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Abstract

Cluster analysis contains several multivariate methods for the separation of patterns
(clusters). Definition of the optimum, or globally best, cluster analysis is an unresolved
issue. Two methods are of special importance: 1. The statistical security of cluster
separation. 2. The definition of the optimal number of clusters. On the basis of non-
hierachical minimum-distance cluster analysis a new method is described that allows
a separation of clusters in a statistically well-founded way. Applying this extended non-
hierarchical cluster analysis algorithm, the following additional problems need to be
solved: The generation of a suitable initial partition, the estimation of the initial number
of clusters, and the error reduction by delimitation of the level of significance for cluster
separation. The following solutions are proposed: Random ranking of the initial
partition, derivation of the cluster number using target function and Pettitt-test, and
estimation of outliers including a new classification with the clusters. The complete
method is tested and discussed using a theoretical and a practical example. For the
practical example, a climate classification of Europe is established which shows that
the proposed improvements can be of great practical relevance.
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1. Introduction 

The main idea of the cluster analysis is to relate to each other an existing number 
of elements  which are each described by  parameters , i.e.:

Two main techniques are possible:
Using hierachical methods, different sequences of groups on different levels are
constructed. The result is an hierachy of clusters in a "tree structure". The dis-
advantage of this technique lies in the fact that an exchange of elements is impossible
if the "tree structure" is built up. This disadvantage restricts the application.
With the non-hierachical methods, the elements  are simultaneously partitioned into
a given number of clusters  : by displacing the elements between the clusters in case
of a given quality criterion, a given initial partition is built up step by step, and
developed into steadily improving groupings until reaching the optimum. For more
details, see Steinhausen and Langer (1977). The starting point for concerning the -
description of the following method is the non-hierarchical minimum-distance method
according to Forgy (1965). The starting condition when applying the above method is
to have the elements  equally distributed over a number  of given clusters (initial
partition). In the case of  given elements and  clusters each cluster receives

 elements as follows:

(The number of clusters  must be defined empirically; the number of elements
depends on the data series and the problem which has to be investigated.)

A so-called group centroid  is then calculated for each  of the  clusters (cluster
mean value under consideration of those existing parameters that have to be
normalized accordingly in the case of different scalings):

By applying the Euclidean distance, the following objective function  for each
grouping step  can be defined:
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(4)

(5)

(6)

(7)

By considering the Euclidean distance, each grouping step can be seen as a dis-
placement of the element  into that cluster which contains the respective nearest
centroid. The objective can thus be minimized:

This procedure is repeated until a local minimum of the objective function is reached.
The objective function reaches a local minimum if two successive grouping steps show
the same result; the iteration is in this case discontinued, i.e., the optimum
classification with respect to the given number of clusters has been reached.

An important disadvantage of this method is that one does not know whether an
absolute or just a secondary minimum of the objective function has been obtained
(Fovell, 1993; Milligan, Cooper, 1985). That is why the quality of separation is
unknown, as is the objective number of clusters. The following procedure shows a
solution of this problem.

2. Definition of a quality criterion to separate clusters

The quality criterion represents the statistical security of the cluster separation. The
basic idea to define this criterion can be described as follows:
After having reached the local minimum, each cluster is equipped with a generally
varying number of elements. Each element is defined by  parameters, i.e., it is
located in a -dimensional parameter space. As each cluster consists of a certain
number of elements, they each represent a scatterplot of elements in the above space.
If the clustering leads to a local secondary minimum, overlaps occur between the
scatterplots of single clusters. The principle of this method is presented in figure 1,
which depicts the projection of two parameters within the -dimensional space.

The number of overlaps  of the two clusters  and  of  parameters can
accordingly be defined as follows:

with
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(8)

(9)

under the additional condition

If , than the clusters  and  are completely separated from each other. The
maximum possible number of overlaps is 

This number is reached if both clusters cover the same region within the -dimensio-
nal space.

Fig. 1 Principle scheme of the description of the clustering quality (square/cross -
overlapped clusters, double cross - full separated cluster)

Thus by applying the equations (6) to (9) the quality of the separation of clusters can
be determined statistically by the following steps:
1. Calculation of the mean number of the maximum possible overlaps , as

well as the mean actual number of overlaps  over all combinations of cluster
pairs.

