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Abstract

In the present report, we attempt to estimate whether the computational overhead due
to the explicit removal of Chebyshev-pseudo-spectral-induced aliasing errors is necessary
in a DNS of plane channel flow. We first recall the origin of aliasing errors in a Cheby-
shev method before turning to results from different test cases: analytical; transition to
turbulence; fully-developed turbulence.

Our results indicate that corrective action can slightly improve the quality of the
solution in situations where the resolution is marginal. We do not find conclusive evidence
that supports the use of the de-aliasing strategy under non-marginal conditions.



1 Introduction

In the past, various authors have investigated the importance of aliasing errors in Fourier-
based pseudo-spectral methods for direct numerical simulation (DNS) of turbulent flows
(cf. ICannto, Hussaini, Quarteroni & Zang (1988) for a survey). The explicit removal of
such errors has become common practice in numerical turbulence studies since the recog-
nition of the 2/3-rule by [Orszag (1971) and the introduction of the relatively low-cost
combination of phase-shifts and truncation by [Rogallo (1981). However, the importance
of aliasing errors when using Chebyshev polynomial expansions instead of Fourier se-
ries has — to my knowledge — not been addressed in detail in the literature. While
Canuto et all (1988) briefly describe the existence and possible removal of aliasing errors
in Chebyshev pseudo-spectral methods, actual simulations of the Navier-Stokes equa-
tions have apparently been commonly performed without resorting to such corrections
(e.g. Kim et all (1987), Krist. & Zang (1987), Hill & Ball (1999)).

In the present report, we attempt to estimate whether the computational overhead
due to the explicit removal of Chebyshev-induced aliasing errors is necessary (i.e. paying
off in terms of efficiency) in a DNS of plane channel flow. We first recall the origin of
aliasing errors in a Chebyshev method before turning to results from different test cases:
analytical; transition to turbulence; fully-developed turbulence.

Our present results indicate that corrective action can slightly improve the quality
of the solution in situations where the resolution is marginal. We do not find conclusive
evidence that supports the use of the de-aliasing strategy under non-marginal conditions.

2 Aliasing errors

In a discrete representation of continuous data the frequency content beyond the critical
(Nyquist) frequency is in general misinterpreted. One speaks of ‘aliasing’ when super-
critical frequencies are erroneously attributed to lower frequencies within the resolved
range. In a numerical approximation of partial differential equations, such high frequency
content of the solution is being generated by non-linear terms. In the case of the Navier-
Stokes equations, these (convective) terms are of quadratic order. Let us consider a
Chebyshev pseudo-spectral method (i.e. one where the product is evaluated in physical
space and fast transforms are used to shuttle to and from spectral space) for computing
a product between two functions u, v. The Nth order truncated Chebyshev expansion
reads:

N
Uj = Y by Tn(z)

m=0 0<j<N , (1)
Vi = Y 0nTulx)

where for the Gauss-Lobatto grid:

x; = cos(mj/N), Tn(z;) = cos(mmj/N). (2)



The Chebyshev coefficients of the non-linear term Z; = U, - V; read
1 N
=2 ZjTi(z;)w; (3)
Yk §=0

with the following weights and normalization factors

v — 7/2N j=0,N T kE=0,N (4)
Il x/N 1<j<N-1 "=\ /2 1<k<N-1

Substituting (1) into (3) leads to:

1 N N N

o= =0 0 D U Tnlwy) 0 T () Ti(2s) w;

Tk 5=0m=0n—=0

— 4%1@ zwj ZO Zoﬁm Oy, {cos(a;(m —n + k)) + cos(aj(m —n —k))
+cos(aj(m+n+k))+cos(aj(m+n—k))} (5)

where a; = 7j/N. The discrete orthogonality relation for Chebyshev polynomials reads:

1 X - _ 1 if p=2Nm m=0,+1,...

=0
Therefore (H) becomes

B = ”{[ Yo lmbnt D UnOnt Y Up Ot Y umvn]

47]9 m—n+k=0 m—n—k=0 m~+n—k=0 m~+n+k=0

+

S bt Y AmOat S bt Y umvn]}

m—n—+k=2Np m—n—k=2Np m+n—k=2Np m+n+k=2Np

(7)
(where p = 0,41,...). The terms in the second pair of square brackets are aliasing
errors. In order to have an Nth order representation that is free of such aliasing errors,
a total number of M > N modes can be chosen for the basic expansion, setting high
wavenumber coefficients to zero. What is the minimum number M which fulfills that
requirement? Considering the very last sum which under these conditions passes over all
indices for which m +n + k = 2M, the worst case is when m = n = N (beyond which
all @,y,, 0, are zero). We want the first alias-affected wavenumber to lie just outside the
‘useful’ range, therefore k = N + 1, which in turn leads to the following condition:

3(N + 1)

M > -1 . (8)

It is obvious that de-aliasing can be achieved as in Fourier pseudo-spectral methods by the
3/2-rule (cf. also (Canuto et al., 1988, p.86)), i.e. M = 3(N +1)/2 — 1 collocation points

5



are chosen in physical space while only N Chebyshev modes are retained for computation
in spectral space and the remaining coefficients are removed/padded with zeroes during
the transformation steps.

