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Abstract

In order to investigate the atmospheric dynamics in the tropics, we applied an unified multiple
scales asymptotic approach and derived reduced model equations. This technique combines
methods from the multi-scale perturbation theory and the scale analysis in the theoretical me-
teorology. It can be used for multiple scales interaction studies. The systematic approach was
applied to the 3D compressible equations for a fluid on an equatorial β-plane. An anisotropic
asymptotic scaling was used, allowing to address flows on a sub-planetary length scale in zonal
direction and on a mesoscale in meridional direction.

The reduced model equations consist of the WTG approximation and a nondivergent con-
straint on the flow in the y, z-plane. The momentum equation is time independent and have
important nonlinear transport terms. The system of equations describes a model of a Hadley
type circulation modified by a zonal pressure gradient force. After considering the magnitude
of the different diabatic processes, we showed that convective heating will drive the circulation.

We have prescribed the potential temperature source term and analytical solutions for the
meridional and vertical velocities were found. They describe ascending motions in the region
of heating and descending in the region of cooling, a poleward flow in the upper and an equa-
torward flow in the lower atmosphere. To find solutions for the zonal wind, we considered the
zonally averaged version of the x-component of the momentum equation. In the inviscid case
we showed that the absolute zonal momentum per unit mass remains constant along stream
lines. Numerical simulations were performed with a vertical diffusion representation of the tur-
bulent momentum transport. The model predicts weak easterly surface winds and strong upper
level westerlies at the boundary, corresponding to the subtropical jet at the edge of the Hadley
cell. The meridional profile of the potential temperature is consistent with the geostrophic and
hydrostatic balance in the model atmosphere. We have found that the momentum advection
terms are large near the equator, especially in the region of heating.
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Introduction

In the tropics there are phenomena, e.g. the El Niño Southern Oscillation (ENSO), the Madden-
Julian oscillation or the monsoon circulation, which are characterized by different length and
time scales. Variations in time are observed from minutes up to years and the spatial scales range
from the micro scale up to the planetary scale. Another feature of the tropical circulation is the
important coupling of the atmosphere and the ocean. Diabatic processes play here a crucial
role and we have to mention that the complex interactions between convecting systems and the
large-scale flow are not yet well understood. This is one of the reasons why an unique theory
similar to the quasi-geostrophic theory is lacking for the tropics. But there are two major groups
of simplified models, which represent our theoretical knowledge of the tropical atmosphere.

Simplified models capture the main processes in the atmosphere and are used to study in-
teractions and to test sophisticated parameterizations. They have the advantage that the reduced
model equations allow numerical solutions with very low computational costs or even analytical
solution. Simplified models have relevant contribution to our understanding of the atmosphere.
One group of such models for the tropics are the the Matsuno-Gill (Gill, 1980; Heckley and Gill,
1984) linear models of a steady circulation. They are driven by externally imposed diabatic heat
source. The assumption is made that only the first baroclinic mode of the atmosphere is excited.
The problem then can be reduced to solving the linear shallow water equations with a Rayleigh
parameterization of the friction and the radiative cooling. Steady-state solutions are found un-
der a long-wave approximation. They represent large-scale circulations like the Hadley and
the Walker cells. Another class of simplified models are the recently developed weak tempera-
ture gradient (WTG) models (Sobel et al., 2001; Polvani and Sobel, 2002; Bretherton and Sobel,
2003). They are based on the assumption that the distribution of the temperature in the tropics is
horizontally uniform. This agrees well with observations, e.g. there are no front systems in the
tropics. It was shown that the basic features of the idealized Hadley and Walker circulation and
of the Matsuno-Gill models are captured, when the WTG approximation is applied. The WTG
method brings also simplifications when it is used in the quasi-equilibrium tropical circulation
models for describing convectively coupled circulations (Bretherton and Sobel, 2002).

The foundation of the simplified models is a series of approximations. They are based on
observations and are valid for certain regimes of the atmosphere only. The characteristic spatial
and temporal scales of the regimes give the range of validity for the reduced model equations.
The motivation for the neglect of particular terms in the governing equations cannot be easily
accepted by people who are not familiar with the tropical meteorology. The scaling analysis
is here a helpful tool to estimate the magnitude of the different forces. Klein (2000, 2004)
proposed a multiple scales asymptotic approach for the derivation of reduced model equations.
It combines the advantage of the scale analysis with methods from the perturbation theory. A
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2 INTRODUCTION

single non-dimensional parameter ε ∼ 1/8 . . . 1/6 is introduced and all characteristic numbers
in the governing equations are expressed in terms of it. An asymptotic ansatz resolving the
scales of interest is chosen. It is inserted in the governing equations and the terms, relevant for
the considered regime, appear in the leading orders of the equations. Here we mention some
important benefits of this approach:

• It is clear-cut and systematic method for deriving simplified models. It starts from the
general 3D compressible flow equations and can be easily applied to different regimes.

• The derivation become more transparent, common mathematical arguments are used.

• Due to the fact that ε has a certain value, it is possible to calculate corrections to the
leading order solutions and thus to obtain a better approximation to the “real” solution.
The universal small parameter is an independent measure for the range of validity of the
reduced model equations.

• The choice of the asymptotic ansatz allows us to study interactions between different
scales. This is relevant especially for the tropics where phenomena with diverse temporal
and spatial scales are coupled. Majda and Klein (2003) applied this technique and derived
a model for the interactions between the synoptic and the planetary scale motions in the
tropics.

• It is a starting point for the development of well-balanced numerical methods for different
flow regimes.

Nevertheless additional physical considerations have to be always made, in order to find if
the derived reduced model capture the important phenomena.

Motivated by the observed phenomena in the tropics and the theoretical achievements de-
scribed above, we use this multiple scales asymptotic approach in order to derive reduced model
equations. We applied the same scaling as for the seasonal sub-planetary equatorial WTG
regime, derived in Majda and Klein (2003). The new equations represent a steady-state regime
on a seasonal time scale. Its spatial scales of validity are anisotropic – a sub-planetary length
scale in zonal direction and a mesoscale in meridional direction. The regime contains the 3D
generalization of the WTG approximation, it describes a zonally symmetric circulation, driven
by convective heating, and embedded in a zonal pressure gradient field. The zonally averaged
version of the equations is an idealized model of a Hadley cell (Schneider and Lindzen, 1977;
Schneider, 1977; Held and Hou, 1980; Fang and Kit Tung, 1999). Analytical and numerical
solutions are found for this case.

The outline of this study is as follows: the main atmospheric phenomena in the tropics are
reviewed in Chapter 1. They give the physical motivation for the scaling used in the asymptotic
expansion. The Hadley cell and its role for the transport of momentum is also discussed. In
Chapter 2 we introduce the multiple scale asymptotic approach, the reduced model equations
are derived. In Chapter 3 we consider the unresolved processes which are important for the
dynamics. A parameterization is chosen for the turbulent transport of momentum and for the
convection, which has the main contribution to the diabatic source term. Analytical solutions
for the vertical and meridional velocities and for the vertically integrated potential temperature
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are found and discussed in Chapter 4. Solutions for the zonal wind in the inviscid case and with
a simple representation of the friction are given. Chapter 5 is devoted to numerical solutions
using a more realistic parameterization of the momentum sink. The numerical method and
simulations with different model setups are presented. At the end there is a brief summary of
the results.
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Chapter 1

Tropical circulation

In this chapter a brief review of the main atmospheric phenomena in the tropics is given. The
issue of the interactions between the convection and the large-scale flow is addressed. We
concentrate on the Hadley cell as an idealized model of a tropical circulation, its role in the
momentum budget is elucidated.

1.1 Observations of the tropical circulation

One commonly used model of the tropical circulation is the thermally driven Hadley cell –
warm air raising near the equator, flowing poleward in the upper troposphere, descending in the
subtropical regions and moving in the lower atmosphere back to the equator. Thus the inflow
of air at the equator forms the intertropical convergence zone (ITCZ), see Fig. 1.1. It can be
easily recognized on a satellite image of the earth as a narrow band of cumulus clouds. But after
precise view, we will observe that this belt is almost never at the equator and it is not continuous.
It is made rather by a number of deep convective cloud systems. These clusters play a central
role in the energy balance of the atmosphere. Individual cumulonimbus reach the top of the
troposphere at ≈ 16 km, they are sometimes referred to as undiluted hot towers. With vertical
velocities of the order of 1 m s−1 in the cores, they pump moist air from beneath the trade
inversion in the upper atmosphere. The air parcels inside the clouds undergo a pseudoadiabatic
ascent, nearly without entrainment of dry air from the environment and they release a significant
amount of latent heat.

Satellite images show that the temporal and spatial distribution of the cloudiness over the
tropics varies and the precipitation is not confined in the ITCZ. Westward propagating equatorial
wave disturbances are the reason for such phenomena. They have a period of≈ 5 days, a length
of 3000−4000 km and a propagation speed of 8−10 m s−1. The troughs of these waves coexist
with the area of deep cumulus convection. The released latent heat there causes vertical flows
and thus drives the secondary circulation needed to sustain the wave.

Another important feature of the tropics are the Walker-type circulations resulting from
east-west SST gradients. In some regions (tropical Pacific) such cells dominate over the Hadley
circulation. They have length scales of ∼ 15000 km and are connected with an intensive con-
vection (western Pacific) (Peixoto and Oort, 1992).
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6 CHAPTER 1. TROPICAL CIRCULATION

Figure 1.1: The position of the ITCZ for July (upper plot) and January (lower plot) (Roedel,
1994)

The observed SST anomalies and the resulting sea pressure gradients, associated with the
Walker circulation, have fluctuations on different time scales. They are explained as an internal
oscillation of the atmosphere-ocean system. The strongest such signal is the El Niño Southern
Oscillation – ENSO. It has a period of 2−5 years and is associated with surface drag anomalies
of the trade winds in the Pacific, they excite Kelvin and Rossby waves in the ocean. The waves
produce the upwelling of the thermocline and SST changes, pressure anomalies result (Peixoto
and Oort, 1992).

Madden and Julian (1971) discovered an additional high frequency oscillation in the tropics.
It has a period of 30 − 60 days and is often referred to as the intraseasonal oscillation. It is
connected with the eastward movement of a large-scale cell in the atmosphere. The triggering
mechanism has not yet been understood - an extratropical forcing or penetrating Rossby waves
from the mid-latitudes are possible explanations.
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Finally, circulations on a seasonal time scale are observed in the tropics, driven by the tem-
perature contrast over the land and the ocean (e.g. the Indian monsoon). The deep convection
plays here a crucial role in magnifying the strength of the overturning and spreading it over the
whole depth of the atmosphere. In a non-convecting atmosphere such circulation is confined
only to the boundary layer.

It is important to note the anisotropy of many phenomena in the tropics (e.g. Madden-Julian
Oscillation, ENSO, Walker cell), their zonal length scale is an order of magnitude larger than the
meridional scale. Fields of surface pressure or SST have also such anisotropic distribution. In
the tropics we have the equatorial wave guide (Gill, 2003), waves are confined in the equatorial
belt and can propagate primarily in zonal direction.

1.2 Convection and the large-scale flow

The theory of the interactions between convective cloud systems and the large-scale circulation
has been characterized by some significant changes during the last years.

Charney and Eliassen (1964) introduced the concept of convective instability of the second
kind (CISK) as an explanation for the development of hurricanes. It is based on the idea that
a large-scale cyclonic disturbance supplies moisture for the convecting region embedded in it
through boundary layer convergence ( Ekman pumping ). The convective system on the other
hand intensifies the secondary circulation (ascending air in the cyclonic disturbance) and thus
has a positive feedback on the large-scale motion. This view of convection has dominated for
some years in the atmospheric science community and convective parameterizations based on
CISK assumptions has been developed (Kuo, 1974). These convective schemes were derived
using moisture budgets, assuming that the difference between surface evaporation and precipi-
tation is nearly balanced by moisture convergence. Emanuel et al. (1994) emphasized that this
convective parameterization fails to reproduce realistic radiative-convective equilibrium with-
out a large-scale disturbance. This class of schemes concentrates on the determination of the
heating (release of latent heat) without considering the complicated interactions between the
cloud system and the environment. This is an ”external” view of cumulus heating, because
an imposed external heat source will produce positive temperature fluctuations, but this is not
always true in the case of convecting atmosphere.

New ideas on convection were presented in the paper of Arakawa and Schubert (1974),
where they introduced the quasi-equilibrium parameterization. They make the assumption that
the time scales of response of the convecting system ∼ 1 h are much less then those describ-
ing the large-scale system. This means that the available potential energy (APE) produced by
the large-scale motion is almost fully converted into kinetic energy by the convection (vertical
motions) and after that dissipates (turbulence). So there is no accumulation of APE, which
can result in increasing the kinetic energy of the large-scale circulation. This statement rejects
the fundamental hypothesis in CISK. In the new theory, the convective atmosphere tends to
remove conditional instability of the first kind (Arakawa and Schubert, 1974). Emanuel et al.
(1994) introduced the statistical-equilibrium thinking. They connect the virtual temperature in
a convecting atmosphere with the sub-cloud layer entropy (represented by the pseudoadiabatic
potential temperature θe). The sub-cloud layer entropy is influenced by sensible, latent and
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radiative heat fluxes, fluxes of low entropy air from the middle troposphere (downdraughts),
entraining air from the cloud free area of the lower atmosphere. It was shown that large-scale
ascent will result in reduction of the sub-cloud layer entropy (through downdraughts of the in-
tensified convection) and thus produce a cooling in the free-atmosphere – a positive effective
static stability. An effective stability is the static stability of the atmosphere, where the effect of
condensation is included implicitly.