2. Subsequently, a test is carried out to see whether  and  originate from
the same basic population. Assuming that there is a normal distribution,
Student's t-test can be used. (Because of the necessary normalization of the
parameters, a normal distribution is generally realized.) The null hypothesis
implies that both mean values originate from the same population. The clusters
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(10)

(11)

can be separated only when the null hypothesis is rejected. Otherwise, the
procedure is as follows:

3. The ratio  of the actual to the maximum possible number of overlaps is
determined for each cluster pair:

4. The mean value  over all  is calculated. It is the empirical estimate of the
actual occurence probability of overlaps. 

5. In the case that not all mean values  are identical, paragraph 2. implies that
there is - according to the chosen level of significance - a statistically significant
separation of those clusters for which  .

6. The quality of separation in the case  still needs to be determined. The
point is hence to clarify whether a certain value of the number of the actual
overlaps  is compatible with the mean value of all numbers of the actual

overlaps  or not. If one interprets the overlaps as empirical occurence
frequencies, a statistical comparison between both is possible. This can be
done for instance by the -test (e.g. Taubenheim, 1969) which can be written
as follows:

with the degree of freedom .

The result of the test can be interpreted in the following way:
If the calculated -value is greater than a given threshold of significance, the
frequency of overlaps exceeding the mean value  differs significantly from the

-value. The separation between the clusters is hence statistically not
significant, in contrast to the other case where a statistically reliable separation
exists.

3. Determination of an optimum number of clusters

The optimum number of clusters is defined as that number which realize the best
separation between all clusters. The method presented above allows the optimum
number of clusters for the non-hierarchical clustering to be determined in the best
possible way. The following procedure is required to this end:
1. If a clustering with a given initial number of clusters does not lead to a

separation, then the initial number of clusters is varied until at least a single
statistically reliable separation between one cluster and the rest exists.

2. If paragraph 1. is fulfilled, the elements of the separated clusters are noted as
being a final partial result.
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3. The initial series is reduced by the separated cluster elements.
4. This algorithm is repeated using the method presented in section 2 until all

clusters are statistically reliably separated.
5. The optimum number of clusters results from the amount of clusters separated

per algorithm step.

Nevertheless, some problems applying this method remain:
A) a correct provision of the initial partition (Is valid also for all other cluster analysis

methods). 
B) an estimation of the optimal initial number of clusters
C) a reduction of the error appearing in connection with the delimitation of the level

of significance for cluster separation.

In the following, solutions to the problems A) to C) are proposed and discussed.
Section 4 contains the theoretical basis of the improvements. In sections 5 and 6 two
applications are discussed in detail: First, the theoretical mechanisms are discussed by
a one parameter oscillation. Then, the practical application is demonstrated by a
calculation of a climate classification for Europe.

4. Theoretical basis of the improvements

The structure of the initial partition (section 4.1) and the choice of the initial number of
clusters (section 4.2) play an important role. After achiving a statistically significant
cluster separation, an error margin remains which, in general, is of the magnitude
between 1% or 5%. Normally, this error can be neglected; however, cases occur where
this error needs to be considered (as shown in the application of section 5.2). A
possible way to reduce the error is presented in section 4.3.

4.1 The initial partition  

For each statistical investigation, the elements of the sample must be independently
and identically distributed. This principle is also valid for cluster analysis. If neglected
the following course of events may appear:
In the first step of the clustering, the elements of the sample are regularly distributed
in the initial number of clusters. In this case, the sequence of the distribution depends
on the position of each sample element. That is, in each cluster of the initial partition
there is a number of elements which are sorted one following the other in the sample.
Thus these elements are not neccessarily independent which means that the structure
of the sample may create “pre-grouping”. As a consequence, a greater number of
dependent elements must exist within a sample. Then, a secondary minimum of the
target function can be reached already after only a few iterations devoid of an optimal
grouping. This defect can be avoided in a simple way by a random ranking of the
elements of the sample so that the persistence of the series tends to 0.
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(12)

(13)