After having computed the product in physical space, further operations are per-
formed using the spectral coefficients, e.g. the computation of a derivative z, = (uv) ..
The Chebyshev derivative involves the following operations:

Z'(x;) = ZO BV To(zy) 9)

where the derivative coefficients in Chebyshev space read (Canuto et al) (1988)):

2 X 2 ifm=0
(1) — 2 5 _
“m Cm 2 i cm { 1 else (10)
p=m-+1
p+m odd

The last formula shows that derivatives are given by a recurrence relation in decreasing
order, which implies that truncation and differentiation do not commute (Canuto et al.,
1988, p.68). Therefore, when using the 3/2-rule for de-aliasing, truncation should be
performed immediately after passing data to spectral space in order to prevent the alias-
affected coefficents with N +1 < Alg < M from affecting the ‘useful range’ 0 < k < N.
Alternatively, a total number of M = 2 N modes could be used (‘4/2-rule’, cf. Orszag
(1971))) in order to obtain a full alias-free length M and then truncating only at the end
of each step, just before re-transforming to physical space. For reasons of computational
overhead, we will only consider the 3/2-rule in the following.

3 Analytical test

We consider the Chebyshev pseudo-spectral computation of the function
flz) = (u?) ., u(r) = sin(10 - 22/197 1), 0<r<2 . (11)

Convergence is measured by the square norm of the error normalized with the r.m.s.
value of f(z) for different numbers of modes N in the ‘useful range’, i.e. N = M for the
aliased scheme and N = (M + 1)2/3 — 1 for the de-aliased scheme. The corresponding
diagram is shown in figure [l (a), where both methods are seen to lead to similar errors.
In fact, the above measure of the error contains two contributions:

(i) the aliasing (or ‘interpolation’) error due to the projection of the basic function
u(z) upon the truncated Chebyshev series:

Uy = Uy + dYoa; ; (12)
j=2mN=k
>N
———
interpolation error

(where wy is a mode of the continuous Chebyshev transform, cf. (Canuto et al.,

1988, p.68));



(ii) the aliasing error due to the pseudo-spectral computation of the non-linear term
u?(x) as in equation (7)), i.e. the error associated with the discrete representation
of the high-frequency content generated by squaring the signal.

An alternative measure of the error can be defined which singles out the second contribu-
tion (ii) only: the error of the numerical solution F' with respect to the frequency content
of the exact solution lying within the respective ‘useful range’, i.e

error = \J Nl Z — fal(z)? (13)

where the N-mode low-pass filtered function is given by:

~

N AA /\
z;) = > [ Tu(z;), Zf zj) T(x;) w; (14)
k=0 ’Yk] —0

and K is a large finite number of modes in practice (here: K = 512). Figure [ (b)
shows the convergence measured according to (I3); the effect of de-aliasing is visible: as
expected, the limited range of wavenumbers N is better represented than with aliasing
errors for intermediate wavenumbers. However, since in an actual simulation both errors
(i) and (ii) are simulataneously present, the effect of the de-aliasing procedure gets blurred
as we will observe in the following more realistic test cases.

4 Transition

In this section we present results from the simulation of the early stages of transition to
turbulence in plane channel flow. The numerical scheme is based upon the method of
Kim, Moin & Moser (1987), i.e. truncated Fourier series in the spanwise (z) and stream-
wise (z) coordinate direction and a Chebyshev polynomial representation in the wall-
normal (y) direction is used. Non-linear terms are evaluated pseudo-spectrally, perform-
ing de-aliasing according to the 3/2-rule consistently in the (x,z) Fourier plane. It is
our present purpose to evaluate the need for de-aliasing in the remaining direction under
realistic circumstances and we will therefore present results that have been obtained with
and without de-aliasing of the Chebyshev modes according to the method outlined in §Il
For completeness, let us mention that the time integration is semi-implicit based upon a
three-step Runge-Kutta method and an implicit solution of the viscous problem. In what
follows, the time step was determined according to the linear CFL stability criterion of
the method; therefore, the temporal discretization error is not minimized and generally
interferes with the spatial error.