Another important feature of the quasi-equilibrium approach is the consideration of the
interactions between ocean and atmosphere. Here we mention two important examples. The
first is the influence of the sea surface temperatures (SST) on the subcloud layer entropy and thus
on convection. The coincidence of the position of the ITCZ and the regions with the highest
SST proves such strong connection. The second is the evaporation-wind feedback. Stronger
surface winds increase the evaporation from the oceans and the gained moisture will amplify
the convection. So intensified downdraughts and winds will occur. Observations of hurricanes
indicate such mechanism.

The main idea that the atmosphere tends to remove convective instability of the first kind
was implemented in different convective schemes (Arakawa and Schubert, 1974; Betts, 1986;
Betts and Miller, 1986).

Recently some quasi-equilibrium tropical circulation models (QTCMs) have been developed
(Neelin and Zeng, 2000; Zeng et al., 2000; Bretherton and Sobel, 2002) in order to investigate
the influence of such convective parameterization on the atmospheric circulation.

1.3 The Hadley cell

Hadley (1735) proposed the idea of thermally direct circulation with ascending warm air at the
equator, flowing poleward in the upper atmosphere and with cold air moving equatorward in the
lower troposphere, see Fig. 1.2.

Figure 1.2: The general circulation of the atmosphere, by Hadley (1735)
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With this model he could explain the trade winds but not the observed westerlies in the
midlatitudes (Hadley supposed that the circulation will spread from the equator to the poles).

Farrel (1856) and Thomson (1857) introduced an additional thermally indirect cell and this
modified model could elucidate the surface winds. The transport of angular momentum in the
atmosphere was investigated 1926 by Jeffreys. In his study he neglected the contribution to the
Hadley cell referring the main part to eddies and for some time the role of the Hadley circulation
was underestimated.

Figure 1.3: The observed mass stream function ψ for the zonally averaged circulation (Peixoto
and Oort, 1992)

First Schneider and Lindzen (1977) tried to answer the question to what extent thermally di-
rect cells are responsible for the observed general circulation. Taking the 3D compressible flow
equations on a rotating sphere, they have performed some numerical simulations of zonally
symmetric steady circulation, excluding the effect of eddies (barotropic, baroclinic and topo-
graphic eddies). Their results can be interpreted as a consistent basic state of the circulation,
which can be used for instability studies. Schneider and Lindzen (1977) showed that a circu-
lation driven by the radiative-equilibrium temperature difference between the equator and the
pole, will be very weak and confined primarily in the boundary layer. Only with the inclusion
of an upper level heating, due to deep cumulus convection (latent heat release), and cumulus
friction (vertical transport of horizontal momentum in the cumulus clouds), they were able to
simulate a meridional circulation close to the magnitude of the observed. Experiments were
performed with different distributions of the convective heating: resembling the narrow heating
due to the ITCZ, or such derived from annual mean precipitation rates. In his nonlinear model
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Schneider (1977) included a crude parameterization of the release of latent heat, linking it to
the evaporation and the moisture convergence (below the trade inversion). In their simulations
Schneider and Lindzen (1977) reproduced the zonally averaged mean circulation in the tropics
and the observed subtropical jet in the upper troposphere.

Held and Hou (1980) presented a detailed discussion of the Hadley cell for a Boussinesq
fluid on a rotating sphere, driven by meridional temperature differences. For the nearly inviscid
case they gave some analytical solutions for the zonal wind at the top of the atmosphere, the
surface winds, the meridional temperature transport and the vertically integrated distribution of
the potential temperature. Numerical experiments for a viscous fluid were also performed and
were in good agreement with the analytical solutions.

It is important to mention that only the annual mean general circulation shows a structure
with two symmetric Hadley cells. Observations indicate that we have over the most period of
the year a strong winter cell and a weak summer cell (see Fig. 1.3 middle and lower plot). This
fact motivated Lindzen and Hou (1988) to investigate the asymmetry of the heating about the
equator. They simulated the intensification of the winter Hadley cell and the winter easterlies,
due to the increased meridional temperature gradients in the winter hemisphere.

Recent studies were devoted to the time-dependent Hadley circulation (Fang and Kit Tung,
1999). They show that the simulated strength of the cell is close to the observed, when the
annual variations of the heating are included.

Figure 1.4: The observed zonal winds (Peixoto and Oort, 1992)
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Figure 1.5: The observed meridional winds (Peixoto and Oort, 1992)

1.4 Meridional transport of momentum

The Hadley cell plays an important role not only in the energy balance of the atmosphere (pump-
ing warm air poleward and cold air equatorward and thus reducing the meridional temperature
gradient), but also in the angular momentum budget. The absolute angular momentum M is
defined as M = Ωa2 cos2 φ+ ua cosφ, where Ω and a are the rotation frequency and the radius
of the earth, φ denotes the latitude and u is the zonal velocity. This relationship is similar to
the definition of the total momentum px on a β plane (see (4.40)). In the tropics the observed
surface winds are easterlies and in the higher latitudes westerlies. This means that in the tropics
the absolute angular momentum of the atmosphere is less then that of the rotating earth and in
the midlatitudes is the opposite. Through surface drag the earth continuously looses angular
momentum to the atmosphere in the tropics and gains in the higher latitudes. Since our planet
rotates with nearly constant frequency the total angular momentum of the earth remains con-
stant, so these two processes must compensate. There has to be a net flux of angular momentum
in the atmosphere from the tropics to the poles. This transport is realized through eddies and
symmetric circulations. The Hadley cell has an important contribution to it. The ascending
air in the equatorial region has the highest values of angular momentum and it is transported
poleward. The earth’s angular momentum decreases toward the pole, and thus a surplus of mo-
mentum in the atmosphere at higher latitudes is created. This is the reason for the existence
of the subtropical jet (see Fig. 1.4), who changes its position and strength during the year in
accordance with the Hadley circulation. Because of the hydrostatic balance of the atmosphere,
the strong upper level zonal winds require a meridional temperature gradient (see Fig. 1.6). The
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Figure 1.6: The observed zonally averaged temperature (Peixoto and Oort, 1992)

surplus of relative momentum of the air is transferred back to the surface by friction (see the
zonally mean winds near the surface in Fig. 1.4 and 1.5).

In order to investigate the meridional transport of momentum 1 , we multiply the x-
component of the momentum balance equation (2.59) with ρ and integrate over z

1∫
0

ρv∂yu dz +

1∫
0

ρw∂zu dz −
1∫

0

βρyv dz =

1∫
0

∂zµ∂zu dz , (1.1)

where at z = 1 is the top of the atmosphere. For the representation of the source term Su see
Chapter 3. The contribution of the third term on the l.h.s of (1.1), describing the transport of
earth’s momentum by the meridional mass flux is zero, because there is no net surplus or deficit
of mass in a vertical column air (we are interested in steady circulations). This can be easily
seen if we introduce a mass stream function ψ( for the definition see (4.1),(4.2) ). The third
integral on the l.h.s of (1.1) can be rewritten as

βy

1∫
0

∂zψ dz = βy
(
ψ(z = 1)− ψ(z = 0)

)
= 0 , (1.2)

where we have used ψ = const at the boundary of the circulation which implies no mass
transport out of the considered domain. For the r.h.s. of (1.1) we use a stress free boundary

1In Chapter 2 we derive reduced model equations (2.59)-(2.62). For consistency we will address the meridional
transport of momentum using this system of equations. The same discussion can also be applied to the zonally
averaged steady-state governing equations for geostrophically balanced flow, leading to the same results.
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condition at the top for z = 1 and the usual bulk formula for the representation of the surface
shear

1∫
0

∂zµ∂zu dz = µ∂zu
∣∣∣
z=1

− µ∂zu
∣∣∣
z=0

= −Cu2(z = 0) . (1.3)

Finally, the vertically integrated equation for the zonal momentum takes the form

1∫
0

ρv∂yu dz +

1∫
0

ρw∂zu dz = −Cu2(z = 0) . (1.4)

This equation states that the flux of relative momentum is balanced by the surface drag.
An important conclusion is that in a linear model the surface winds must be set to zero, if the
parameterization of the friction term, leading to the r.h.s. in (1.4) is used.
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Chapter 2

Multiple Scales Asymptotic Approach

The multiple scales asymptotic approach has several key points, discussed briefly below and
applied to the governing equations for a 3D compressible flow on a β-plane. The scaling we
use is motivated by the phenomena described in Chapter 1. New reduced model equations are
derived, they characterize flows on a meso and sub-planetary length scales and a seasonal time
scale.

In order to investigate the dynamics in the tropics, an unified mathematical modeling ap-
proach has been used, proposed by Klein (2000, 2004). The technique is based on multi-scale
perturbation theory. It makes the scale analysis in the theoretical meteorology transparent and
can be used for multiple scales interactions studies. Klein (2000, 2004) derived some well-
known quasi-geostrophic atmospheric regimes, using this unified mathematical approach. Ma-
jda and Klein (2003) applied it and deduced a hierarchy of multi-scale reduced equations de-
scribing scale interactions in the tropics.

The multiple scale asymptotic approach consists of the following steps:

1. Non-dimensionalize the governing equations using some physical reference quantities
with well defined values and independent of the considered length and time scales.

2. These reference quantities form some well-known non-dimensional numbers such as the
Rossby, Froude and Mach numbers. A small parameter ε is introduced and the character-
istic numbers are expressed in terms of it in a distinguished limit.

3. To be able to consider the length and time scales of interest, we choose special asymptotic
expansion. The derivation of the reduced equations is then straightforward: the ansatz is
substituted in the governing equations and the terms of the same order are equated.

2.1 Dimensionless governing equations

We choose some physical parameters, that do not change significantly in different atmospheric
flow regimes. Definitely, such quantities for the earth and for the atmosphere are:

15
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rotation frequency: Ω ∼ 7 10−5 s−1

radius: a ∼ 6 103 km
gravity acceleration: g ∼ 10 m s−2

Table 2.1: Reference quantities for the earth

scale height: hsc ∼ 104 m
thermodynamic pressure: p ∼ 105 kg m−1 s−2

air density: ρ ∼ 1 kg m−3

air velocity in the tropics: v ∼ 5 m s−1

Table 2.2: Reference quantities for the atmosphere

Using these reference quantities the dimensionless governing equations for a compressible
flow take the form:

∂tu + u · ∇u + wuz +
1

Ro
(f × v)‖ +

1

M2

1

ρ
∇p = Su (2.1)

∂tw + u · ∇w + wwz +
1

Ro
(f × v)⊥ +

1

M2

1

ρ
pz +

1

Fr2
= Sw (2.2)

pt + u · ∇p+ wpz + γ(∇u + wz) = ρSp (2.3)

θt + u · ∇θ + wθz = Sθ (2.4)

ρ =
p

1
γ

θ
(2.5)

Where f is the earth rotation unit vector, γ is the isentropen exponent, M, Fr and Ro are
the Mach, Froude and Rossby numbers, Su, Sw, Sp, Sθ denote source terms, v,u, w, ρ, θ are
the non-dimensional velocity vector, horizontal velocity vector, vertical velocity, density and
potential temperature, respectively.

2.2 The distinguished limit

The non-dimensional numbers are defined as:

M =
vref√
pref/ρref

∼ O( 1
30

) , (2.6)

Fr =
vref√
ghsc

∼ O( 1
30

) , (2.7)

Ro =
vref

2Ωhsc
∼ O(8) . (2.8)
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Here we give some typical values for the characteristic numbers, inserting our reference
quantities in the definitions. Notice that the Rossby number is ”large”, because we have used
hsc as a reference length. If we use a typical synoptic scale ∼ 1000 km, it would be also small.
In the asymptotic, the small numbers (like M and Fr) and the large (Ro) are expressed in terms
of small parameters. If we use for each number a different small parameter, it would lead to
complications and not unique solutions. Suppose we have two small parameters ε and δ, then
our result will depend on the way we take the limit: e.g. if we first let ε→ 0 and then δ → 0, the
reverse order or we use some coupling between the two parameters. Klein (2000, 2004) showed
that, choosing a particular dependence on one and the same ε for all non-dimensional numbers,
it is possible to derive some well-known model equations in the meteorology. Following Klein
(2000, 2004) we introduce the same distinguished limit:

M = ε2M̂ , (2.9)

Fr = ε2F̂ r , (2.10)

Ro =
1

ε
R̂o , (2.11)

where M̂, F̂ r, R̂o = O(1), as ε → 0 and will be set to unity hereafter. Taking into account
the magnitude of M, Fr, Ro see (2.6),(2.7) and (2.8), we can estimate ε = 1

8
. . . 1

6
, which is

sufficient to use ε as a small parameter for the asymptotic expansion later.

2.3 The Coriolis term and the equatorial β-plane approxima-
tion

We consider dynamics confined in the tropics and apply the β-plane approximation to the gov-
erning equations. For a latitude ϕ0 the perpendicular projection of the earth rotation unit vector
is given by

|f⊥| = sin(ϕ0 +
y′

a
) = sin(ϕ0 +

y′

hsc︸︷︷︸
y

hsc
a︸︷︷︸
ε3

) =

= sin(ϕ0) + ε3y cos(ϕ0) +O(ε6)

(2.12)

Here a represents the earth radius ≈ 6000 km, y′ denotes the distance from the equator and
y is the same in non-dimensional form. At the equator ϕ0 = 0 and the Coriolis term can be
written in terms of ε as:

1

Ro

(f × v)‖ = ε4yk × u + εj × kw +O(ε7). (2.13)

Under the β-plane approximation the governing equations take the form



18 CHAPTER 2. MULTIPLE SCALES ASYMPTOTIC APPROACH

∂tu + u · ∇u + wuz + ε4yk × u + εwi + ε−4 1

ρ
∇p = Su , (2.14)

∂tw + u · ∇w + wwz + ε(f × v)⊥ + ε−4 1

ρ
pz + ε−4 = Sw , (2.15)

pt + u · ∇p+ wpz + γ(∇u + wz) = ρSp , (2.16)

θt + u · ∇θ + wθz = Sθ . (2.17)

2.4 Expansion scheme

In addition to our reference quantities we introduce some other length and time scales, which
are suitable for addressing large-scale flows in the tropics.

