Modelling the last Glacial Inception with CLIMBER

Reinhard Calov, Andrey Ganopolski and Martin Claussen

Potsdam Institute for Climate Impact Research
PO Box 60 12 03
D-14412 Potsdam
Germany

Content

- Introduction
- The Model
- The Glacial Inception
- Conclusions
- Outlook

The Model

The climate-system model CLIMBER

Comparison with data

Ice Volume and Ice Area of AOVI

Impact of the Ocean and the Terrestrial Vegetation

Inland Ice in North America

Impact of the CO₂ and the Insolation

Importance of the coupling between the climate and the ice sheets

Conclusions

- •The climate-system model CLIMBER-2.3 is able to model the glacial inception
- Our ice cover corresponds with the geological evidence
- Our sea-level drop corresponds with the proxies
- The feedbacks of the ocean and the terristrial vegetation are important factors in order the model a successful glacial inception
- The atmospheric dust is crusial to simulated the observed spatial extent of the ice sheets
- •The glacial inception is a dynamical process is makes little sense to perform time-slice runs

Outlook

- Modelling other glacial inceptions than the last one
- Model for the dust transport in the atmosphere
- Coupling the fresh water from the ice sheets with the ocean
- Including the ocean carbon cycle
- Milankovitch-only simulations