4.2 The initial number of clusters

Given a sample with a limited number  of elements and their regular distribution in the
initial number of clusters. This means that a too large or too small initial number of
clusters leads to a situation in which some clusters can be separated significantly
before the optimum distribution of the elements has been reached. If, for example, the
initial number of clusters is too small, the number of elements within a single cluster is
relatively large. As a result possible internal structures of a separated cluster cannot be
considered. In the other case, artificial structures can be occur. To estimate the
optimum initial number of clusters the following procedure can be carried out:
The starting point for the calculation of the initial cluster number is the target function
(eq. 4 ). The target function is constructed in such a way that the partition for which the
function reaches a minimum defines the most favourable grouping of the clusters. If,
for a varying number of clusters (from 2 to ), the value of the target function is
calculated, a series is obtained whose values can be included for the estimation of the
optimum initial number of clusters. As each value of the target function is equivalent to
a specific number of clusters, the initial number of clusters can be defined as that
inflection point within the series (of target function values) where a trend disappears.
From this point on significant changes within the series do not exist. This idea can be
solved practically with the following steps:
- Calculation of the differences between neighbouring values of the target

function series and creation of a differential series with  values,
- Using the Pettitt-test (Pettitt, 1979) to estimate the beginning of a trend

(inflection point) within the differential series.

The Pettitt-test can be derived from the U-test (Mann-Whitney, 1947), based on the
ranks of the series. The inflection point is defined as that point for which the absolute
value of  reaches a maximum with

where

 is the position within the series,  is the number of values of the differential series,
and  is the rank of the th target function value. Continuously increasing the initial
number of clusters, the Pettitt-test finally defines that position within the series of the
target function values where the series is divided into a part with significant changes of
the target function values and another one without changes.
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 (14)

4.3 The error margin

In general, the test described in section 2 is connected with an error probability of 1%
or 5%. That is, in spite of a statistically significant separation of two clusters, a small
number of overlaps can occur so that some clusters may contain “strange” elements.
In a statistical sense, this case is without any consequence. In some cases, however,
such outliers can have a negative influence on the clustering.

This problem can be circumvented as follows using the definition of an outlier as a
value deviating significantly from the basic sample: After a significant separation of all
clusters has been achieved, the distance between each element within the cluster and
the group centroid is calculated. These distances within each cluster are defined as a
basic sample and utilised for identifying outliers. Here we suggest the Euclidean
distance (eq. 1) as the measure for the estimation of the outliers. For each element of
a cluster, we calculate the sum of Euclidean distances between the single parameters
and the group centroid. This leads to a sample of these sums for each cluster. Using
the Thompson-rule (Müller et al., 1973) we can estimate the outliers of the clusters.
The test value is defined as:

where  is the arithmetical mean of the sample and  the standard deviation of the
sample. Outliers are all values  for which  is valid, with

 (  = critical value; s. statistical table). In this sense the Thompson rule
is a two-sided test to examine the hypothesis : "The sample has no outliers for a
chosen level of significance ". If outliers exist, the Euclidean distance makes it
possible to test a better assignment of the outlier to another cluster.

5 Examples

5.1 A one-parameter oscillation

The solutions suggested to the problems of A) to C) are demonstrated by two
applications: 1.) A simple oscillation is decomposed into characteristic patterns; the
different patterns make the existing difficulties visible. 2.) Of more practical relevance
is the calculation of climatology for Europe.

As an example for a one parameter oscillation, a simple sine-oscillation is selected and
described by 200 values. Its regular course is replaced by 10-value steps in form of
stairs. In case of clustering of the new curve the boundaries between the clusters have
to be identical with those between the steps of the curve. The partition of the clusters
must be symmetric in two respects: First, the positive part of the oscillation must be
symmetric as well as the negative. Second, the positive region must mirror the negative
region symmetrically.Three variants of clustering are investigated on the basis of the
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discussed procedures:
a1) The defined initial number of clusters is set to  = 8; the initial partition consists

of random ranked values
b1) The optimal initial number of clusters is counted; the values of the initial partition

are ordered from 1 - 200 in the same course like the sine oscillation
c1) The optimal initial number of clusters is calculated; the initial partition consists

of random ranked values.

Figure 2a shows the result of variant a1). One can see that the boundaries of the
clusters are coincide with the spots. Additionally, the symmetry is fulfilled within the
positive part as well as within the negative part. The positive and negative parts are
asymmetric with respect to each other. If we define cluster 4 as "neutral", 3 clusters
remain in the positive part, 4 in the negative one, while cluster 1 contains 5 steps and
cluster 8 as the pendant only 3.