The main atmospheric phenomena in the tropics are described briefly in Chapter 1. They
motivate our interest on dynamics on a seasonal time scale with a length scales in the range of
500 − 2000 km. The Charney inertial radius is intuitively a characteristic length scale of such
flows:

lm =

√
vref
β

∼ 500 km . (2.18)

It gives the length scale on which rotational effects begin to affect an inertial atmospheric
flow. The corresponding advective time is given by:

tm =
lm
vref

∼ 1.1 days . (2.19)

Lm and tm will be called hereafter mesoscale length and time scale, using the terminology
of Majda and Klein (2003). In the tropics there are often interactions with larger scale dis-
turbances, which typically propagate in the zonal direction (in meridional direction the flow is
confined, we have the equatorial wave guide as shown by Gill (2003)) and have a length scale
2000− 14000 km. So we introduce a sub-planetary length scale

LsP = ε−1lm ∼ 5000 km ,

with an advection time scale:

Ts = ε−1tm ∼ 11 days

referred to as seasonal time scale.
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Coordinates scaling

The next step is to express the coordinates, resolving the spatial and temporal scales of interest.
First the length scales are written in terms of the scale height

lm = ε−2hsc , (2.20)
LsP = ε−3hsc . (2.21)

Suitable coordinates are obtained if we non-dimensionalize them by lm, LsP . Because the
variables of interest are function of this coordinates it will be easy to compare different terms in
the governing equations and thus obtain relevant regimes for the considered flows. The spatial
coordinates take the form:

X ′
M =

X

lm
= ε2X

hsc
= ε2x′ (2.22)

X ′
sP =

X

Lsp
= ε3X

hsc
= ε3x′ (2.23)

where x′ is the coordinate non-dimensionalized by hsc. Here the primes denote the non-
dimensional variables and will be dropped hereafter. Using these new coordinates (the same
procedure is applied for the time coordinates), we choose a multiple scales asymptotic ansatz
for the unknown variables in the governing equations:

U (t,x, z; ε) =
∑
i

εiU (i)(ε2t, ε3t, ε2x, ε3x) , (2.24)

where U = (p, ρ, θ,u, w). Variations of U on the following time and space scales are described
with this expansion:

Mesoscale advection time : TM = ε2t 0.5 . . . 4 days
Mesoscale : XM = ε2x 200 . . . 1800 km
Seasonal time scale : Tsea = ε3t 4 . . . 34 days
sub-Planetary length scale : XsP = ε3x 1800 . . . 14000 km

Table 2.3: Length and time scales of the expansion

A priori assumptions

In the asymptotic expansion, we suppose that the deviations from a constant reference value
Θref of the potential temperature θ are of the order ε2. This is justified from measurements
of the stratification of the atmosphere, given through the Brunt-Väisälä frequency N . Typical
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values of N are ∼ 2 × 10−2 s−1. If we non-dimensionalize N using our reference length and
velocity we obtain:

(
lrefN

vref

)2

∼
(

104 × 2× 10−2

5

)2

∼ 100 ∼ ε−2

or using the definition of N :

(
lrefN

vref

)2

=
g

Θ

∂θ

∂z

l2ref
v2
ref

∼ g

hsc

δθ

Θref

h2
sc

v2
ref

Thus we can estimate for the background stratification of the atmosphere

δθ

Θref

∼ ε2 . (2.25)

Using Θref as a reference temperature and non-dimensionalizing by it, the expansion for
potential temperature takes the form

θ = 1 + ε2Θ2(z) + ε3θ(3) +O(ε4) . (2.26)

2.5 Derivation and results

In this section we describe briefly some steps in the derivation of the reduced model equations,
using the asymptotic approach. Some intermediate results will be discussed.

First the partial derivatives can be written (applying the chain rule) as

∂t = ε2∂TM
+ ε3∂Tsea

∇ = ε2∇M + ε3∇sP

After the considerations above the derivation is straight forward: we take our ansatz (2.24)
and substitute it in the governing equations (2.14) – (2.17).

For the zero order Continuity equation we obtain:

O(ε0) : ∂zρ
(0)w(0) = 0 (2.27)

Integration gives for z → ∞ and ρ → 0 w(0)(∞) → ∞ which is not physical. So we
require w(0) = 0. Analogous it can be shown from the next order equation: w(1) = 0. The next
order gives:



2.5. DERIVATION AND RESULTS 21

O(ε2) : ∇M · u(0) +
1

ρ0

∂zρ
(0)w(2) = 0. (2.28)

This equation expresses the inelastic approximation – since no density fluctuations are al-
lowed, the sound waves are filtered. From the vertical momentum balance it follows that the
atmosphere is in hydrostatic balance up to the order O(ε3):

∂zp
(i) = −ρ(i), i = 0, . . . 3 (2.29)

The expansion of the potential temperature θ gives:

O(ε0) : ρ(0) = p(0)
1
γ (2.30)

Using the hydrostatic balance:

p(0)(z) = p∞

(
1− γ − 1

γ
z

) γ
γ−1

. (2.31)

p∞ is set to 1, because it is used as reference pressure. For the density we obtain ρ(0) =
ρ(0)(z) and ρ(1) = 0. The next order potential temperature equation is:

O(ε2) :
2∑
i=o

ρ(2−i)θ(i) = p(o)
1
γ

(
p(2)

γp(0)
+

(1− γ)

2γ2

p(1)2

p(0)2

)
(2.32)

Using

∂zρ
(0) = − ρ(0)2

γp(0)
(2.33)

leads to:

∂zπ
(2) = θ(2), π(i) =

p(i)

ρ(0)
. (2.34)

Similarly

O(ε3) : ∂zπ
(3) = θ(3) , (2.35)

O(ε4) : ∂zπ
(4) = θ(4) +

γ − 1

2
(p(2)(z))2 . (2.36)

From the potential temperature transport equation it follows:
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S
(i)
θ = 0, i = 0, . . . , 3 . (2.37)

In the next order we obtain the weak temperature gradient approximation (Sobel et al.,
2001; Bretherton and Sobel, 2003)

O(ε4) : w(2) d

dz
Θ2 = S

(4)
θ (2.38)

This equation expresses the fact that in the tropics the temperature distribution is horizon-
tally uniform, which agree well with the observations (Holton, 1992). It states that diabatic
heating will create vertical velocities. Air parcels will ascent adiabatically, thus experiencing
cooling, which will compensate the heating when they reach their level of neutral buoyancy. The
WTG approximation brings mathematical simplifications since we have a diagnostic algebraic
equation for the vertical velocity.

The WTG approximation brings also simplifications in the applications on models with
moisture budget (see: Bretherton and Sobel, 2002), for example on the QTCM’s (quasi-
equilibrium tropical circulation models).

The next order potential temperature equation has the form

O
(
ε5
)

: ∂TM
θ(3) + u(0) · ∇Mθ

(3) + w(2)∂zθ
(3) + w(3) d

dz
Θ2 = S

(5)
θ (2.39)

From the horizontal momentum balance we obtain for the leading orders

∇Mπ
(i) = 0, i = 0, 1, 2 (2.40)

∇sPπ
(i) = 0, i = 0, 1, 2 (2.41)

O(ε) : ∇Mπ
(3) = S(1)

u (2.42)

In Section 3.3 we will estimate the magnitude of the source term and show that Suuu ∼ O(ε2).
Thus we have

S(i)
u = 0, i = 0, 1 (2.43)

The O(ε2) momentum equation has then non-trivial form

O(ε2) : ∂TM
u(0) + u(0) · ∇Mu(0) + w(2)u(0)

z + βYMk × u(0)

+∇Mπ
(4) +∇sPπ

(3) = Su
(2)

(2.44)
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Equation (2.44) shows that on the scales considered here we do not have geostrophic flow
in the tropics as we would have in the mid-latitudes, because of the smallness of the Coriolis
parameter. So the nonlinear advection terms become comparable with the pressure gradient
force and the Coriolis force. In addition we have a time evolution on the smaller time scale TM .

It is of interest whether the derived equations (2.35), (2.39), (2.28) and (2.44) contain gravity
waves. We consider the case when w(3), θ(2) and π(4) are known functions and the pressure
gradient force on the sub-planetary scale ∇sPπ

(3) does not vanish. The hydrostatic balance
(2.35) couples the pressure with the potential temperature θ(3). But for θ(3) we have a prognostic
equation (2.39), which states that fluctuations of the potential temperature will produce vertical
velocities w(2). This will lead through the continuity equation (2.28) to horizontal velocity
fluctuations and at the end to changes of pressure gradient force ∇sPπ

(3) in (2.44). Thus gravity
waves will be excited.

For the next order momentum equation we have

O(ε3) : ∂TM
u(1) + u(0) · ∇Mu(1) + w(2)u(1)

z + u(1) · ∇Mu(0)

+∂TSea
u(0) + u(0) · ∇sPu

(0) + w(3)u(0)
z

+βYMk × u(1) + iw(2) +∇Mπ
(5)

+∇sPπ
(4) = Su

(3)

(2.45)

It is interesting to note that in the equation for the zonal momentum there is an additional
contribution iw(2) from the Coriolis term.

Waves with dispersion relation of barotropic Rossby waves are supported under the WTG
approximation (Majda and Klein, 2003; Bretherton and Sobel, 2003). Using

(TM , XM , YM ,∇M) → (t, x, y,∇)

the linearized (about a state of rest) source free version of the equations (2.44), (2.28) and (2.38)
takes the form

∂tu
(0) + βyk × u(0) +∇π(4) +∇sPπ

(3) = 0 (2.46)

∂xu
(0) + ∂yv

(0) = 0 (2.47)

w(2) = 0 . (2.48)

If we take the curl of the momentum equation with ∇ and use (2.42) and (2.43), we obtain
the vorticity equation
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∂tζ + βv = 0 . (2.49)

From the divergence constraint we can introduce a stream function ψ(x, y) with arbitrary
vertical structure A(z)

u(0) = −A(z)∂yψ , v(0) = A(z)∂xψ . (2.50)

Then the vorticity is given through

ζ = A(z)∆ψ(x, y). (2.51)

The vorticity equation takes the form

∂t∆ψ + β∂xψ = 0 . (2.52)

It is solved with the ansatz

ψ = a exp[i(kx+ ly − ωt)] (2.53)

So we obtain the dispersion relation of barotropic Rossby waves on a β-plane approximation
(Holton, 1992)

ω =
−βk
k2 + l2

. (2.54)

These waves can have arbitrary vertical structure. Majda and Klein (2003) supposed inter-
actions between them and planetary waves from the midlatitudes.

2.6 The sub-planetary equatorial WTG regime

In order to investigate flows in the near equatorial belt, Majda and Klein (2003) chose an
anisotropic scaling (XsP , YM) and derived the seasonal sub-planetary equatorial WTG regime
(SPEWTG). Here we use the same anisotropic spatial scaling and are interested on variations
on the longer time scale TSea. The difference is that we consider a source term S

(4)
θ 6= 0, the

physical motivation is presented in Chapter 1 and 3. In this case the velocities v(0) and w(2) are
not vanishing and we obtain significantly different system of equations. We replace:

(u(0), v(0), w(2), ρ(0)) → (u, v, w, ρ)

(S(2)
u , S(2)

v , S
(4)
θ ) → (Su, Sv, Sθ)

(XsP , YM) → (x, y)
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Then the governing equations become

O(ε2) : v∂yu+ w∂zu− βyv + ∂xπ
(3) = Su , (2.55)

O(ε2) : v∂yv + w∂zv + βyu+ ∂yπ
(4) = Sv , (2.56)

O(ε2) : ∂yv +
1

ρ
∂zρw = 0 , (2.57)

O(ε4) : w
d

dz
Θ2 = Sθ . (2.58)

This system of equations describes a steady-state regime with zonal variations on a sub-
planetary scale and meridional variations on a mesoscale (see Table 2.3). It includes the
WTG approximation and a nondivergent constraint on the flow in the y, z-plane. The momen-
tum equations have important nonlinear transport terms ( see Section 1.4) and we have not a
geostrophic motion. In order to obtain a closed system of equations, dΘ2/dz (the stratification)
and ∂xπ(3) have to be prescribed, for example from observational records. Then the vertical and
the meridional velocities will have the same zonal structure as the source term Sθ. If we average
the zonal momentum balance over x, the pressure gradient vanishes and the equations describe
a steady-state zonally symmetric circulation

v∂yu+ w∂zu− βyv = Su , (2.59)

v∂yv + w∂zv + βyu+ ∂yπ
(4) = Sv , (2.60)

∂yv +
1

ρ
∂zρw = 0 , (2.61)

w
d

dz
Θ2 = Sθ . (2.62)

This system is a 2D model of a circulation in the y, z plane. In Fig. 2.1 we sketched a
streamline of this circulation and in Fig. 2.2 a 3D trajectory of an air parcel. The direction of
the flow depends on Sθ. We will study the simple case with a top-hat function as an externally
imposed heat source, see Section 3.2. Some analytical and numerical solutions, describing the
response of the atmosphere to such forcing, will be presented in Chapters 4, 5. In Schneider
(1977) one can find the generalization of (2.59)-(2.62) for a zonally symmetric steady circula-
tion on a sphere. Using scale analysis, the author there supports the WTG approximation (2.62),
but he neglects the advection of meridional velocity (2.60). The latter was retained in the model
equations for a Boussinesq fluid on a sphere by Held and Hou (1980), but they also allowed a
meridional advection of potential temperature. Both studies are described briefly in Section 1.3.
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We try to analyze how the zonally symmetric circulation will be modified by the term ∂xπ
(3)

in (2.55). We assume that we can prescribe the zonal pressure gradient force, then it can be
regarded as a source term and the system of equations (2.55)-(2.58) has the same structure as
(2.59)-(2.62). For simplicity we choose that ∂xπ(3) depends only on z. Due to the conservation
of zonally averaged momentum the pressure gradient force in the upper atmosphere has to be
equal and opposed to this in the lower atmosphere. So an air parcel moving poleward in the
upper atmosphere will experience an additional acceleration e.g. in positive x-direction. When
this parcel returns equatorward near the surface, it will be displaced in the negative x-direction.
Thus the trajectory from Fig. 2.2 will be deformed, although it will remain helical.
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Figure 2.1: A stream line of the zonally averaged circulation
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Figure 2.2: A trajectory of an air parcel



Chapter 3

Source Terms

In this Chapter we deal with the unresolved processes in the reduced equations, derived in
Chapter 2. We analyze the important phenomena for the dynamics and propose different pa-
rameterizations.