The present test case is similar to one of the cases considered by Krist & Zang (1987)
(cf. also Zang, Krist. & Hussaini (1989)) in their resolution study. We consider the sec-
ondary instability of Poiseuille flow at Re =Uyh/v = 8000 which is linearly unstable to
two-dimensional normal mode perturbations in a narrow band of streamwise wavenum-
bers around ah = 1. The linear eigenfunction has been computed by a numerical eigen-
system analysis of the Orr-Sommerfeld equations using 400 sixth order B-splines. The
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method I(e)

‘exact’ 2.66441F -3
N, =33 aliased 2.63282F —3
N, =49 aliased 2.63259F —3
N, =97 de-aliased 2.63259F—3

Table 1: Effect of vertical resolution on the growth rate of the least stable two-dimensional
perturbation at Re = 8000. The ‘exact’ result has been obtained by numerical solution
of the Orr-Sommerfeldt equation using 400 B-splines of order 6 (cf. also Krist & Zang
(1987)).

initial field has been assigned to our two evolution variables p=V?v and wy=u, — w,
in the following manner:

QO(l‘,y,Z,tO) = AQDQOQD(x,y)+A3Del¢($7z)2“
Wy(l”y’zato) =0 , (15)

where A;p = 0.01 is the amplitude of the linear 2D perturbation given by ¢sp and
Asp = 2 x 107* is the amplitude of supplementary 3D background noise whose phase
angle is determined by the random variable 0 < ¢(z,2) < 1. Since the (k, =0, %k, =0)-
mode is resolved separately, the Poiseuille base flow is directly assigned to the respective
“primitive” variable

Note that the (random) initial field was generated only once at the lowest wall-normal
resolution and then adapted for subsequent runs at higher resolution by filling up the
high wavenumbers with zeroes. Throughout this section, 96 x 32 Fourier modes (before
de-aliasing) were utilized while the box size measured L,/h = 27 and L,/h = 0.833.
The number of Chebyshev modes in the ‘useful range’ was varied from N, = 33 up to
N, =97 (M, = 145).

Figure [2] shows the spectrum of Chebyshev coefficients of the initial 2D perturbation
which is essentially captured by the first 30-40 modes. As a basic test, we have computed
the growth rate of the linear perturbation by means of the full non-linear Cod. Table I
shows the results for different wall-normal resolutions. When using 33 aliased Chebyshev
modes, the temporal growth rate of the energy of the fundamental streamwise harmonic
is predicted within 10™* accuracy relative to the numerical result at N, =97 (de-aliased).
Note that the ‘exact’ linear result differs by about 1% which we attribute to the temporal
integration error.

Figure [ again shows the evolution of the kinetic energy of that same harmonic,
but starting from the finite amplitude perturbation given by (I&)). Note that under
these circumstances rapid transition sets in at ¢ ~ 60h/Uy, shortly beyond the time
interval presently under consideration. The various curves of the figure — corresponding
to different Chebyshev grids, aliased and de-aliased — can barely be distinguished.

'For this test only, the initial amplitudes were set to: Asp=10"° and Asp=0.



Isocontours of the spanwise vorticity in the (z,y)-plane are plotted in figures at
t = 20h/Uy and t = 55h/Uy. At both stages of the evolution, small differences between
the N, = 33 and the more highly resolved fields (N, = 49, N, = 97) can be discerned.
The deviations are slightly more pronounced when no de-aliasing is performed. However,
at no stage important oscillations are observed as is the case when the Fourier directions
are under-resolved or marginally resolved and aliased (cf. Krist. & Zang (1987)).

5 Fully developed turbulence

We consider the evolution of the flowfield in the plane channel configuration of §4l but in
the regime of fully developed turbulent motion at a Reynolds number of Re = 3250. The
box size is chosen as L, = 8.49h and L, = 3.31h; the resolution is 192 x 128 modes in
the Fourier directions (before de-aliasing) and N, = 97 Chebyshev modes in the ‘useful
range’. The initial field is taken from a simulation without de-aliasing in the wall-normal
direction and was spectrally up-sampled for continuation with de-aliasing.

Figure @ shows the temporal evolution of the plane-averaged friction factor cy. It
can be observed that the aliased and de-aliased results start to differ noticeably after an
elapsed time of about 15h/U, which corresponds to 150 viscous time units (¢ = tu? /v
where u, is the friction velocity).

The wall-normal spectra of component energy and enstrophy,

Eaalk,) = //uak kg o) 0 (K, oy, b )dkeodk, (17)

Woalk,) = //wak kyo ko) (ko Ky, k) dbpdE, (18)

where & = V x4 is the vorticity (no implied summation for greek indices; asterisk denotes
complex conjugation) is shown in figure [I0] after an elapsed time of 2h/U,. The slight
‘pile-up’ of energy in high-wavenumber coefficients that occurs in the aliased simulation
is absent when de-aliasing is employed. Figures [[1] and [2 show isocontours of spanwise
and streamwise vorticity in (z,y)- and (z, y)-planes respectively. No differences between
results from the two schemes are visible at this stage of the simulation.

