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Abstract 
 
In coupled human-environment systems where well established and proven general 
theories are often lacking cluster analysis provides the possibility to discover 
regularities – a first step in empirically based theory building. The aim of this report is 
to share the experiences and knowledge on cluster analysis we gained in several 
applications in this realm helping to avoid typical problems and pitfalls. In our 
description of issues and methods we will highlight well-known main-stream methods 
as well as promising new developments, referring to pertinent literature for further 
information, thus offering also some potential new insights for the more experienced.  
The following aspects are discussed in detail: data-selection and pre-treatment, 
selection of a distance measure in the data space, selection of clustering method,  
performing clustering (parameterizing the algorithm(s), determining the number of 
clusters etc.) and the interpretation and evaluation of results. We link our description – 
as far as tools for performing the analysis are concerned - to the R software 
environment and its associated cluster analysis packages. We have used this public 
domain software, together with own tailor-made extensions, documented in the 
appendix. 
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1 Introduction 
 
Cluster analysis is a general methodology for exploration of datasets when no or little 
prior information is available on the data’s inherent structure. It is used to group data 
into classes (groups or clusters) that share similar characteristics, and is widely used 
in behavioural and natural scientific research for classifying phenomena or objects 
under study without predefined class-definitions. In particular in coupled human-
environment systems where well established and proven general theories are still 
lacking cluster analysis provides the possibility to discover regularities – a first step in 
empirically based theory building. A recent example is the application for assessing 
the vulnerability of human wellbeing against global change (Sietz et al., 2011 and 
Kok et al., 2010). The aim of this report is to share the experiences and knowledge on 
cluster analysis we gained in these applications helping to avoid typical problems and 
pitfalls.  
A broad collection of clustering methods has been proposed in areas as statistics, data 
mining, machine learning, bioinformatics, and many textbooks and overview papers 
illustrate the variety of methods as well as the vigorous interest in this field over the 
last decade with the growing availability of computer power for analysing extensive 
datasets or data objects involving many attributes (i.e. finding clusters in high-
dimensional space, where the data points can be sparse and highly skewed). Books on 
cluster analysis, there are many: e.g. Aldenderfer and Blashfield (1976), Jain and 
Dubes (1988), Kaufman and Rousseeuw (1990), Gordon (1999), Hastie et al. (2001), 
Everitt, Landau and Leese, 2001, Mirkin (2005); Xu and Wunsch (2009). The same 
holds for overview papers, see e.g. Jain, Murty and Flynn (1999), Omran, 
Engelbrecht, Salman (2005), Xu and Wunsch (2005), Wunsch and Xu (2008).  
 
In this report we will highlight the major steps in the cluster analysis process, and link 
it – as far as tools for performing the analysis are concerned - to the R software 
environment and its associated cluster analysis packages (see appendix A and B). We 
have used this public domain software, together with own tailor-made extensions, to 
perform cluster analysis for identifying patterns of vulnerability to global 
environmental change (Kok et al. 2010), as part of a joint study of the PBL 
Netherlands Environmental Assessment Agency, PIK and the Norwegian University 
of Science and Technology. Examples from this study will be used as illustrative 
material in the present report. 
 
Beyond this specific background, the report is set up in more general terms, and can 
be used by novices in the field of cluster analysis, as well as by people who have 
already some working experience with the method but want to extend their ability to 
perform cluster analyses.  
 
In our description of issues and methods we will highlight well-known main-stream 
methods as well as promising new developments, referring to pertinent literature for 
further information, thus offering also some potential new insights for the more 
experienced. We do not extensively consider cluster analysis methods which 
explicitly account for spatial and/or temporal aspects of the data, but only briefly 
touch upon them.  
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1.1 Outline of the report 
 
Our exposition is for an important part based on the excellent book of Everitt, Landau 
and Leese, 2001 on clustering and on Han and Kamber’s book on data mining, which 
contains a concise chapter on cluster analysis (Han and Kamber, 2006, chapter 7). In 
discussing cluster analysis we will divide the clustering-process into a number of 
logical steps: 
 
• Data-selection and pre-treatment: In its generality this concerns the selection of 

data of interest for the problem at hand and the treatment of missing values and 
outliers. Optionally it also involves dimension-reduction by selecting variables or 
extracting relevant features from the data, the use of data transformations to bring 
the data values to a more even scale and the standardization of data to make them 
mutually more comparable. These forms of data-processing can influence the 
outcomes of the clustering to a large extent, and should therefore be chosen with 
due consideration. 