There are two major diabatic processes that must be represented in the equation for the
potential temperature: the release of latent heat due to the condensation of water vapor and the
radiative cooling of the air.

3.1 Radiative processes

In our model we assume that there is no latitudinal variation of the incoming solar radiation
so the atmospheric radiative equilibrium temperature is not dependent on the latitude. Scale
analysis of the radiative source term shows that such variations will be not sufficient to produce
a source term of the order ε4.

Consider a simple relaxation ansatz for the source term due to radiation cooling:

Sθ =
Θe −Θ

τ
(3.1)

Such an ansatz is a linearization about a state of radiative equilibrium of the atmosphere.
Here τ is the radiative relaxation time scale with an empirical value of ∼ 20 days, and Θe

denotes the radiative equilibrium temperature of the atmosphere. In Schneider and Lindzen
(1977) and Held and Hou (1980) following distribution of Θe for a sphere was used

Θe = Θref

(
1−∆h sin2 ϕ+ ∆v(

z

hsc
− 1

2
)

)
, (3.2)

where ϕ denotes the latitude, Θref = 300 K and ∆h ∼ 1
3
. . . 1

6
, and ∆v ∼ 1

8
is the fractional

potential temperature drop from the equator to the pole and from the top of the atmosphere to
the surface, respectively. If we use the β-plane approximation and the same scaling as for the

27
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sub-planetary equatorial WTG regime (with ym = ε2y) then in non-dimensional form (3.2) can
be written as

Θ∗
e = 1−∆hε

2ym + ∆v(z −
1

2
) (3.3)

Then we nondimensionalize (3.1) using our reference values for the temperature and the
time (see Table 2.2).

S∗θ =
tref
Θref

Sθ =
tref
Θref

Θref (Θ
∗
e −Θ∗)

ε−3trefτ ∗
= ε3 Θ∗

e −Θ∗

τ ∗
. (3.4)

The stars denote the non-dimensional variables of order one and hereafter will be dropped.

If we substitute now (3.3) and the expansion of θ in the equation above, we obtain

Sθ = ε3 ∆hε
2ym + ∆v(z − 1

2
)− (ε2Θ2 + ε3θ(3) +O(ε4))

τ ∗
. (3.5)

It is of interest if such ansatz can produce a source term of order O(ε4). This will happen
only if the fluctuations of Θe and Θ are of the same order. The meridional variation of Θe

is given through ∆hε
2ym and is O(ε3). They are balanced by θ(3) and will produce a source

term S
(6)
θ . For the vertical departures of the potential temperature we obtain that ε2Θ2 must be

balanced by ∆v(z − 1
2
). But this will give a source term S

(5)
θ .

The consideration above shows that radiative processes are not sufficient to drive a circula-
tion given by (2.59)-(2.62) (on the spatial scales of interest). This is also supported if we take
a typically value for the rate of cooling, due to long wave emission. In Gill (2003) and Holton
(1992) one can find Srad ∼ 1 K day−1, or in nondimensional form

Srad
tref
Θref

∼ 1
K

ε−2tref

tref
Θref

∼ ε5 (3.6)

This estimates lead to the conclusion that S(4)
θ = 0 in the equation for the potential temper-

ature (2.62), when only radiative processes are included. But this implies v(0) = w(0) = 0 and
from the meridional momentum balance

βyu(0) = ∂yπ
(4) . (3.7)

This solution is not appropriate for the tropical zone, because of violation of the momentum
equation in the presence of viscosity: see Section 4.4. But it can be applied for the higher
latitudes. We consider the next order of the governing equations – (2.45), (2.39). The source
term S

(5)
θ will drive a weak meridional circulation (v(1), w(3)) superposed on the geostrophically

balanced zonal wind u(0), disturbed through u(1). The polar cell will be an example of such weak
thermally driven circulation. The numerical simulations of Schneider and Lindzen (1977) and
Schneider (1977) showed also that in the presence of a radiative source term only, the Hadley
cell will be a tiny part of the observed mass overturning.



3.2. CONVECTION 29

A more sophisticated parameterization of the radiative processes will be achieved if we
split the source term in contributions from incoming shortwave solar radiation and outgoing
terrestrial longwave radiation (Petoukhov et al., 2003). Then the longwave radiation fluxes can
be calculated, taking into account temperature and moisture distribution or even concentration
of CO2, methane, water vapor and other greenhouse gases in the atmosphere. The same can be
made for the short wave radiation, which is influenced through absorption of ozone and aerosols
and albedo effects (e.g. albedo of the clouds).

In our simplified model the radiative parameterization will be kept as simple as possible.
The reason is the inferior role of the radiative processes in driving the tropical circulation on the
considered length scales.

3.2 Convection

The previous section shows that there must be another mechanism for the production of the
available potential energy, which drives the observed Hadley circulations.

We consider a convecting atmosphere. In the hot towers of the ITCZ large amounts of latent
heat are released due to condensation, thus producing a diabatic source term in (2.62). We try
to estimate it. Typically precipitation rates in the tropics are of the order 2 cm day−1 which
corresponds to the condensation of 20 kg water in an air column of 1 m2 cross section (Holton,
1992). The condensation of this water will increase on average 5 K day−1 the temperature of the
air. The vertical distribution of the heating has maximum in the middle atmosphere, reaching a
rate of 10 K day−1. In non-dimensional form this gives a source term

Scon
tref
Θref

∼ ε4 (3.8)

This estimate shows that the process of latent heat release will be mainly responsible for the
source term in the potential temperature equation. The question remains how to parameterize
it.

If we use a relaxation ansatz, the convective adjustment time scale τcon will be of the order
∼ O(30 min). Then we have to give appropriate equilibrium temperature profile but this is not
an easy task (as for the radiation equilibrium temperature), since this profile will be dependent
on the interactions with the large-scale flow (see the parameterization of Sθ using water vapor
budget). Another important aspect is that the convection itself has different feedbacks with the
subcloud mixed layer (for example through downdraughts). Thus it changes the static energy
and water vapor content there, which on the other hand controls the evolution of the convection
(see Section 1.2). If we follow this approach and try to capture the complex interactions in a
convective atmosphere, this will lead to additional nonlinear terms in our system of equations
(2.59)-(2.62). To go round this problem, we will not consider the interactions, keeping the
system as simple as possible by prescribing the source term Sθ. Suppose it can be written as

Sθ = M(y)Z(z) (3.9)
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To represent the release of latent heat in the ITCZ, which is a narrow belt around the globe
(see Fig. 1.1), we use a top-hat function for the meridional distribution M(y) with Ym � Yh

M(y) :=


He for y ≤ Ym

H0 for Ym < y < Yh

0 else
. (3.10)

Yh denotes the boundary of the Hadley circulation which will be established and the region
of cumulus heating is between 0 and Ym because He > 0. Here we consider only the northern
hemisphere because of symmetry. The function M(y) is sketched out in Fig. 4.1. The area of
positive M represents heating due to deep cumulus convection and this of negative M - cooling
due to longwave emission of the air. Since the contribution of the radiative processes is an
order of magnitude smaller then those of the convective, we have |He| � |H0|. The width of
the forcing region is Yh and is determined from the constraint

∫
Sθdy = 0 (see Section 3.2.2).

Note, that we have made the additional assumption that the heating is centered symmetrically
around the equator (which is not always true for the ITCZ), in order to study some general
features of the sub-planetary equatorial regime. Similar top-hat source term was used by Sobel
et al. (2001) and Polvani and Sobel (2002). Schneider and Lindzen (1977) and Schneider (1977)
used a narrow Gaussian type curve to represent the distribution of the heating. If we subtract
from it the contribution of the radiative processes ( meridional uniform on the lm scale) we
obtain similar Sθ as (3.10). Finally we have also studied the case when the source term is
given through a smooth function like tanh, see Chapter 4, but no significant differences were
observed.

Next we have to specify the vertical distribution of Sθ. Z(z) has similar profile as the large
scale vertical mass flux. From (2.62) it follows that the source term reaches its maximum, where
the largest vertical velocities occur - in the divergence-free level. Observations indicate that the
mean height of this level lies at ∼ 500 mb (Gill, 2003) or between 400 − 300 mb (Holton,
1992). Schneider and Lindzen (1977) assume that for a non-entraining cumulus tower Z(z)
will be constant from 800 mb to 200 mb and decrease linearly to zero at 100 mb (the decrease
corresponds to the detrainment near the tropopause). In the general case the vertical distribution
of Sθ depends on the height of the clouds in the convecting region, their cross section and so
on. In the parameterization schemes sub-ensembles are introduced, they contain clouds with
similar properties e.g. the same cloud height, fractional entrainment rate. An example of such
sophisticated approach are the Betts-Miller or Arakawa-Schubert convecting schemes.

In our study we have used a vertical distribution proposed by Gill (1980)

Z(z) = sin πz . (3.11)

This is a first order approximation to the observations of latent heating in convecting systems
and it satisfies the condition of disappearing vertical velocity at the top and the ground. More
realistic profile will be achieved if we include a βe−αz dependence in Z(z). The choice of the
constants α and β will control the magnitude and the position of the latent heating in the vertical
direction. Thus the distribution of Z(z) can be matched to observational profiles.

An interesting feature of (3.11) is that this distribution of heating will excite only the first
baroclinic mode and then the problem can be reduced to solving the shallow water equations
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(Gill, 1980). Using a separation of variables technique the 3D compressible flow equations for a
stable stratified fluid can be written as a set of shallow water equations with different equivalent
depths, corresponding to different normal modes. Gill (1980) showed that the linearized SW
equations have steady-state solutions, representing the Hadley and the Walker circulations.

3.2.1 Parameterization of Sθ using water vapor budget

One approach to parameterize the source term of the potential temperature is to use a water
vapor budget for closure (Kuo, 1974). This ansatz has been criticized because the potential
temperature source term is regarded as an external heating and many interactions in the atmo-
sphere are not considered. But we will present it as the simplest way to describe the processes
between the convecting system and the large-scale flow and because it has been used in many
models of the tropical circulation (Wang and Li, 1993).

The key idea is that since there is no sufficient storage of water in the clouds, the precipita-
tion P over some area will be the sum of the surface evaporation E and the large-scale moisture
convergence

P = −
za∫

0

∇h · ρqvdz + E . (3.12)

Here q denotes the specific humidity and za ∼ 2 km corresponds to the height of the trade
inversion in the tropics, the main amount of water vapor in the atmosphere is stored below it.
To find the integrated over an air column heating, we have to multiply the precipitation by the
latent heat of condensation Lc ∼ 2.5× 106 J kg−1

1∫
0

Scondz = bLcP . (3.13)

Scon denotes the release of latent heat and b ∼ 0.75 gives the efficiency of the condensation
heating. Implying that the moisture convergence does not change significantly q (Holton, 1992),
the continuity equation for the water vapor takes the form

∇h · ρqv + ∂zρqw = 0 . (3.14)

We have neglected horizontal turbulent transport as well as source terms of q. Substituting
this in (3.12) yields

P = ρqw
∣∣∣
za

+ E , (3.15)

where we have used the boundary condition of vanishing vertical velocity at the surface. Finally,
we have for the latent heating

Scon = Zn(z)bLc

(
ρqw

∣∣∣
za

+ E

)
. (3.16)
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The function Zn(z) gives the vertical distribution of the heating and has the constraint

1∫
0

Zn(z)dz = 1 (3.17)

Using the bulk transfer approach (Peixoto and Oort, 1992), we have for the surface evapo-
ration

E = −ρCw|va|(qa − qs) , (3.18)

where va, and qa are the velocity and the specific humidity of the air evaluated at ∼ 10 m
height, respectively. qs is evaluated at the surface z = 0. Cw is the bulk transfer coefficient of
water vapor and is dimensionless. For the ratio between the sensible heat flux H and the latent
heat flux at the surface LeE (Le = Lc is the latent heat of evaporation) we have

B =
H

LeE
. (3.19)

This is the Bowen ratio. Both fluxes can be given from the flux-gradient approach as

H = −KHρcp
∂θ

∂z
(3.20)

and
E = −Kwρ

∂q

∂z
, (3.21)

where Kh and Kw are the eddy diffusivity coefficients for sensible heat and water vapor (KH =
Kw). Substituting the representations of the fluxes in (3.19) gives

