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At the crossroad of different electrification pathways
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Climate change mitigation effectiveness
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E-fuels require ~100% renewable electricity, and atmospheric CO2.
Battery electric cars and trucks can save emissions already today/soon

World Germany Austria Iceland

Electricity mixes
2018

World Germany Austria Iceland

Electricity mixes
2018

Light-duty vehicles (lower-medium size passenger car)

Life-cycle GHG emission intensities for transport applications (2030 technology)

Heavy-duty freight (semi-trailer trucks, 40t weight, 10t load)

The life-cycle analysis for passenger cars and trucks can be reproduced with the open-source tools 
carculator and carculator_Truck (https://carculator.psi.ch). The modified version of ecoinvent used in 
this analysis is generated from ecoinvent 3.7.1 (https://github.com/romainsacchi/premise). The 
modified version is available from the authors on reasonable request.
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Adapted from Adrian Odenweller, PIK
(based on IEA hydrogen database and additions by Adelphi)

Electrolysis would need to be scaled up faster than growth champion solar PV

Electrolysis capacity would need to 
grow faster than growth champion 
solar PV, to achieve the EU 40 GW 
target in 2030.

If achieved, EU-sourced hydrogen could 
meet ~1% of EU’s energy demand in 
2030.

Further exponential growth could make 
hydrogen abundant; yet,
the timing is highly uncertain.
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Climate change mitigation cost efficiency
or competitiveness with fossils and direct electrification
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High today‘s costs, high CO2 prices required.
Future innovation possible in case of massive scaling.

E-fuels not competitive in the next 1-2 decades. Immense policy support required.
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100% renewable electricity 
(wind, solar PV).
CO2 price calculation based 
on life-cycle GHG emissions.
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High today‘s costs, high CO2 prices required.
Future innovation possible in case of massive scaling.

Competitiveness of e-fuels only ~2040
Massive subsidies required until then.

E-fuels not competitive in the next 1-2 decades. Immense policy support required.
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Final energy consumption (EJ), non-electric end-use sectors (OECD, 2014, incl. feedstocks)

light duty vehicles, Low/mid temperature industrial 
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Conclusions
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1. Scaling. Start scaling hydrogen/e-fuels today. 
Expect large amounts only >2030/35.
Still, uncertainty about when we achieve 
“efuel abundance”.

2. Risk. Broadly betting on e-fuels risks further 
fossil lock-ins (and significant cost increases).

3. No-regret sectors. Focus hydrogen/e-fuels for 
steel, ammonia, aviation, olefins, shipping.

4. Hierarchy of mitigation options.
Electrification is cheaper, available today, and 
makes more efficient use of scarce 
renewables.

Techno-economic conclusions Policy conclusions

1. Policy action. Hydrogen/e-fuel options require continuous 
and massive support and coordination.

2. Develop e-fuels, while hedging against their unavailability
at large scale.

1. A merit-order of hydrogen end-uses should guide all 
related policies

2. Creating dedicated hydrogen/e-fuel demand pulls
(e.g. focused CCfDs, e-kerosin quotas, bilateral import
projects) rather then broad supply-side subsidies

3. Direct electrification. Foster direct use of electricity and
an (increased) renewable electricity expansion.

4. Mid-term level playing field. Strengthen and broaden 
CO2 pricing schemes (and an energy tax reform)

5. Carefully finding sensible bridges. Start preparing no
regret sectors for future hydrogen supply.

6. Infrastrucure strategy. Develop and implement robust 
hydrogen infrastructure roadmaps

7. Future green value chains will change!