• Selection of a distance measure in the data space: In order to express the 
similarity or dissimilarity between data points a suitable distance measure (metric) 
should be chosen. It forms the basis for performing the clustering to identify 
groups which are tightly knit, but distinct (preferably) from each other 
(Kettenring, 2006). Often Euclidean distance is used as a metric, but various other 
distance measures can be envisioned as well.  

• Selection of clustering method: The extensive – and ever-growing - literature on 
clustering illustrates that there is no such thing like an optimal clustering method. 
We will group the multitude of methods into a restricted number of classes, and 
will especially focus on two commonly used classes, one which is based on 
hierarchically performing the clustering, while the other consists of constructively 
partitioning the dataset into a number of clusters, using the k-means method. The 
other classes will be briefly discussed with due reference to literature for further 
information. 

• Performing clustering: This involves parameterising the selected clustering 
algorithm(s) (e.g. choosing starting points for the partitioning method), 
determining the number of clusters, and computing the resulting clustering 
partition for these settings. Especially the issue of determining the number of 
clusters is an important one, and we will highlight a general approach which we 
applied for our vulnerability assessment study. 

• Interpretation and evaluation of results: This concerns in the first place a 
description of the clustering in terms of cluster characteristics. Moreover - in order 
to use the clustering results - the characteristics and meaning of the various 
clusters have to be interpreted in terms of content matters, which often involve a 
process of knowledge building, hypothesis setting and testing, going back and 
forth from the clustering results to the underlying knowledge base. 
Finally, evaluation includes also a study of the sensitivity of the clustering results 
for the various choices during the various steps of the cluster analysis, e.g. 
concerning the data selection and pre-treatment, selection of clustering method 
etc. Also the effects of uncertainties and errors in the data should be addressed in 
this step.  

 



7 
 

The various steps are described in more detail in the following chapters. In the 
appendices more detailed information is given on the R software and on some specific 
clustering issues. 
 

 

Clustering in various contexts (according to Han and Kamber, 2006): 
As a branch of statistics, cluster analysis has been extensively studied, with a focus on 
distance-based cluster analysis. Cluster analysis tools based on k-means, k-medoids, 
hierarchical clustering and several other methods have been build into many software 
packages for statistical analysis such as S-Plus, SPSS and SAS. Also dedicated software 
(e.g. Wishart’s CLUSTAN (http://www.clustan.com/index.html), Matlab Statistics 
toolbox) and public-domain packages abound (see the various R-packages on clustering). 
In the machine learning context, clustering is an example of unsupervised learning, which 
does not rely on predefined classes and class-labeled training data. It is a form of learning 
by observation, rather than learning by examples as in supervised learning (as e.g. in data-
classification).  
In the data mining field efforts have focused on finding methods for efficient and effective 
analysis of large databases. Issues as the scalability of clustering methods, the ability to 
deal with mixed numerical and categorical data, complex shapes and types of data,  high-
dimensionality, the ability to deal with noisy data, to incorporate domain knowledge, to 
easily deal with updates of the databases, insensitivity to the order of input records, are 
important requirements for the clustering methods.  
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2 Data selection and pre-treatment 
 
 
The main theme in cluster analysis is to identify groups of individuals or objects (i.e. 
‘cases’ or ‘entities’) that are similar to each other but different from individuals or 
objects in other groups. For this purpose data on the individuals or objects have to be 
collected, and it is obvious that the data should be characteristic, relevant and of good 
quality to enable a useful analysis. 
 