B =
cp
Lc

∂θ
∂z
∂q
∂z

=
cp
Lc

∂θ

∂q
∼ cp
Lc

∆θ

∆q
. (3.22)

Using this relation the evaporation (3.18) can be expressed in terms of the temperature

E = −ρcp
Cw
BLc

|va|(θa − θs) , (3.23)

where θa is the potential temperature at ∼ 10 m and θs the surface temperature. For a model
with a coarser resolution it will be difficult to give appropriate value for θa. In Wang and Li
(1993) one can find more useful formulation for the evaporation. Suppose that the surface is
covered by the ocean, then qs will be equal to the saturation specific humidity qsat and we have

E = ρCw|va|(qsat − qa) . (3.24)

Wang and Li (1993) use a empirical formula for qa(T ) as a function of the surface tempera-
ture Ts
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qa = 10−3
(
18 + 0.67 K−1(Ts − 300 K)

)
(3.25)

The dependence of qsat on the temperature T can be obtain from the Clausius-Clapeyron
equation (Peixoto and Oort, 1992) for the water vapor saturation pressure esat(T )

desat
dT

=
Lc

T (αv − αw)
, (3.26)

where αw, and αv are the specific volumes of water in fluid and gaseous phase, respectively.
Under the approximation that water vapor at the saturation pressure behaves like an ideal gas,
we can write for αv

esatαv = RvT . (3.27)

Here Rv is the gas constant of water vapor. Using this equation and taking into account that
αw � αv in (3.26), we obtain

desat
dT

=
Lcesat
RvT 2

. (3.28)

We can write an ideal gas equation also for the dry air with the pressure pd, specific volume
αd and gas constant Rd

pdαd = RdT . (3.29)

Then from (3.27) and (3.29) qsat can be expressed as

qsat =
αd

αv + αd
=
Rd

Rv

esat

pd + Rd

Rv
esat

≈ 0.622
esat
p
, (3.30)

where p = pd + esat and Rd/Rv ≈ 0.622. Substituting (3.30) in (3.28) we obtain

dqsatp

dT
=
Lcqsatp

RvT 2
. (3.31)

We try to estimate the magnitude of the the pressure fluctuations due to temperature changes.
For this purpose we rewrite the above equation

dqsat
dT

=
Lcqsat
RvT 2

− qsat
p

dp

dT
, (3.32)

or using reference quantities
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δq

δT

dq∗sat
dT ∗

=
Lcq̄satq

∗

RvT 2
refT

∗2 −
q∗sat
p∗

q̄sat
pref

δp

δT

dp∗

dT
. (3.33)

Here q̄sat is the reference saturation specific humidity and the stars denote non-dimensional
variables of the order one. If we substitute appropriate values we obtain the scaling

Lc
RvTref

∼ 18.5 ∼ C∗

ε
. (3.34)

In (Emanuel, 1994, p. 7) one can find the following useful estimate for the pressure fluctu-
ations

δp

pref
∼ uref√

pref/ρref
∼ ε4 . (3.35)

where we have used the definition of the Mach number (2.6) and the scaling as in (2.9). Substi-
tuting this in (3.33) we finally obtain

δq

q̄sat

dq∗sat
dT ∗

=
δT

Tref

C∗q∗

εT ∗2
− ε4 q

∗
sat

p∗
dp∗

dT ∗
. (3.36)

Using a mean atmospheric lapse rate Γ ∼ 6 K km−1 in non-dimensional form we have

δT

Tref
=

hsc
Θref

6 K km−1 ∼ 1

5
∼ ε (3.37)

The ratio δq/q̄sat ranges from from 0 up to 1 since we can have a saturated air parcel or a
dry one. Thus we estimate

dq∗sat
dT ∗

=
C∗q∗

T ∗2
− ε4 q

∗
sat

p∗
dp∗

dT ∗
. (3.38)

This equation states that the pressure fluctuations due to temperature changes are small.
Thus we can integrate (3.31) from a reference temperature Tr to T , assuming that the pressure
remains constant

qsat(T ) = qsat(Tr)exp[− Lc
RvTr

Tr − T

T
] (3.39)

We are interested on the case when T is close to Tr. Then we can expand qsat(T ) in a
Taylor series about Tr providing that the exponent is small. Using the hydrostatic balance,
the definition of the potential temperature (2.5) and the estimate (2.25), one finds the following
representation of the temperature (Klein, unpublished notes on asymptotic scalings for moisture
and latent heat)
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T = 1− ε
γ − 1

γ
z + ε2T (2) +O(ε3) . (3.40)

Since we are interested on the specific humidity at the ocean surface, we will set z = 0 and
obtain

Tr − T

T
∼ ε2 . (3.41)

Using (3.34), we can say that the exponent in (3.39) is of the order ε. We rewrite the
expression in a series

qsat(T ) ≈ qsat(Tr)

(
1 +

Lc
RvT 2

r

(T − Tr)

)
(3.42)

In Wang and Li (1993) one can find that substituting (3.25) and (3.42) with T = Ts in (3.24)
gives

E = ρCw|va|Kq(Ts − T∗) , (3.43)

where T∗ = 293.2 K and Kq = 6.95 104 K−1. Ts is equal to θs at the sea level. This formula
can be applied when the sea surface temperature exceeds 295.2 K and Wang and Li (1993) use
it for the Pacific ocean between 30◦N and 30◦S.

3.2.2 Constraint on the potential temperature source term

Since we are interested on steady-state circulations, the conservation of energy implies that the
integral of Sθ over the whole domain of the circulation must disappear. Suppose we average
in the vertical and meridional direction the equation for potential temperature, then it takes the
form:

w(2)
d

dz
Θ2 = S

(4)
θ (3.44)

Note that we have assumed for simplicity that the static stability d
dz

Θ2 is constant. The bars
denote an average over the area of the circulation when it is confined in y direction between 0
and Y and in z direction between 0 and Z

A =
1

Y Z

Y∫
0

Z∫
0

A dydz . (3.45)

If S(4)
θ does not vanish this would mean that there is a resulting vertical velocity w(2) of the

whole atmosphere which is not observed. So we will assume further S(4)
θ = 0.



36 CHAPTER 3. SOURCE TERMS

3.2.3 Static stability

In the potential temperature equation the term σ = d
dz

Θ2 is often referred to as static stability
and characterizes the stratification of the atmosphere. We have in dimensional form σdim =
Θ/T (Γd−Γ), where Γd is the dry adiabatic lapse rate and Γ the real lapse rate of the atmosphere
∼ 6 − 7 K km−1. Typical value found in the literature for the static stability is ∼ 3 K km−1. If
we nondimensionalize it we obtain

σ =
hsc
Θref

3 K km−1 ∼ 1

10
∼ ε2c (3.46)

Where c is O(1) and we have used the same scaling for the background stratification as
by the estimate made in Section 2.4, see also Majda and Klein (2003). For the numerical and
analytical solutions c was set to 1.

3.3 The source terms Su, Sv

Su and Sv represent a sink in the zonal, meridional momentum equations. This can be due to
viscous friction, small scale turbulence, large-scale eddies, non resolved vertical transport in the
cumulus clouds and others.

For the analytical solution we use a Rayleigh friction, which is derived from a relaxation
ansatz with zero equilibrium velocity

Su = −αu , (3.47)

Sv = −αv . (3.48)

The same representation of the source term was used by Gill (1980) in his study of forced
equatorial motions. It was also used by Sobel et al. (2001) to give some analytical solutions for
a Hadley circulation derived from the shallow water equations under the WTG approximation.
For simplicity we assume that α does not depend on z and y for the analytical solutions. One
can find in Gill (1980) α = 1

2
day−1. If we nondimensionalize the source term, we obtain

Su
hsc
u2
ref

= ε2c , (3.49)

where c ∼ 1
2

and the source term in the momentum balance is sufficiently strong - O(ε2).
Bretherton and Sobel (2003) pointed out that α ∼ 0.5 day−1 is realistic only when boundary
layer flow is simulated. It is a feature of the Gill-type models to have large damping rates
in order to produce a circulation close to the observed. A realistic value of α in the upper
atmosphere will be α ∼ 0.1 day−1 or less. In the asymptotic we are interested in limε→0 Su
and it goes like ε2c, because of the large values of α in the boundary layer, even if we have
c(z → 1) → 0 in the upper atmosphere.
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Solutions has been computed with a more realistic source term representing turbulent mix-
ing. The momentum source term is generally defined from the stress tensor ~~τ :

S =
1

ρ
∇ · ~~τ (3.50)

If we use the scaling proposed in Chapter 2 we have

S =
1

ρ

(
ε2∇M · ~~τ + ε3∇sP · ~~τ + ∂zk · ~~τ

)
. (3.51)

So we have for the source term of zonal momentum in leading order:

Su =
1

ρ
∂zτzx +O

(
ε2
)
. (3.52)

If we use a gradient parameterization of the shear stress: ~~τ = µ∇u where µ is a dynamic
eddy coefficient, then we have

Su =
1

ρ
∂zµ∂zu . (3.53)

For simplicity we assume here that µ is not a function of z, with ν = µ
ρ

we have for the
non-dimensional form of (3.53)

S∗u = Su
hsc
u2
ref

= νref
uref
h2
sc

hsc
u2
ref

ν∗∂z′z′u
∗ =

1

Re
ν∗∂z′z′u

∗ , (3.54)

where Re is the Reynolds number and the stars denote the non-dimensional variables and will
be dropped hereafter. If we substitute our reference values for the turbulent kinematic viscosity
(νref ranges from 50 m2 s−1 in the boundary layer to 1 m2 s−1 in the free atmosphere) we obtain
Re ∼ O(ε−3) . . .O(ε−4). This would mean that the momentum source is one to two orders
weaker then the terms in (2.59) and (2.60). On the other hand in Chapter 5 we present some
numerical solutions and show that the zonal wind speed can reach ∼ 100 m s−1. Using this
value for reference velocity, one obtain a sufficiently strong momentum source term. Another
aspect is that the parameterization (3.53) has to represent not only turbulence, but other forms of
friction – for instance cumulus friction (see next paragraph for an explanation). In a convecting
atmosphere this process is much effective by the dissipation of kinetic energy. Thus we will not
neglect the momentum sink and set Re to be O(ε−2).

Su =
1

Re
c̃ = ε2c̃ , (3.55)

which is in accordance with (3.49), and we have c̃� 1 in the upper atmosphere.

When we consider convection, momentum transport in the cumulus towers plays an im-
portant role in the momentum balance (Schneider and Lindzen, 1977; Schneider, 1977). This
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process is called cumulus friction, because air with nearly zero horizontal velocities from the
ground is pumped in the upper troposphere and thus reducing the strong upper winds. A pa-
rameterization of this process can be found in Schneider and Lindzen (1976). The source term
can be then expressed in terms of the mass flux Mconin the cumulus towers and the large-scale
zonal velocities

Su =
1

ρ
∂z (Mcon(u− uc)) . (3.56)

To a first approximation uc can denote the zonal velocity at cloud base. Using such parame-
terization the zonal momentum equation can be brought in a form similar to that with Su = −αu
and we can use the same techniques to find analytical and numerical solutions. But due to time
constraints we have not dealt with this case.

The mass flux in the cumulus clouds can be derived from the heating

Mcon

ρ

dΘ2

dz
= w′

dΘ2

dz
= Scon , (3.57)

where w′ is the averaged velocity in the clouds and Scon is the heating due to convection. If we
prescribe the meridional distribution of Sθ (see (3.10)) we have

∫
Scondz =

{
He + |H0| for y ≤ Ym

0 else
. (3.58)

For the definitions of He,H0 and Ym see the text below (3.10). In the vertical we can use the
same distribution as for Sθ.



Chapter 4

Analytical Solutions

In this chapter a mass stream function is introduced and we present some analytical solutions
for the meridional and vertical velocities. We discuss geostrophically balanced solutions in the
context of Hide’s theorem for a β-plane fluid.

4.1 The Stream function

Recall the governing equations (2.59)-(2.62), which have been derived in Chapter 2. From the
continuity equation (2.61) it follows that the meridional mass transport is nondivergent in the
z, y plane. We can introduce a mass stream function ψ which identically satisfies (2.61):

∂zψ = −ρv , (4.1)

∂yψ = ρw . (4.2)

If we differentiate (2.62) with respect to y and substitute (4.2) we have

∂yyψ = σ−1ρ∂ySθ, (4.3)

where σ = dΘ2/dz. The stream function ψ can be represented using Fourier series in y and z
(ψ must vanish outside the boundaries). To make a rough estimate, the second derivative of ψ
with respect to y can be set proportional to −ψ, so we have

ψ ∼ −σ−1ρ∂ySθ . (4.4)

Since we expect ∂ySθ < 0 to be true for the earth - latent heating near the equator and
radiative cooling in the upper latitudes, equation (4.4) states that the meridional gradient of the
diabatic source term will drive a circulation with ψ > 0. This will be a thermally direct Hadley
cell with ascending air near the equator and descending far from it as it can be seen from the
definition of ψ (4.2). The vertical velocities will produce adiabatic cooling in the region of

39
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rising motion (see (2.62)) and adiabatic heating elsewhere thus acting to reduce temperature
differences in the atmosphere.

The stream function ψ can be computed analytically from (4.1), (4.2) using different rep-
resentations of the source term Sθ = Z(z)M(y) (Section 3.2). For the vertical distribution we
make the assumption Z(z) = sin(πz). Using (2.62) we obtain for the vertical velocity

w = σ−1M(y)Z(z) . (4.5)

We assume for simplicity that the term dΘ2/dz, representing the static stability of the atmo-
sphere, is constant and will denote it by σ hereafter.