At the later stage (t = 40h/Uy), the spectral distribution of energy and enstrophy
shows a very similar character as earlier on (figure [[3). By now, however, the aliased
and de-aliased flowfields have taken a slightly different shape from one another, as can
be deduced from the contourplots in figures [I14] and [I5] and had been indicated by the
slow divergence of the skin friction mentioned above. On the other hand, this is no
surprise considering the disordered character of the turbulent motion which allows for a
divergence of only slightly perturbed states.

6 Conclusion

Our present computations seem to lead to a conclusion that is similar to the one reached
in (Krist & Zang, 1987, p.5) with respect to de-aliasing in Fourier spectral methods:



“Both aliased and de-aliased calculations are valid until they lose resolution;
the aliased calculation loses resolution slightly sooner than a de-aliased cal-
culation with an equal number of active modes.”

It is therefore not established that the additional effort stemming from the one-third
increase in collocation points according to the 3/2-rule pays off in a realistic, well-resolved
simulation.
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Figure 1: Square norm of the pointwise error of the Chebyshev pseudo-spectral calcula-
tion of the non-linear term (u?), for u(z) = sin(10 - 22/197z) (0 < z < 2). (a) Error
with respect to the full analytical solution. (b) Error relative to the exact solution low-
pass filtered with the number of Chebyshev modes N, as threshold, i.e. the part of the
solution that contains only contributions from the ‘useful range’ of the spectrum. +,
aliased Chebyshev modes; o, de-aliased according to the 3/2-rule.
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Figure 2: Decay of the Chebyshev coefficients of the least stable two-dimensional eigen-
function of the streamfunction v, (y) (where ¥(z,y,to) = 1, (y) @) obtained by
linear stability analysis at Re = 8000: +, real part; o, imaginary part.
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Figure 3: Temporal growth of the kinetic energy of the mode with (k,=1, k,=0) during
the non-linear evolution from finite initial value at Re = 8000: —— , N, = 97 de-aliased;
---—- , N, = 33 aliased; —— , N, = 33 de-aliased.
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] ] ] ] ] ] 1

33 modes aliased; t=20

Figure 4: Isocontours of spanwise vorticity at values (—3.5 : .15 : —.5) at t = 20 h/U,
when initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using
96 x 33 x 32 modes: (a) aliased Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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] ] ] ] ] ] 1

49 modes aliased; t=20

Figure 5: Isocontours of spanwise vorticity at values (—3.5 : .15 : —.5) at t = 20 h/U,
when initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using
96 x49 x 32 modes: (a) aliased Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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Figure 6: Isocontours of spanwise vorticity at values (—3.5 : .15 : —.5) at t = 20 h/U,
when initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using
96 x 97 x 32 modes: de-aliased according to the 3/2-rule.
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] ] ] ] ] ] 1

33 modes aliased; t=55

Figure 7: Isocontours of spanwise vorticity at values (—3.5 : .15 : —.5) at t = 55h/U,
when initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using
96 x 33 x 32 modes: (a) aliased Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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Figure 8: Isocontours of spanwise vorticity at values (—3.5 : .15 : —.5) at t = 55h/U
when initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using
96 x 97 x 32 modes: de-aliased according to the 3/2-rule.
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Figure 9: Evolution of the plane-averaged wall-friction of both walls during the fully
turbulent simulation at Re = 3250 having a resolution of 192 x 97 x 128 modes. ,
de-aliased according to the 3/2-rule; —-— | aliased Chebyshev modes.
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Figure 10: Wall-normal spectra of the Chebyshev coefficients of (a) the component energy
and (b) the component enstrophy of a fully turbulent simulation at Re = 3250 and a
resolution of 192 x 97 x 128 modes; tUy/h = 17. +, aliased Chebyshev modes; o, de-
aliased according to the 3/2-rule.
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Figure 11: Isocontours of spanwise vorticity at values (—16 : 2.5 : 1.5) at t = 17h /Uy of
a fully turbulent simulation at Re = 3250 and using 192 x 97 x 128 modes: (a) aliased
Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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Figure 12: Isocontours of streamwise vorticity at values (—15:1.5:5) at t = 17h /Uy of
a fully turbulent simulation at Re = 3250 and using 192 x 97 x 128 modes: (a) aliased
Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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Figure 13: Wall-normal spectra of the Chebyshev coefficients of (a) the component energy
and (b) the component enstrophy of a fully turbulent simulation at Re = 3250 and a
resolution of 192 x 97 x 128 modes; t Uy/h = 40. +, aliased Chebyshev modes; o, de-
aliased according to the 3/2-rule.
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Figure 14: Isocontours of spanwise vorticity at values (—16 : 2.5 : 1.5) at ¢t = 40 h/Uy of
a fully turbulent simulation at Re = 3250 and using 192 x 97 x 128 modes: (a) aliased
Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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