Fig. 2a Theoretical test calculation a1) - a defined initial number of clusters
 = 8; random ranked values of the initial partition

The results of version b1) are presented in figures 2b and 3a. Figure 3a gives an
overview of the course of the target function values with respect to the number of
clusters. Also included is the result of the Pettitt-test with an optimal initial cluster
number of 5. This number agrees coincidentally with the optimal separated number of
clusters (Fig. 2b). The symmetry in the positive and negative parts is fulfilled, but a
"neutral" cluster does not exist. Thus an asymmetry exists between both parts: the
positive one includes 3 clusters (1-3), while the negative one only 2 (4-5). This is why
the ranges of the clusters are different.
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Fig. 2b Theoretical test calculation b1) - optimal initial number of clusters; the
values of the initial partition are ordered from 1 - 200 in the same course like the sinus
oscillation

For variant c1) we start with the same initial number of clusters as calculated for b1).
The number of statistically separated clusters is also 5. In this case all conditions of
symmetry are fulfilled (Fig. 2c).

This example shows that a correct solution exists for the clustering, if data of the initial
partition are ranked randomly and the optimal initial number of clusters is used.
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Fig. 2c Theoretical test calculation c1) - optimal initial number of clusters; random
ranked values of the initial partition

Fig. 3a Result of the Pettitt-test for the estimation of the initial number of clusters
(sinus oscillation)
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5.2 The climate of Europe

The aim is to classify Europe (between 45° and 70° N, 12° W and 45° E) into regional
climate types using monthly and annual means of the air temperature and the sums of
precipitation of 228 meteorological stations. Additionally, the monthly means of the
daily range of the air temperature are also included. From the results obtained in
section 5.1 we start the climate classification of Europe with the optimal variant c1)
which is then compared with less satisfying versions. The following variants are
discussed:
a2) Calculation of the optimal initial number of clusters; random ranked values of

the initial partition (This corresponds to the correct variant c1) of section 5.1)
b2) Calculation of the optimal initial number of clusters; the data of the initial

partition are ranked by countries
c2) Two initial numbers of clusters we used  = 5 and  = 15; with randomly

ranked values of the initial partition
d2) Clustering using the standard non-hierarchical minimal distance method (without

statistical significant cluster separation); number of clusters  = 11; variant d21):
random ranked data; variant d22): ranking by countries. (The example d2) is
also used to show the results for standard clusterings.)

Variant a2)
The calculated optimal initial number of clusters is  = 7. The figure 3b shows that the
course of the target function values can be divided into two different parts. First, the
values decrease continuously with an increasing number of clusters; second, one
observes only random oscillations of the target function values. Note the plateau at

 = 4 which will be relevant for the variant c2). Here in variant a2) we obtain 11 climate
types shown in figure 4a. Eight stations of the used 228 are marked as outliers. Seven
of them can be related to other climate types calculated before. From a climatological
point of view the various results are noted:

- With 11 climate types the whole region is classified neither too subtly nor too
coarsely.

- All climate types (clusters) are represented by a sufficient number of stations
(between 8 and 60, except for the Alps).

- The 3 mountain stations (Saentis, Sonnblick, Zugspitze) of the Alps fall into one
cluster (cluster 2).

- Generally, the stations of one cluster are neighbouring stations.
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Fig. 3b Result of the Pettitt-test for the estimation of the initial number of clusters
(climate classification)

Variant b2) 
This variant provides 16 clusters, partially with a small number of stations (2 minimum).
A comparison of these results (Fig. 4b) with variant a2) shows significant differences
in several regions. Of importance is the fact that two of the Alps stations (Zugspitze,
Sonnblick) appear in a cluster with only Norwegian stations while the third Alps station
(Saentis) is classified as an outlier which cannot be put into another cluster. A further
example of the inaccuracy of this variant is the fact that the two Milan stations (Italy)
which differ only subtly, appear in different climate types.

Variant c2)
The initial number of clusters  = 5 leads to a situation where a statistically significant
cluster separation is impossible. With a reduction to  = 4 the algorithm works and
separates 4 climate types. The reason for this can be found in fig. 3b. We can see that
in the case of an additional reduction of the cluster number to 3, the change of the
target function is negligible. This means that a statistical solution exists for 4 clusters
exists. It is obvious that only 4 climate types for the European climate represent an
insufficient classification (s. Fig. 4c). If we increase the initial number of clusters to

 = 15, we get an optimum cluster separation for  = 33. For this number of clusters
the changes of the target function values are in the noise region. This partition
represents a random product with a statistically significant separation. Thus these
results makes no sense as a climate classification.