We consider the case when M(y) is a top-hat function (3.10). Due to energy conservation,
see Section 3.2.2, we have the constraint Sθ = 0, thus we obtain for H0

H0 = − YmHe

(Yh − Ym)
. (4.6)

Fig. 4.1 illustrates the distribution of M(y). For the particular choice of M(y) the vertical
velocity takes the form

w =


Heσ

−1 sin(πz) for |y| ≤ Ym

H0σ
−1 sin(πz) for Ym < |y| < Yh

0 else .
(4.7)

Substituting some appropriate values for He and σ (see Chapter 3) we obtain w ∼ 4 cm s−1.
This value agree well with observation of the vertical velocity in large-scale convecting regions
∼ 3 cm s−1 (Holton, 1992). From (4.2) we have for the stream function

ψ =


yρw for y ≤ Ym

(Yh − y)ρw for Ym < y < Yh

0 for y ≥ 0 .

(4.8)

We have also made some experiments when M(y) is a smooth function, see Fig. 4.1

M(y) =

{
c tanh(b− dy) + a for 0 ≤ y ≤ Y h

0 else .
(4.9)

We can prescribe the strength of the forcing as well as the position and the width of the
transition region (where M(y) has the greatest slope), choosing the parameters b, c and d. Then
a can be computed using the constraint Sθ = 0

a =
c

Yhd
ln

cosh(b− dYh)

cosh(b)
. (4.10)
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The stream function is given by

ψ =


σ−1ρ sin(πz)

(
ay − c

d
ln

cosh(b− dy)

cosh(b)

)
for 0 < y < Yh

0 for y ≥ Yh

(4.11)

The stream function is sketched out in Fig. 4.2.
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Figure 4.1: The forcing M(y) a top-hat function (left) and a smooth function (right)
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Figure 4.2: The Stream Function ψ for M(y) a top-hat function (left) and a smooth function
(right)

The direction of the flow is clockwise. Rising motions are confined in the belt y < Ym, as
it follows from (2.62). This area is an order of magnitude smaller than the region of descent,
because of the different strength of the convective heating and the radiative cooling. There is
no significant difference in the magnitude of ψ for both source functions. Note the kink in the
stream lines in the left plot in Fig. 4.2, due to the discontinuity of M(y) at Ym. When the region
of heating is comparable with this of the cooling the established circulation ( Fig. 4.3) has the
form of the seasonal mean Hadley cell (Fig 1.3).
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Figure 4.3: The Stream Function ψ for M(y) a top-hat function and Ym = 1.

From (2.61) we can give an analytical expression for the meridional velocity

v = − 1

ρσ
∂zρZ(z)

y∫
0

M(y′)dy′ . (4.12)

Using a top-hat function for M(y), the meridional velocity is given by

v =


− 1
ρσ
y∂zρw for |y| ≤ Ym

− 1
ρσ

(Yh − y)∂zρw for Ym < |y| < Yh

0 else

, (4.13)

where we have used the boundary condition v = 0 at y = 0,±Yh, which implies no mass flux
across the boundaries. Contours of the meridional velocities are shown in Fig. 4.4
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Figure 4.4: The meridional velocities for Ym = .2

Above a critical height zc ∼ 0.4 (∂zρw = 0 at z = zc) the flow is poleward and beneath it
– equatorward. At the latitude y = Ym at the surface is located the minimum and in the upper
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atmosphere the maximum of v. The magnitude of the extrema is proportional to Ym (see (4.13)).
Such distribution of meridional velocity is similar to observational profiles (Fig. 1.5).

4.2 The zonal wind

Taking into account that there is circulation only along stream lines with ψ = const, we can
express the partial derivatives in the zonal momentum equation (2.59) as a directional derivative
along such lines. If we use for example y to parameterize the stream lines:ψ = ψ(z(y), y), then
we have

∂yu+
w

v︸︷︷︸
dz
dy

∂zu = βy +
Sα
v
. (4.14)

Or rewriting it in terms of a directional derivative along ψ = const 1

du

dy

∣∣∣
ψ=const

= βy +
Sα
v
. (4.16)

The new form of the zonal momentum equation can be easily integrated in the inviscid case

u =
1

2
βy2 + C , (4.17)

whereC is an arbitrary constant for each stream line. In order to obtain an unambiguous solution
for the zonal wind we have to give either a vertical profile of u for a particular latitude or a
meridional profile for a constant height and determine from it C. In Section 4.4 we introduce
the absolute zonal momentum px = u− 1

2
βy2 and show that at the equator it cannot exceed zero

in the presence of viscosity. This gives us a physical constraint: C ≤ 0.

A unique solution can be found for the special case when we consider the flow at the top of
the Hadley cell with w = 0. Then (2.59) can be integrated and implying the physical boundary
condition u = 0 at the equator, we get

u(y, z = 1) =
1

2
βy2 . (4.18)

Thus in the inviscid case the zonal wind will grow quadratic, reaching its maximum at the
edge of the Hadley cell.

1where we have the constraint:

dz

dy
=
w

y
(4.15)

From the integration of this equation follows that a particular function remains constant along stream lines, this
is the stream function ψ.
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Now we consider the viscous case with Su = −αu, using a Rayleigh representation of
the source term (see Chapter 3). For simplicity we will look for solutions for y ≥ 0 – the
solutions for the northern and southern hemisphere are symmetric if the source term Sθ is sym-
metric about the equator. Its meridional and vertical distribution are given by (3.10) and (3.11),
respectively.

Again we can represent (2.59) in terms of a directional derivative. But because v cannot be
expressed as a function of y only, we have to do with transcendental equation for the particular
choice of ρ and Z(z), we select z as a parameter for representing ψ(y(z), z) and obtain

∂zu+
v

w︸︷︷︸
dy
dz

∂yu =
du

dz

∣∣∣
ψ=const

= βy
v

w
− α

w
u (4.19)

Integrating the homogeneous version of (4.19) for 0 ≤ y(z) ≤ Ym yields

ul,h(z) = Cl tan−
α
π (
πz

2
) (4.20)

Using an ansatz ul = a(z)ul,h(z) we obtain the solution for 0 ≤ y(z) ≤ Ym

ul(z) = − tan−
α
π (
πz

2
)

z∫
z0

βψ2 ∂zρw

(ρw)3
tan

α
π (
πz′

2
)dz + Cl tan−

α
π (
πz

2
) (4.21)

With the same technique we get the solution for Ym ≤ y(z) ≤ Yh

ur(z) = tan
α
π (
πz

2
)

z∫
z0

βψ

(
Yh −

ψ

ρw

)
∂zρw

(ρw)2
tan−

α
π (
πz′

2
)dz + Cr tan

α
π (
πz

2
) (4.22)

Requiring continuity of u, we have ul
!
= ur at y = Ym and we can eliminate one arbitrary

constant Cr

Cr = Cl tan−
2α
π (
πz0

2
) (4.23)

So the solution of the zonal wind consists of ul for 0 ≤ y ≤ Ym and ur for Ym ≤ y ≤ Yh
and has the arbitrary constant Cl := C.

This constant can be found if we integrate (4.19) over a closed contour ψ(y(z), z) = const.

∮
ψ

du

dz
dz =

∮
ψ

βy
v

w
dz −

∮
ψ

α

w
udz (4.24)
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The l.h.s. disappears, the contribution from the first integral on the r.h.s. is also zero. This
is easily seen if you suppose α = 0 (the inviscid case), or if you split the integration from
z0 to z1 and from z1 to z0 (z0, z1 denotes the lowest and the most upper height of the stream
line, respectively ) and substitute the expressions for v, w (the index l,r denotes this part of the
function where 0 ≤ y < Ym,Ym > y ≥ Yh respectively)

∮
ψ=const

βy
v

w
dz =

z1∫
z0

βy
vl
wl

dz +

z0∫
z1

βy
vr
wr

dz

= −
z1∫
z0

βψ2 ∂zρwl
(ρwl)3

dz +

z0∫
z1

β

(
Yh −

ψ

ρwl

)
ψ
∂zρwl
(ρwl)2

dz

=

z0∫
z1

βYhψ
∂zρwl
(ρwl)2

dz = −βYhψ
z0∫
z1

d

(
1

ρwl

)
= 0

(4.25)

where we have considered the special case when Ym = Yh/2 then wl = −wr. Finally, it follows
that the last integral on the right hand side of (4.24) must be zero, or again splitting the limits
of integration yields

∮
ψ

α

w
udz =

z1∫
z0

α

wl
uldz +

z0∫
z1

α

wr
urdz = 0 (4.26)

Substituting our expressions for u and w we can regard the above equation as constraint on
the constant C. So we find

C =

−
z1∫
z0

α

wl
{ul,p(z) + ur,p(z)}dz

z1∫
z0

α

wl
{tan−

α
π (
πz

2
) + tan−

2α
π (
πz0

2
) tan

α
π (
πz

2
)}dz

(4.27)

Where ulp(z) and urp(z) are defined as

ul,p(z) = − tan−
α
π (
πz

2
)

z∫
z0

βψ2 ∂zρw

(ρw)3
tan

α
π (
πz′

2
)dz (4.28)

ur,p(z) = tan
α
π (
πz

2
)

z∫
z0

β

(
Yh −

ψ

ρw

)
ψ
∂zρw

(ρw)2
tan

−α
π (
πz′

2
)dz (4.29)

We can conclude that we need a source term Su in order to have unambiguous solution for
the zonal wind.
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4.2.1 Zonal wind with zero vertical velocity

Now we consider a special case of (2.59) where the vertical velocity vanishes. Such is the case
at the surface and at the top of the Hadley cell (where we have w = 0 as boundary condi-
tion). Under this assumption the zonal momentum balance takes the form of the corresponding
equation in the shallow water system.

Using the condition w = 0 and substituting the expressions for the meridional velocity
(4.13), one finds the solutions of (2.59) for z = 0, 1

u =


βy2

2− a
+ Cly

a for y ≤ Ym

−β(Yh − y)

1 + a

ay + y + Yh
2 + a

+ Cr(y − Yh)
a for Ym < y < Yh

(4.30)

Where Cr and Cl are constants from the integration and a is given through

a =
αρ

∂zρw
at z = 0, 1 (4.31)

The solution (4.30) fulfills automatically the boundary conditions u(0) = u(Yh) = 0 even
for Cl, Cr 6= 0. In Section 4.4 we discuss why it is physical meaningful to require a vanishing
zonal wind at the equator. At the edge of the Hadley cell we can match u to a value of a
geostrophically balanced wind from the midlatitudes, resulting from the meridional temperature
gradient (the velocity can be computed using (4.37)). Without lost of generality the zonal wind
can be set to zero at Yh (Polvani and Sobel, 2002), this is used as a boundary condition for the
numerical solutions in Chapter 5.

Suppose a < 0 in (4.30), this is the case at the top of the atmosphere where v > 0, then
limy→0 u = ∞ which is not physical. We set Cl = 0 to go around this problem. Then Cr
is found requiring continuity of u at Ym. The solution for the zonal wind is sketched out in
Fig. 4.5. As α increases, the maximum magnitude of the wind is reduced and it shifts toward
the center of the cell. The same behavior was observed for large values of ν, see Section 5.3.1
for an explanation.

Analogously we find the solution for the lower branch of the circulation where v < 0 and
thus a > 0. Then limy→Yh

u = ∞ and we set Cr = 0. The solution is presented in Fig. 4.6.

Note, the meridional profiles of u at z = 1, 0 are not symmetric (see (4.30)), even the
maximum of the zonal wind at the surface is greater (although not significant) then this of the
wind at the top of atmosphere, for the same α. As α decreases the magnitude of the easterlies
increases. Such behavior of the surface wind is not observed in the numerical solution for u
in the y, z-plane (see Section 5.3.2), due to the advection of air with nearly constant angular
momentum. Here this effect is not included when we choose a boundary condition for (4.30)
at y = Yh, setting the wind to zero. Thus an air parcel at the edge of the cell has the zonal
momentum of the earth (which is much smaller then the same at y = 0) and when transported
equatorward it appears as strong easterly wind for α→ 0.
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Figure 4.5: Zonal wind at z = 1 and for Ym = 1.
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Figure 4.6: Zonal wind at z = 0 and for Ym = 1.

4.3 Potential temperature distribution

We compute a meridional profile of the vertically integrated potential temperature θ(4) using the
meridional momentum balance (2.60) and the hydrostatic balance (2.36).

For simplicity we make the assumption that the source term Sv = 0, so we neglect the
frictional effects. This is an appropriate approximation, if we consider the free atmosphere and
if we are not interested on describing some boundary layer phenomena like the trade inversion.
Then the zonal flow is in geostrophic balance, if the advection terms are sufficiently small.
Some estimates of the advection terms will be made later on.

We differentiate (2.60) with respect to z and make use of the hydrostatic balance (2.36), thus
obtaining the usual thermal wind relation with additional advection terms

∂z(v∂yv + w∂zv) + ∂zβyu = −∂yθ(4) (4.32)

Then we integrate over the whole depth of the atmosphere
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v∂yv
∣∣∣z=1

z=0
+ w∂zv

∣∣∣z=1

z=0
+ βyu

∣∣∣z=1

z=0
= −∂yθ(4) (4.33)

Where θ(4) denotes the vertically integrated potential temperature. Substituting our solution
for the zonal wind in the inviscid case (4.18), and applying the physical boundary conditions
v = w = u = 0 at z = 0 and w = 0 at z = 1 yields

v∂yv
∣∣∣
z=1

+
1

2
β2y3 = −∂yθ(4) (4.34)

The integral over y of the above equation gives an expression for the distribution of θ(4)

θ(4)(y) =


−1

8
β2y4 − 1

2
v2(y, z = 1) + θl for y ≤ Ym

−1
8
β2(y4 − Y 4

h )− 1
2
v2(y, z = 1) + θr for Ym < y < Yh

(4.35)

Where θl, θr are arbitrary constants. One constant can be found, requiring continuity of θ(4)

at y = Ym.