2.1 Data-collection: Some important issues  

 
This means in the first place that an adequate number of objects/cases/individuals 
should be available in the dataset to study the phenomena of interest (e.g. identifying 
situations that show a similar reaction pattern under certain environmental stresses; 
identifying subgroups of patients with a diagnosis of a certain disease, on basis of a 
symptom checklist and results from medical tests; identifying people with similar 
buying patterns in order to successfully tailor marketing strategies etc.).  
Moreover the researcher should choose the relevant variables/features which 
characterize the objects/cases/individuals on basis of which the groups should be 
subdivided in homogeneous subgroups. Milligan, 1996 strongly advices to be on the 
parsimonious side and ‘select only those variables that are believed to help 
discriminate the clustering in the data’. Adding ‘ only one or two irrelevant variables 
can dramatically interfere with cluster recovery’ (Milligan, 1996).  
For further analysis one must also decide - amongst others - whether to transform or 
standardize the variables in some way so that they all contribute equally to the 
distance or similarity between cases. 
Furthermore data quality will be another important issue which involves various 
aspects as e.g. accuracy, completeness, representativeness, consistency, timeliness, 
believability, value added, interpretability, traceability and accessibility of the data, 
presence of noise and outliers, missing values, duplicate data etc. (cf. Pipino, Funk, 
Wang (2006)).  
 

2.2 Data-collection: Type of data 

 
An important distinction when considering the data that has been collected on the 
‘objects’ and their ‘attributes’1 (i.e. properties or characteristics of an object; e.g. eye 
colour of a person, length, weight) is the (measurement) scale which has been used in 
expressing these attributes: 
 
− Nominal scale: In fact this is not really a scale because numbers are simply used 

as identifiers, or names, e.g. in coding a (no, yes) response as (0,1). The numbers 
as such are mostly meaningless in any quantitative sense (e.g. ID numbers, eye 
colour, zip codes).  

                                                      
1 Concerning terminology: ‘attributes’ are also referred to as variables, features, fields, characteristics. 
A collection of attributes describes an ‘object’. An object is also known as record, point, case, sample, 
entity or instance. These terms are often used interchangeably. 
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− Ordinal scale: The numbers have meaning only in relation to one another, e.g. the 
scales (1, 2, 3), (10, 20, 30) and (1, 20, 300) are in a sense equivalent from an 
ordinal viewpoint. Examples of ordinal scale attributes are rankings, grades, or 
expressing height in {tall, medium, short}-categories. 

− Interval scale: This scale is used to express data in a (continuous) measurement 
scale where the separation between numbers has meaning. A unit of measurement 
exists and the interpretation of the numbers depends on this unit (compare 
temperature in Celsius or in Fahrenheit). 

− Ratio scale: This is a measurement scale where an absolute zero exist and a unit of 
measurement, such that the ratio between two numbers has meaning (e.g. distance 
in meters, kilometres, miles or inches). 

 
The first two scales refer more to qualitative variables, and the latter to quantitative 
variables2. In practice, the attributes characterizing an object can be of mixed type.  
 
Another distinction can be made between ‘discrete’ and ‘continuous’ attributes, where 
the first category refers to variables having a finite or countably infinite set of values 
(e.g. zip-code), and can often be represented as integer variables (1, 2, 3, …). Binary 
attributes, taking on the values 0, 1, or “No”, “Yes” are a special case of discrete 
attributes. Continuous attributes can take values over a continuous range, and have 
real numbers as attribute values. Notice that in practice real values can only be 
measured and represented using a finite number of digits. 
 

2.3 Data pre-processing 

 
Since real data can be incomplete (missing attribute values), noisy (errors or outliers) 
and inconsistent (e.g. duplicates with different values), data pre-processing is an 
indispensable part of the cluster analysis. The major tasks involved in data pre-
processing are: 
 
− [A] Data cleaning: Filling in missing values, smoothing noisy data, identifying or 

removing outliers, correcting inconsistencies and resolving redundancies caused 
by integration or merging of data from various sources/databases. 

− [B] Data integration: Integration of multiple databases, files or data cubes (data 
structures commonly used to describe time series of image data).  

− [C] Data transformation: Putting data in form(at)s which are appropriate for 
further analysis. This includes normalization and performing summary or 
aggregation operations on the data, for instance.  

− [D] Data reduction: Obtaining reduced representation in volume of the data that 
produce the same or similar analytical results. 

− [E] Data discretization: Especially for numerical data this denotes a specific 
form of data reduction. 

