¼ 0.9 this is not necessarily a realistic choice. Also
the confinement factor for a realistic QW laser should
be larger than for a QD laser.) To determine the steady state
photon density of the QW laser n�ph in dependence of
the current density we disregard feedback (K¼ 0) and insert
the ECM ansatz (nph ¼ n�ph, f ¼ Dvst, and n¼ n�) in the
Eq. (16a–c). By neglecting the spontaneous emission (b¼ 0)
the photon density is approximately 0 below threshold. Thus
Eq. (16c) yields the following expression for the threshold
www.pss-b.com
current density:
jQWth ¼ e0

tc
nth: (17)
Here nth is the carrier density at the laser threshold. Above
threshold (n�ph 6¼ 0) it follows from Eq. (16a) that the carrier
density is clamped to its threshold value:
n� ¼ nth ¼ n0 þ
2k

Gg0

:

Following Eq. (16c), the steady state characteristic for
the photon density can be determined by:
n�ph ¼ GtphðJ � 1Þ j
QW
th

e0

, (18)
where J ¼ j=jQWth is the injection current density normalized
to its threshold value. For comparison of the QW and QD
laser models we calculate jQWth and nth from Eqs. (18) and
(17), respectively, by setting the steady state value n�ph of the
photon density equal for both lasers.

Figure 14 shows the response of the QW (red dashed
line) and the QD laser (solid blue line) to a current pulse
(brown dash-dotted line) of 6 ns width. Both lasers are
pumped at a current density of 2.5 jth. It can be seen that for
this parameter set the QW laser displays less damping and a
higher RO frequency than the QD laser, as expected from
experiments. The response of the QW laser to optical
feedback for given a is qualitatively similar to the response
of the QD laser. The bifurcation diagrams of the QW laser
display the same number of bifurcation cascades, starting
from Hopf points and evolving into chaos, as in the case of
the QD laser. This was expected, because both laser systems
have the same basic solutions (ECMs). Thus in the following
we concentrate on the first bifurcation cascades. In Fig. 15
the first instability regimes of nph in dependence of the
feedback strength K are depicted for both lasers. Figure 15a
and b show the instabilities for smalla¼ 0.9 and Fig. 15c and
d for large a¼ 3.2. The middle panels of Fig. 15 depict the
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 15 (online color at: www.pss-b.com) First bifurcation cascades of the photon density nph (red) for a QW laser (upper panels) and a
QD laser (lower panels) in dependence of the feedback strength K for small a¼ 0.9 (a and b) and large a¼ 3.2 (c and d). Middle panels:
frequency deviations Dvs of the possible external cavity modes (blue). Brown vertical dash-dotted lines mark the Hopf bifurcation. Green
vertical dash-dotted lines mark the ends of the bifurcation cascades.
frequency deviations Dvs of the possible ECMs. In Fig. 15a
and c it can be seen that the QW laser takes a period-doubling
route to chaos like the QD laser (Fig. 15b and d).
Nevertheless the critical feedback strengths, at which the
supercritical Hopf bifurcation occurs, are lower for the QW
laser than for the QD laser (brown vertical dash-dotted lines
in Fig. 15). For small a¼ 0.9 the critical feedback strength
for the QW laser is KQW

c ¼ 0:032 (but Kc¼ 0.099 for the QD
laser) and for large a¼ 3.2 it is KQW

c ¼ 0:018 (but
Kc¼ 0.048 for the QD laser). For small a the QW laser is
already in the chaotic regime while the QD laser becomes
unstable. In the chaotic regime the photon density of the QW
laser performs stronger oscillations due to the weaker
damping of the ROs.

For small a the second ECM mode becomes stable in a
homoclinic bifurcation for both lasers at the same value of
the feedback strength Kbif ¼ 0.2305 (green vertical dash-
dotted lines in Fig. 15i and ii). Thus for feedback strengths
slightly lower than Kbif¼ 0.2305 both lasers display strictly
regular pulse packages as described in Section 4.1.2.

For large a¼ 3.2 the QW laser is stabilized again by a
homoclinic bifurcation, in which the system settles down to
the newly born second ECM atKQW

bif ¼ 0:128. In this case the
strictly regular pulse packages develop out of a periodic
window at K¼ 0.117 when the second mode-antimode pair
is created. In contrast, the QD laser stays chaotic until it
settles down to the second mode at KQD

bif ¼ 0:157 in a
boundary crisis. If we choose the carrier lifetime such that the
QW laser has the same damping, both lasers have nearly
identical critical feedback strengths. This demonstrates that
for equal parameters including the a-factor the QD laser is
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
more tolerant to feedback due to its strongly suppressed ROs,
which is in accordance with Ref. [6].

7 Conclusion Combining a Lang–Kobayashi like field
equation with microscopically based carrier rate equations, we
can explain the reduced feedback sensitivity found in QD
devices on the one hand by its strongly damped ROs and on the
other hand by the relatively small number of ECMs for a given
external cavity round trip time tec. The small number of ECMs
originates from a weaker phase–amplitude coupling com-
pared to QW devices. For QD lasers with large linewidth
enhancement factor a> 3 we find a bifurcation cascade
leading to chaotic regions alternating with short regions of
stable cw operation. This resembles the behavior typical for
QW devices [23]. For low a� 1 the model exhibits reduced
feedback sensitivity and performs stable cw operation over a
wide range of increasing feedback strength. Moreover, for low
a we found intensity pulsations in a certain range of the
feedback strength which are strictly regular for a	 0.9 and
become more irregular with increasing a.
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Appendix A
Fit functions for the microscopically calculated

scattering rates
Sine ðwe;whÞ ¼ �8:4 � 10�4 ps�1

þwe7:2 � 10�15 ps�1 cm2

þwh5:4 � 10�15 ps�1 cm2

(19a)
www.pss-b.com
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Sinðw ;w Þ ¼ w 8:9 � 10�15 ps�1 cm2
www
h e h h

þw2
h2:6 � 10�26 ps�1 cm4

�w3
h5:74 � 10�39 ps�1 cm6

(19b)
In the fit function Eq. (19b) the dependence on we was
found to be negligible:
Soute ðwe;whÞ ¼ Sine ðwe;whÞ
�e�101meV=26meV ewe=ð4:7�1011 cm�2Þ � 1

h i�1 (19c)
South ðwe;whÞ ¼ Sinh ðwe;whÞ
�e�54meV=26meV ewh=ð48�1011 cm�2Þ � 1

h i�1 (19d)
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Bimberg, A. Knorr, and E. Schöll, Phys. Rev. B 78(3),
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