θr = θl −
1

8
β2Y 4

m (4.36)

The constant θl can be then interpreted as a contribution to the horizontally uniform mean
potential temperature.

Fig. 4.7 represents the meridional distribution of θ(4) with and without the advection term
in (4.34).
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Figure 4.7: θ(4) with θl = 0, dashed line solution without advection term

Large meridional temperature gradients occur near the edge of the Hadley cell. The reason
for it one will find in the presence of the jet stream in the upper atmosphere at this latitudes, see
Fig. 5.3. The zonal wind is nearly geostrophically balanced and because of the thermal wind
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relation this implies a strong meridional temperature difference. Such drop of the temperature
at the edge of the Hadley cell can be observed in the mean zonally averaged temperature distri-
bution (Fig 1.6). Except in the area near the right boundary of the domain, θ(4) exhibits no large
fluctuations. This agrees well with observations and is another justification of the assumption
that in the tropics there are no large temperature fluctuations. However in the context of the
derivation in Chapter 2 we must say that the constant background pressure stratification given
by Θ2(z) brings the WTG approximation of the energy equation. Here we observe that higher
order corrections, represented by θ(4), show homogeneity in particular regions.

The effect of the vertically averaged advection on the potential temperature can also be seen
in Fig. 4.7 (solid curve). It does not change significantly the meridional distribution of θ(4) . The
baroclinity, associated with the kink at y = 0.2, can be explained through the maximum of v at
this latitude in the upper atmosphere (Fig. 4.4). Because of the advection term in (4.34), θ(4)

decreases for y < 0.2 and an increase for y > 0.2.

The meridional gradient of θ(4) , computed from the numerical simulations, is presented in
Fig. 4.8 (solid line). It is compared with the analytical solution (dashed line) for the inviscid
case (4.34). In the region y < 1 there is no significant difference between the two curves (for
y < 0.2 the two curves overlap) and the inviscid solution is a good approximation to the case
with small friction. The discontinuity of the curves at y = 0.2 is due to the kink of θ(4) at
this latitude. The local minimum of the solid curve at y = 1.8 corresponds to the position of
the jet in the viscous case (the zonal wind is presented in Fig. 5.3 for Ym = 0.1, here we used
Ym = 0.2). Its magnitude is reduced and this is evident from the discrepancy of the two graphs
at this latitude. The imposed rigid wall at y = 2 in the case with friction is responsible for the
increase of the slope of θ(4) near the edge of the Hadley cell.

From Fig. 4.8 we can also estimate how the geostrophic balance is affected by the nonlinear
advection term. For the particular choice of parameters (Ym = 0.2) the maximum magnitude of
the advection term is ∼ 2 at Ym. It has to be balanced by a strong pressure gradient force (the
zonal winds are weak at this latitude). For a latitude greater then 0.2 the advection term is much
smaller. This is duo to the fact that the term ∂yv is proportional to He for y < Ym and to H0 for
y > Ym, where He � H0. We can conclude that the nonlinear advection term is particularly
important in the heating region, especially when it is centered near the equator. Its maximum
strength depends strongly on the magnitude of the potential temperature source term and the
area of heating (the meridional integral in (4.12)). At higher latitudes the contribution from the
advection term is negligible and the flow is geostrophically balanced.

4.4 Hide’s theorem for a β-plane fluid

Hide’s theorem (Schneider and Lindzen, 1977) characterizes the distribution of the total angular
momentum for a viscous fluid on a rotating sphere. It states that the total angular momentum
can reaches its maximum only at the surface and there can be no surface westerlies at the
equator. The theorem incorporates conservation of angular momentum and has been used to
verify simulations of the Hadley cell. Here we derive the analogy of the Hide’s theorem for a
fluid on rotating β-plane. This will help us to choose appropriate boundary conditions for our
set of equations.
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Figure 4.8: ∂yθ(4) with Ym = 0.2: dashed line inviscid solution, solid line with ν = 0.1

Obviously v = 0 and w = 0 is a solution of our system of equations (2.59)-(2.62). Take into
account the footnote at p. 12 for the following discussion. In the absence of frictional forces
Su = Sv = 0 we have a geostrophic balance for the zonal velocity, or from (4.33)

u(y, z = 1) = − 1

βy
∂yθ , (4.37)

where θ denotes the vertical average of the potential temperature and ∂yθ < 0 (equilibrium
temperature decreases poleward). If we assume that the meridional temperature gradient is
nearly constant then the zonal wind will decline as 1/y and it will be everywhere westerly with
a maximum at the equator. But such motion is not observed in the tropical atmosphere because
of the presence of viscosity.

We can rewrite the equation for the zonal momentum balance (2.59) as

v∂y(u−
1

2
βy2) + w∂z(u−

1

2
βy2) = Su , (4.38)

or as

v · ∇′px = Su , (4.39)

where ∇′ = j∂y + k∂z and

px = u− 1

2
βy2 . (4.40)

px can be interpreted as the x component of the total momentum per unit mass. It has con-
tributions from the relative velocity of a parcel air and the earth’s rotation velocity. Combining
(4.39) with the continuity equation (2.61) we obtain:

∇′ · (pxρv) = ρSu , (4.41)



4.4. HIDE’S THEOREM FOR A β-PLANE FLUID 51

which express only that the flux of zonal momentum is equal to the contribution of the sources.
The source term in the zonal momentum balance equation can be represented (see Chapter 3)
as

Su =
1

ρ
∂zµ∂zu , (4.42)

where µ is the eddy viscosity coefficient. For simplicity we assume µ = const, (4.41) takes the
form:

∇′ · (pxρv) = µ∂zzpx . (4.43)

Suppose that px has a maximum within the fluid and that it is continuous in space. Then
we can always find a closed contour δΩ around this maximum where px = const . Integrating
(4.43) over the area closed by this contour, it follows:

px

∮
δΩ

n · ρvds =

∫
Ω

µ∂zzpxdf . (4.44)

We have used the 2D Gauss theorem and n denotes the vector normal to δΩ. The integral on
the l.h.s. vanishes because of the continuity equation (2.61). The contribution of the r.h.s. will
be negative: px has its maximum in Ω so ∂zzpx < 0, down gradient fluxes of px will occur along
δΩ. This contradiction implies that px cannot reach its maximum in the interior of the fluid.
Similar arguments are applied if we assume that px has a maximum on a stress-free boundary
(the tropopause in our model). Now suppose px has a maximum at the lowest level of the
atmosphere z0. Then we can draw a contour of constant px above the surface and close it along
the surface. The integral on the l.h.s. of (4.44) is vanishing again due to mass conservation and
w = 0 at the surface. The value of the integral over the source term depends on the direction of
the winds at the surface. There is a thin layer between the surface at zs and the level z0 where
the surface winds are measured, so u(zs) = 0 but we can have u(z0) 6= 0. If the surface winds
are easterly we have a flux of px along the surface line into Ω. The flux is given through −∇′px
or at the surface as n∂zpx, where n = −k. Since u(zs) > u(z0) it will be directed into Ω.
Along the rest of δΩ the flux is directed outwards, because px maximal at z0. Thus there is a
possibility that both fluxes compensate, then the integral over Ω vanishes and (4.44) is fulfilled.
This is not the case if the surface winds are westerly. Then along the surface the flux of px will
be directed also outwards: u(zs) < u(z0).

Thus px can have only maximum at the surface with u ≤ 0. The maximum value is px = 0 at
the equator with u = 0 at the surface. This condition implies conservation of zonal momentum
and it is often used to check zonally symmetric models for physical consistency - it is violated
when the model produces westerly winds over the equator. It rejects the proposed thermally bal-
anced solution for the zonal wind (4.37). Later we will demand u(z, y = 0) = 0 at the equator
as a boundary condition, and the discussion shows that this is a reasonable assumption. In this
case we suppose that the rising air from the surface conserves the maximum zonal momentum.



52 CHAPTER 4. ANALYTICAL SOLUTIONS



Chapter 5

Numerical Solution

The zonal momentum balance equation was solved numerically using a vertical eddy diffusion
source term Su. In this chapter we present the numerical method, discuss the obtained solutions
and compare them with the analytical solutions from Chapter 4.

5.1 Upwind discretization

The first idea was to divide (2.59) by v and to consider the derivative with respect to y as a
“time” derivative. Then the zonal momentum balance equation takes the form of a parabolic
equation. Having the “initial” conditions u(y = 0, z) = 0 and Dirichlet boundary condition
at the bottom: u(y, z = 0) = 0 and von Neumann at the top ∂zu = 0 at z = 1 we have
an initial value problem. A standard approach for this type of equations is to use a forward
difference scheme for the time derivative (y derivative in our case) and a central differences
for the advection term and for the diffusion term. But as Morton and Mayers (1994) pointed
out, this scheme requires enormous number of mesh points, when the advection therm is not
negligible, in order to be stable. As a matter of fact we could achieve stability with this approach
only when the advection term w/v∂zu was set to zero (it tends to infinity as v → 0). In this
case the equation reduces to a diffusion equation in one space direction.

The problem with stability can be avoided if we do not modify (2.59) and use a upwind
discretization for the advection terms (Morton and Mayers, 1994). It is a standard discretization
for the advection in a hyperbolic equation (Press et al., 2002). Another advantage of this scheme
is when the transport of a tracer is considered. This discretization takes into account the sign of
the wind, so a disturbance can be spread only in the direction of the wind.

We define a discrete domain Ω with P, M points in y and z direction respectively:

Ω = {(yi, zj) : yi = i∆y, zj = j∆z, 1 ≤ i ≤ P, 1 ≤ j ≤M} (5.1)

Where ∆y = Yh/(P − 1) and ∆z = 1/(M − 1). Then a function u(y, z) can be represented
on the discrete set of points as

53
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u(y, z) = u(i∆y, j∆z) = ui,j (5.2)

Using the upwind discretization, the advection term in the direction of v takes the form:

v∂yu at (i,j) =


vi,j
∆y

(ui,j − ui−1,j) : if vi,j > 0

vi,j
∆y

(ui+1,j − ui,j) : if vi,j < 0

+O(∆y) (5.3)

Upwind discretization is also used for the w∂zu term. Because v and w change sign in the
domain of interest we have to distinguish altogether four different cases when applying this
scheme for equation (2.59).

For the diffusion term 1/ρ∂zµ∂zu a central difference scheme is utilized, where ν = µ/ρ is
computed on a staggered grid

1

ρ
∂zµ∂zu at (i,j) :=

1

ρi,j

1

∆z2

(
µj+1/2(ui,j+1 − ui,j)− µj−1/2(ui,j − ui,j−1)

)
+O

(
∆z2

)

=
1

∆z2

( µj+1/2

ρi,j+1/2︸ ︷︷ ︸
νi,j+1/2

(ui,j+1 − ui,j)−
µj−1/2

ρi,j−1/2︸ ︷︷ ︸
νi,j−1/2

(ui,j − ui,j−1)
)

+O
(

∆z

2

) (5.4)

As boundary condition we use vanishing zonal velocity at the bottom u(y, z = 0) = 0 and
no stress condition at the top ∂zu(y) = 0 at z = 1.

For the v∂yu term we need a boundary condition at y = 0 for v > 0. We will set u = 0
at this boundary, implementing the condition of maximum absolute zonal momentum at the
equator, see Section 4.4. For the case of v < 0 at y = Yh a physical boundary condition can be
obtained if we assume that outside the Hadley cell the zonal wind is geostrophically balanced
βyug = −∂yπ(4) for y > Yh and match u to ug at Yh. In this case we must prescribe a merid-
ional pressure gradient which will result from a meridional radiative equilibrium temperature
gradient. But since we are interested on dynamics driven by convection for simplicity we will
set this gradient outside the cell to zero thus obtaining ug = 0 for y > Yh. So we have a rigid
boundary for the Hadley cell at y = Yh with u(Yh, z) = 0.

Substituting the described above finite-difference representations for the differential opera-
tors in (2.59) and implementing the boundary conditions we obtain a system of P ∗M linear
equations . This system is written in matrix form

Au = b (5.5)

Where A is constructed from the discrete differential operators and is called “tridiagonal
matrix with fringes”. The structure of this sparse matrix is displayed in Fig. 5.1. The vector
u is made up of the values of ui,j on the grid and b is the inhomogeneity containing the terms
βyvi,j . The linear system is then solved for u.
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Figure 5.1: Non-zero arguments of the matrix A with 64× 64 elements

5.2 Stability study and convergence order

In all performed simulations the numerical method remained stable, and the solution for the
particular setup had a physically reasonable structure.

A stability study was made, running experiments with different number of grid points for the
same setup. From the set of results a convergence order of one was estimated for the scheme.
This is not surprising, since the lowest order discretization we have used is the upwind of order
one (5.3).