− [F] Cluster tendency: Determining whether there are clusters in the data. 
− [G] Cluster visualisation: Using graphical techniques can greatly enhance the 

analysis of the underlying cluster/group-structure in the data. 

                                                      
2 We restrict our attention to data which have numerical values, and don’t consider symbolic objects. 
See e.g. Ravi and Gowda (1999) for cluster analysis of this category of objects. 
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In the sequel we will outline these activities in more detail: 
 
2.3.1 Data cleaning  
 
Various techniques for performing data-cleaning can be used, of which we only 
briefly discuss the way missing data and outliers can be handled. Additional dedicated 
methods for data cleaning originating from the data warehouse literature can e.g. be 
found in Rahm and Do (2000). 
 
(i) Handling missing data  
Values can be missing since information is not collected or attributes are not 
applicable in all cases (e.g. annual income for children). One obvious way of handling 
missing data is simply eliminating the corresponding data objects, and analysing only 
that part of the dataset which is complete (called marginalization by Wagstaff and 
Laidler, 2005). This strategy does not lead to the most efficient use of the data and is 
recommended only in situations where the number of missing values is very small. 
Another option (called imputation) to deal with missing data is to replace the missing 
values by a global constant (e.g. ‘unknown’, a new class) or by an estimate, e.g. the 
mean, median, a most probable value; cf. various forms of data-imputation (e.g. mean, 
probabilistic or nearest neighbourhood imputation3, as presented in Wagstaff and 
Laidler, 2005). 
 
Jain and Dubes (1988, page 19-20)) recommend - on basis of experimental results of 
Dixon (1979) - to use an imputation approach which redefines the distance between 
data points xi and xk which contain missing values as follows: First define the distance 
dj between the two points along the j-the feature as dj=0, if xij or xkj is missing, and xij-

xkj otherwise, then the distance between xi and xk is defined as: −
= 2

j
o

ik d
mm

m
d  

where mo is the number of features missing in xi or xk or both, and m is the total 
number of features. ikd  as defined above is the squared Euclidean distance in case 

there are no missing values. 
 
Wagstaff and Laidler (2005) notice that in some applications imputation and 
marginalization is not suitable since the missing values are physically meaningful and 
should not be supplemented or discarded. They implemented an algorithm, called 
KSC (K-means with soft constraints) that is dealing with the whole data set including 
the partially measured objects. 
Additional information on dealing with missing values can be found in Little & Rubin 
(1987). 
 
(ii) Smoothing noisy data 
Noisy data are caused by (random) error or variance in a measured variable, as well as 
incorrect attribute values due to faulty data collection instruments, data entry and 
transmission problems, inconsistencies in naming convention etc. In case of noisy 

                                                      
3 ‘Mean imputation’ involves filling the missing values with the mean of the remaining ones, while 
‘probabilistic imputation’ consists of filling it with a random value drawn from the distribution of the 
feature. ‘Nearest neighborhood imputation’ replaces it with value(s) from the nearest neighbor. 
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data one can decide to filter/smooth them first in order to partially remove some of the 
effects of the noise. E.g. binning, which consists of first sorting the data and then 
partitioning them into (equal frequency) bins and subsequently smoothing them by 
replacing them by their bin means, medians or bin boundaries, is a simple way of 
filtering the data. More advanced approaches, like using e.g. regression analysis, 
trend-detection or noise-filtering (applying e.g. moving averages) can also be invoked 
to partially remove noise from the data. 
 
