

Stability of the Greenland Ice Sheet

Reinhard Calov, Alex Robinson, Andrey Ganopolski

Potsdam Institute for Climate Impact Research, Germany

Motivation

- Greenland ice sheet (GIS) is an important tipping element.
- GIS corresponds to 7 m sea level rise.
- Up to 0.1 Sv additional fresh water flux (if a decay in 1000 years is assumend).
- There is interaction with ocean.
- This talk is on stability of GIS, thresholds.

Modells

- Polythermal ice sheet model SICOPOLIS (Ralf Greve, ILTS).
- Regional Energy-Moisture Balance MOdel REMBO (Alex Robinson, Andrey Ganopolski).

Polythermal ice sheet model SICOPOLIS

REMBO

Temperatur

$$c_p \rho_a H_a \frac{\partial T_{\text{SL}}}{\partial t} = D_T \nabla^2 T_{\text{SL}} + (1 - \alpha_p) S - [A + BT] + L_w P_w + L_s P_s - L_s M_{s, \text{net}} + R(CO_2)$$

$$T = T_{\rm SL} - \gamma_a z_s$$

Moisture

$$\rho_a H_e \frac{\partial Q}{\partial t} = D_Q \nabla^2 Q - P$$

Slope effect

$$P = \left(1 + k \left| \nabla z_s \right| \right) \left(\frac{Q}{\tau} \right)$$

Temperature and humidity at the boundary from ERA-40 reanalysis data.

REMBO include snow pack model.

Melt Models

Positive degree-day (PDD)

 Melt rate determined by temperature and degree-day factors

$$PDD = \frac{1}{\sigma\sqrt{2\pi}} \int_{year}^{\infty} \int_{0}^{\infty} T \exp\left(\frac{-(T - T_{m})^{2}}{2\sigma^{2}}\right) dT dt$$

$$M = \alpha \cdot PDD$$
, $\alpha = \begin{cases} 0.003, & snow \\ 0.008, & ice \end{cases}$

- Implicitly accounts for albedo difference through higher melt factor for ice
- Based on present-day empirical observations

Insolation-Temperature Melt (ITM)

 Melt rate determined by physical contributions

$$M = \frac{1}{\rho_w L_m} \left[\tau (1 - a_s) S + c + \lambda T \right]$$

Adapted from van den Berg and Oerlemans, 2008

- Melt explicitly depends on albedo changes
- Potentially useful for paleo studies and in situations with large topographical changes

Coupling

Results REMBO

Present-day Temperature

- Simulated monthly temperatures compared with observations at 53 locations both on and around the ice sheet
- REMBO monthly averages are within ~1°C of observations

- Seasonality ice-free
- REMBO exhibits increased seasonality for icefree conditions
- Compares well to GCM results from Toniazzo et al. (2004)

Results REMBO

Present-day GIS with Rembo-SICOPOLIS

Parameter Constraints through Paleo Simulation

Constraints

- 1. Present-day volume +/- 20%
- 2. Present-day area +/- 20%
- Summit > 3 km
- Eemian minimum volume/area less than present-day volume/area

Stability Diagram

- •Similar behavior of PDD and ITM hysteresis, bistability, ice-free and ice covered stable branches
- •Thresholds for total meltback: 1-3 °C

Basins of Attraction

GIS under global warming

Stability of the Greenland Ice Sheet

Conclusions

- Developed Regional Energy-Moisture Balance Model.
- GIS shows hysteresis and bistability.
- Thresholds for melt down 1-3°C in our model.
- Time of full GIS meltback is measured in some thousands years/several hundreds of years.

Outlook

- Fast processes GIS sliding/ice streams.
- Further, constraints of parameters by paleo simulations.
- Long-term (1000 years) and short-term (100 years) future of GIS.
- Providing spatial dependent fresh water scenarios for ocean modelling.
- SICOPOLIS 3.0 (coming soon) will include shelf ice.
- Considering ice streams, work is in process.

Thank you for your attention!