The global error defined as a vector is:

e = u− ua (5.6)

Where u is the discrete solution vector and the components of ua are the exact analytical
solution on the grid. Then for the order of accurate p of the method we have the following
relation

E = ‖e‖ = Chp + O(hp) as h→ 0 (5.7)

Where we choose an appropriate norm, h denotes the grid spacing on a uniform grid and
C is a constant. Suppose we can compute the solution on three different grids with spacing:
h0, h1, h2 respectively and we have

h2 =
h1

2
=
h0

4
(5.8)

But since the analytical solution is not known we introduce the approximate error analogous
to the global error

E1 = ‖u1 − u2‖ E0 = ‖u0 − u1‖ (5.9)
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Where the index of ui denotes the grid on which the solution was computed (i = 1 corre-
sponds to the grid h1 and so on). In order tho calculate the difference between ui and ui+1 we
take only this values of the vectors which coincide with values of u0 on the coarsest grid h0.
Then we can make the following estimate for the error E1, making use of (5.7)

E1 = ‖(u1 − ua)− (u2 − ua)‖

≤ ‖(u1 − ua)‖+ ‖(u2 − ua)‖

≈ Chp1 + Chp2

(5.10)

Similarly
E0 ≈ Chp0 + Chp1 (5.11)

If we build the ratio of the approximate errors, substituting (5.7) we get

ρ =
E1

E0

=
hp1
hp0

1 +
1

2p

1 +
1

2p

=
1

2p
(5.12)

Then the convergence order is given through

p =
ln ρ

− ln 2
(5.13)

This result can be easily extended from three to n sets of solutions. Then we can compute
n− 2 error ratios and convergence orders

ρi−1 =
‖ui+1 − ui‖
‖ui − ui−1‖

pi−1 = − ln ρi
ln 2

i = 2 . . . n− 1 (5.14)

We have performed a number of experiments reducing the grid spacing by a factor of two
after each simulation ( uniformly spaced grid ). The runs are summarized in Table 5.1.

simulation i: 1 2 3 4 5
grid points 32 × 32 64 × 64 128 × 128 256 ×256 512 × 512

Table 5.1: Notation of the experiments
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The calculated convergence orders are presented for the ‖ · ‖1 norm in Table 5.2, and for
the ‖ · ‖2 norm in Table 5.3. It is interesting to note that the second experiment shows a higher
convergence order than the first. A reason for this can be that the 32 × 32 points we use to
compute the matrix norms (for all simulations) are still not sufficient. Taking into account the
results, we can conclude that for ∆z,∆y → 0 the numerical scheme converges to 1.

simulation 1 2 3
convergence order 1.0308 1.1084 1.0011

Table 5.2: Convergence order with the ‖ · ‖1 norm

simulation 1 2 3
convergence order 1.0154 1.0449 1.0049

Table 5.3: Convergence order with the ‖ · ‖2 norm

5.3 The zonal velocity u

A series of simulations has been performed for a prescribed top-hat Sθ: (3.9),(3.10) and (3.11).
Two different parameterizations for the momentum source terms ware used, they ware dis-
cussed in detail in Section 3.3. Here we will present the solutions for the particular choice of
parameters.

We have used as boundary conditions:

• Maximum zonal momentum at the equator (see Section 4.4)

u(y = 0, z) = 0 (5.15)

• No-slip boundary condition at the surface

u(y, z = 0) = 0 (5.16)

• Neglect of interactions with waves from the stratosphere - no-stress condition at the
tropopause

∂zu = 0 at z = 1 (5.17)

• And a rigid wall at the edge of the cell (see the discussion of the boundary conditions in
Section 4.2.1)

u(y = Yh, z) = 0 (5.18)
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5.3.1 Vertical diffusion: Su = 1
ρ∂zµ∂zu

The profile ν = µ/ρ is displayed in Fig. 5.2, right plot. νb = 0.5 represents the value of the
eddy viscosity in the boundary layer 0 < z < 0.1, and νf the same but in the free atmosphere
z > 0.2.
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Figure 5.2: The ν-profile, linear and smooth

All simulations performed with different νf values have shown a westerly jet in the upper
atmosphere (see Fig. 5.3). Its maximum is positioned at the tropopause, because of the no-stress
boundary condition there, and its magnitude reduces as ν increases. As ν → 0 the core of the
jet shifts to y = Yh but never reaches the edge of the cell, due to the rigid wall. For large ν the
maximum of the jet is located at the center of the domain. This behavior can be understood, if
we neglect the advection terms in (2.59). Then, we obtain an ODE for u

−βρyv = ∂zµ∂zu . (5.19)

The y dependent part of the solution for the zonal velocity has a maxima at y = Yh/2. In
the free atmosphere ν → 0 and the westerly jet we observe near the edge of the Hadley cell
corresponds to the subtropical jet (see Fig. 1.4).

The model can reproduce easterly winds near the equator. There is a dependence of the
magnitude of the easterlies on the strength (He) and the region (y ≤ Ym) of the forcing. Fig. 5.4
represents the zonal wind with a larger heating region: Ym = 1. If we compare the left plot
with the corresponding plot in Fig. 5.3, a maximum of easterlies (∼ −0.2) strikes. We give here
an explanation for this observation. In the lower atmosphere, air with low values of absolute
zonal momentum at high latitudes is pumped equatorward (meridional advection) and it appears
as easterly winds. As the forcing increases, the meridional transport intensifies and is more
effective than the dissipation processes. Thus the magnitude of the easterly winds also increases.
The same mechanism is responsible for the higher magnitude of the westerly jet. We still
have zero zonal velocities for all z right at the equator due to the maximum zonal momentum
boundary condition.

Note that all winds at z = 0 are zero, because of the no-slip boundary condition. More
realistic surface winds can be simulated if we use a surface drag boundary condition: µ∂u =
Cu, where C is a drag coefficient. For more details see Section 1.4.
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Figure 5.3: The zonal wind for Ym = 0.1
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Figure 5.4: The zonal wind for Ym = 1.

Experiments with a smooth ν-profile have been performed (see Fig. 5.2, right plot), taking
into account the variations of the eddy viscosity within the boundary layer. We have varied the
maximum of ν and its position. We could observe that, when the magnitude of the diffusion
coefficient was reduced, the westerly jet was spread more deeper in the lower atmosphere. The
increase of ν within the boundary does not affect significantly the zonal wind profile because of
the small surface winds and the coarse resolution of the model.

We are interested on the westerly jet at 3500 km (∼ 30◦N ), see Fig. 5.5. The maximum value
of the velocity is ∼ 120 m s−1. This magnitude agrees well with more sophisticated models of
the Hadley cell (Schneider and Lindzen, 1977; Schneider, 1977; Held and Hou, 1980; Lindzen
and Hou, 1988). But a feature of all these models is that they overestimate the zonal wind, see
Fig. 1.4. The reason for this is the neglect of horizontal eddies. In the presence of such strong
jet barotropic and baroclinic eddies will obviously appear and reduce its magnitude.
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Figure 5.5: The zonal wind [m s−1]

5.3.2 Relaxation parameterization: Su = −αu

Experiments were performed with a Rayleigh parameterization of the source term. The results
are displayed in Fig. 5.6. The westerly and the easterly jet in the left plot can be explained as
a result of meridional advection again. The vertical advection causes that for y ≤ Ym (w is
maximal in this region) and α = 0.5 the 0.2 contour of the easterly jet is spread through the
hole depth of the atmosphere. The closed contours of the jet at the surface and the opened at the
top of the domain are due to the no-slip and no-stress boundary conditions there, respectively.
As α → 0 the magnitude of the westerly jet increases (u → 1/2βY 2

h ) but this of the easterly
jet decreases. This can be explained in the following way: the air parcels nearly conserve
their absolute angular momentum and they reach the equator with the maximal possible value:
px = 0 for u = 0 (see Section 4.4), so no surface easterlies are observed. For α → 0 the
solution for u approaches the inviscid solution (4.17), with C = 0 for all stream lines. The
same behavior of the zonal wind can be observed for ν → 0. Experiments were also performed
with α = 0 and ν = 0 and the distribution of u was very similar to the right plot in Fig 5.6.
The imposed no-slip condition at the surface and the rigid wall at the edge of the cell modify
the zonal wind at the boundaries from the inviscid solution (4.17).
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Figure 5.6: The Zonal wind for Ym = 0.1
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Summary

In order to investigate the atmospheric dynamics in the tropics, we applied an unified multiple
scales asymptotic approach (Klein, 2000, 2004). An universal small parameter ε was intro-
duced and the characteristic numbers in the governing equations were expressed in terms of
it in a carefully chosen distinguished limit. This systematic approach was applied to the 3D
compressible equations for a fluid on an equatorial β-plane. The same anisotropic asymptotic
scaling as this proposed in Majda and Klein (2003) for their seasonal sub-planetary equatorial
weak temperature gradient (SPEWTG) regime was used. Here we consider the case when a
stronger potential temperature source term, representing convective processes, is allowed. This
has as an effect that the meridional and vertical velocities are an order of magnitude larger then
this in the SPEWTG regime. New steady-state reduced model equations were derived, they
describe a flow on a sub-planetary length scale in zonal direction and a mesoscale in meridional
direction. They include the WTG approximation and a nondivergent constraint on the flow in
the y, z-plane. The momentum equations have important nonlinear transport terms.

It is a model of a Hadley type circulation modified by a zonal pressure gradient force. After
consideration of the magnitude of the different diabatic processes, we showed that convective
heating will drive the circulation. Due to energy conservation the latent heat release have to
be balanced by radiative cooling, which is one order of magnitude smaller. In order to lighten
the discussion of this system of equations, we applied a simple parameterization of the diabatic
source term by prescribing its variations. For this purpose a top-hat function was used, where
the positive part represents the convective heating centered at the equator. It is a model of the
narrow band of the ITCZ, the zone with the most precipitation in the tropics. For the vertical
profile of the upper level heating a sinusoidal distribution was assumed. It is in accordance
with the observations of convecting ensembles, where the highest vertical velocities and thus
the largest condensation rates appear in the divergence-free level.

Analytical solutions for the vertical and the meridional velocities were found. There are
ascending motions in the region of heating and descending in the region of cooling, consistent
with the WTG approximation. The magnitude of the vertical speed is close to the observed:
4 cm s−1 in the area of large-scale convection and 0.4 cm s−1 in non-precipitating area. The
meridional velocities match to an ideal Hadley cell – poleward flow in the upper atmosphere
and equatorward in the lower atmosphere. They show a minimum at the surface and a maximum
in the upper atmosphere at the latitude of the cell center (where there are no vertical velocities),
which is consistent with observations. It is important to mention that the region of ascent in
our model is much smaller than that of descent, due to the different strength of the convective
and the radiative processes. Seasonal averaged observations indicate the presence of a more or
less symmetric winter Hadley cell. The reason for this is the ITCZ: it changes its position over
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large area in this period and thus makes the region of heating comparable with this of cooling
on average. In this case we could simulate a symmetric cell also.

To find solutions for the zonal wind we considered the zonally averaged version of the
x-component of the momentum equation. In the inviscid case we showed that the absolute
zonal momentum per unit mass px = u − 1/2βy2 remains constant along stream lines. The
solution of the zonal wind is unique only when friction is included. In the case of a Rayleigh
parameterization of the momentum sink, the solution of the PDE was reduced to the calculation
of integrals. Analytical solutions for u at z = 1, 0 were found. At the surface easterlies
were predicted. We discussed the unrealistic increase of their magnitude as the friction tends
to zero. At the top of the atmosphere a westerly jet was observed. Numerical simulations
were performed with vertical diffusion, representing turbulent momentum transport. An upwind
discretization for the advection terms and a central difference scheme for the diffusion term were
applied. The numerical method was tested for stability and convergence. A strong upper level
westerly jet near the edge of the Hadley cell was simulated. It has a magnitude of 120 m s−1

at 30◦N and corresponds to the subtropical jet. The high value of the maximum wind speed
is not realistic because of the neglect of horizontal eddies. The reason for the westerly jet
is that in the upper atmosphere the zonal momentum remains nearly conserved. The earth’s
rotation velocity decreases at higher latitudes, so an air parcel moving poleward has to increase
its relative velocity. The same mechanism is responsible for the surface easterlies we simulated
near the equator. Because of friction their magnitude is strongly reduced. The shift of the
westerly jet to the center of the domain for large values of the friction was explained. In the
inviscid case the numerical solution tends to the analytical solution for α = 0 at z = 1, although
boundary effects are visible.

Some estimates of the magnitude of the advection terms were made. They are important
near the equator and in the heating region, at the higher latitudes the flow is geostrophically
balanced. The distribution of the vertically integrated potential temperature is consistent with
the wind field. It is homogeneous over large area in accordance with the WTG approximation
and shows strong baroclinity at the position of the jet.

In order to study the interactions between a convective system and the lage-scale flow, a
moisture budget has to be included. The moist static energy can be calculated, it determines
the arise and the development of convection. It remains the question what parameterization of
convection to apply. We have discussed a Kuo-type scheme, regarding the convective heating
as an “external” source. Another approach, implemented in the quasi-equilibrium (QE) param-
eterization, is to put a constraint on the lage-scale flow in a convecting atmosphere. This is
realized by prescribing an equilibrium profile (e.g. of the temperature) to which the convecting
atmosphere tends to adjust. This profile can be modified e.g. by downdraughts and thus com-
plex interactions can be included. The convection effects significantly the radiation budget in
the tropics. The dependence of the longwave fluxes on temperature and moisture has to be taken
into account. The cloud albedo has to be represented in the model, this leads to the question of
stratus and cirrus parameterizations. If we are interested on atmosphere-land interactions some
important properties of the continents have to be included – low-heat capacity, vegetation de-
pendent albedo, different roughness, moisture sink. Representing the processes listed above, we
will develop a model of intermediate complexity, able to reproduce realistic tropical circulation.
Finally, we have to mention that through the asymptotic expansion we derived model equations
which include a time dependence. Here we dealt with the steady-state version only, but we can
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use this equations to address the challenging issue of the time evolution of the flow on the TM
time scale.
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