Fig. 4a Climate classification a2) - optimal initial number of clusters; random ranked values of the initial partition (x - climate type 4)
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Fig. 4b Climate classification b2) - optimal initial number of clusters; the data of the initial partition are ranked by the countries (x -
climate type 3;     - climate type 16)
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Fig. 4c Climate classification c2) - initial number of clusters k0 = 5; random ranked values of the initial partition
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Variant d21) and d22)
Finally, the standard cluster algorithm is applied: A number of clusters  = 11 is used
as calculated in variant a2). For the d21) variant, one gets both reasonable and false
climate classifications. For example, the Irish stations Valentia, Cork, Belmullet, and
Malin Head are in the same climate cluster as the Alpine stations Zugspitze and
Sonnblick. Sorting the initial partition randomly (d22), this misclassification of d21)
disappears; and the Alps stations merge into one cluster. This means that data
independence is required also in the standard cluster algorithms. Furthermore without
the use of the statistical cluster separation the given 11 clusters are not separated
significantly. This leads to differences with the variant a2), but they are not as large
with the other variants. An example (see table 1) shows that the differences are not
negligible. Table 1 contains the stations of cluster 3 of the variant d22) and those of
clusters 9 and 10 of the variant a2). We can see that the stations in cluster 3 are the
same as in clusters 9 and 10 (except for 2 stations). The question arises wether there
are significant climatological distinctions between clusters 9 and 10. To answer this
question, the annual course of the parameters of the two clusters are compared
(figures 5a up to 5c): A large differences between the parameter air temperature exist
only during the winter period. Whereas differences are evident for the daily
temperature range, and the monthly sums of precipitation. That is, the standard cluster
algorithm does not lead to an optimal climate classification, despite the optimal number
of clusters and a randomly ranked initial partition. 

Fig. 5a Monthly mean of the air temperature - variant a2): climate type 9 (full);
climate type 10 (dashed)
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Fig. 5b Monthly mean of the daily range of air temperature - variant a2): climate
type 9 (full); climate type 10 (dashed)

Fig. 5c Monthly sum of precipitation - variant a2): climate type 9 (black); climate
type 10 (grey)
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Cluster 3 Cluster 9 Cluster 10

Dublin IR Dublin

Sheffield GB Sheffield

Bradford GB Bradford

Cherbourg F Cherbourg

Long Asthon GB Long Asthon

Plymouth GB Plymouth

Shannon IR Shannon

Portoroz CR Portoroz

Limoges F Limoges

Durham GB Durham

Oxford GB Oxford

Edinburgh GB Edinburgh

Beauvais F Beauvais

Angers F Angers

Renns F Renns

Uccle B Uccle

Münster D Münster

Armagh GB Armagh

Hamburg D

Trieste I

Tab. 1 Selected clusters of variant d22) - Cluster 3 and of variant a2) - Cluster
9 and 10 (D - Germany; F - France; GB - Great Britain; I - Italy; IR - Ireland; CR -
Croatia)
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6. Conclusions

The presented results show that the suggested procedure is the first which allows the
quality of the separation of clusters to be calculated in a statistically well-founded way;
it replaces the often adverse effects of a given number of clusters when employing the
non-hierarchical cluster analysis by the application of the optimum number of clusters
guaranteeing a statistically reliable separation of all clusters from each other.
Additionally for all cluster analysis methods the following conclusions can also be
drawn:
(1) Each method has to guarantee the statistically significant separation of the

clusters.
(2) The ranking of the data within the initial partition must be random.
(3) A computer programme for a cluster analysis has to be built up in such a way

that the access to the elements is random.
(4) For the optimum cluster separation the initial number of clusters is of great

importance. It can be calculated using the target function values.
(5) It is recommendable that existing outliers sort into the cluster with the smallest

distance between the outlier’s parameters and the respective group centroid. 

Considering these aspects yields a cluster analysis method which fulfills all the
demands of an optimum multivariate classification.
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