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At the crossroad of different electrification pathways
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Climate change mitigation effectiveness




E-fuels require ~100% renewable electricity, and atmospheric CO2.
Battery electric cars and trucks can save emissions already today/soon

Life-cycle GHG emission intensities for transport applications (2030 technology)
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The life-cycle analysis for passenger cars and trucks can be reproduced with the open-source tools

Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., Luderer, G. (2021)

carculator and carculator_Truck (https://carculator.psi.ch). The modified version of ecoinvent used in
this analysis is generated from ecoinvent 3.7.1 (https://github.com/romainsacchi/premise). The

Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change modified version is available from the authors on reasonable request.
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Electrolysis would need to be scaled up faster than growth champion solar PV

Electrolysis in EU
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Climate change mitigation cost efficiency
or competitiveness with fossils and direct electrification




E-fuels not competitive in the next 1-2 decades. Immense policy support required.

High today’s costs, high CO2 prices required.
Future innovation possible in case of massive scaling.
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E-fuels not competitive in the next 1-2 decades. Immense policy support required.

High today’s costs, high CO2 prices required. Competitiveness of e-fuels only ~2040
Future innovation possible in case of massive scaling. Massive subsidies required until then.
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1) Direct electrification 2) Direct 3) Impossible-to-
significantly cheaper electrification electrify sectors
than e-fuels and e-fuels

similar costs

light duty vehicles, Low/mid temperature industrial high temp. heat (>400°C), Aviation, shipping, chemical
heat (<400°C, e.g. steam generation), space heating heavy-duty transport feedstocks, primary steel
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Conclusions




Techno-economic conclusions

1. Scaling. Start scaling hydrogen/e-fuels today.
Expect large amounts only >2030/35.
Still, uncertainty about when we achieve
“efuel abundance”.

2. Risk. Broadly betting on e-fuels risks further
fossil lock-ins (and significant cost increases).

3. No-regret sectors. Focus hydrogen/e-fuels for
steel, ammonia, aviation, olefins, shipping.

4. Hierarchy of mitigation options.
Electrification is cheaper, available today, and
makes more efficient use of scarce
renewables.

Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., Luderer, G. (2021)

Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change P I K

Policy conclusions

1.

Policy action. Hydrogen/e-fuel options require continuous
and massive support and coordination.

Develop e-fuels, while hedging against their unavailability
at large scale.

1. A merit-order of hydrogen end-uses should guide all
related policies

2. Creating dedicated hydrogen/e-fuel demand pulls
(e.g. focused CCfDs, e-kerosin quotas, bilateral import
projects) rather then broad supply-side subsidies

Direct electrification. Foster direct use of electricity and
an (increased) renewable electricity expansion.

Mid-term level playing field. Strengthen and broaden
CO2 pricing schemes (and an energy tax reform)

Carefully finding sensible bridges. Start preparing no
regret sectors for future hydrogen supply.

Infrastrucure strategy. Develop and implement robust
hydrogen infrastructure roadmaps

Future green value chains will change!
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