(iii) Handling outliers 
Outliers are data values that are extremely large or small relative to the rest of the 
data. Therefore they are suspected to misrepresent the population from which they 
were collected. Outliers may be the result of errors in measurements, model-results, 
data-coding and transcription, but may also point to (often unexpected) true extreme 
values, indicating more variability in the population than was expected. Therefore, in 
treating outliers one has to be cautious not to falsely remove outliers when they 
characterize important features (e.g. hotspots) of the phenomenon at hand; it is 
obvious that the decision to discard an outlier should not be based solely on a 
statistical test but should also be taken on basis of scientific and quality assurance 
considerations.  
The first step in handling outliers consists of the detection of outliers (see also 
Rousseeuw et al. 2006). Though detecting outliers can partly be based on process-
information and combined computer and human inspection of graphical 
representations of the data, one often relies on statistical techniques. Hubert and Van 
der Veeken (2008) recently proposed a statistical technique which is especially suited 
for detecting outliers in skew distributed multivariate data and is also related to the 
adjusted boxplot for skew distributed data (Hubert and Vandervieren (2008)). Though 
several more refined robust estimators and outlier detection methods exist which are 
typically geared to specific classes of skewed distributions, their approach is very 
useful when no prior information about the data distribution is available, or when an 
automatic and fast outlier detection method is required. In the CRAN-package 
<<robustbase>>4 functionality is available for this form of outlier detection (function 
<<adjOutlyingness>>) as well as for the adjusted box-plot determination (function 
<<adjbox>>). 
The second step involves the pre-treatment of outlier-values before performing cluster 
analysis. In general three general strategies can be applied: (a) using the outlying data 
points in the subsequent analysis, accounting for their effects on the outcomes; (b) 
trimming: removing the outlier data from the data set, and not incorporating them in 
the dataset for the subsequent cluster analysis; (c) winsorising: replacing the outlying 
values by a truncated variant, e.g. a specific percentile (e.g. the 1th or 99th percentile) 
of the dataset, or an associated cut off-value of the skewed boxplot (Hubert and Van 
der Veeken, 2008). These truncated data points are included in the cluster analysis. 
 
The above procedure is in fact centred around detecting outlying values with respect 
to an (supposedly) underlying distribution of the attribute-dataset, before the cluster 
analysis takes place. There is however also the issue of detecting outliers with respect 
to the obtained partition of the objects into clusters, i.e. after the cluster analysis has 
been performed: 

                                                      
4 Cf. http://cran.r-project.org/web/packages/robustbase/ 
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− Irigoien and Arenas (2008) recently proposed a geometrically inspired method for 
detecting potential atypical outlying data-points.  

− Also the Silhouette statistic proposed by Rousseeuw (1987) can be used as an 
indication of the outlyingness of a point in a cluster. It measures how well a 
certain data point/object, say i, is matched to the other points/objects in its own 
cluster, versus how well matched it would be, if it were assigned to the next 
closest cluster. The Silhouette of i is expressed as s(i)=[b(i)-a(i)]/max[a(i),b(i)], 
where a(i) denotes the average distance between the i-th point and all other points 
in its cluster, and b(i) is the average distance to points in the “nearest” clusters 
with nearest being defined as the cluster minimizing b(i). s(i) is a value between -
1 and +1, and large (positive) values indicate strong clustering, while negative 
values indicate that clustering is bad. See e.g. Figure 1 which gives an example of 
a Silhouette plot, as well as the associated 2-dimensional projection of the cluster 
points. The Silhouette statistic can e.g. be calculated with the function 
<silhouette> in the CRAN-package <<cluster>>5. 
 
 

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = iris.x, k = 3)

Average silhouette width :  0.55

n = 150 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   50  |  0.80

2 :   62  |  0.42

3 :   38  |  0.45

   

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

CLUSPLOT( iris.x )

Component 1

C
o

m
p

o
n

e
n

t 2

These two components explain 95.81 % of the point variability.  
 

Figure 1: An example of a Silhouette plot for a cluster analysis with three clusters. The plot 
expresses the (ordered) silhouette values for the points in the three clusters. It shows that 
most points in the first cluster have a large silhouette value, greater than 0.6, indicating that 
the cluster is somewhat separated from neighbouring clusters. The second and third cluster 
contain also several points with low silhouette values indicating that those two clusters are 
not well separated, as exemplified in the 2-dimensional cluster plot in the right frame. 

 
The R-commands for constructing these results are: 
 
## Partitioning iris-data (data frame) into 3 clusters, 
## and displaying the silhouette plot.   
## Moreover a 2-dimensional projection of the partitioning is given. 
 
library(cluster)       # Load the package cluster 
data(iris)             # Load the famous (Fisher’s or Anderson’s) iris-dataset  
iris.x <- iris[, 1:4]  # Select the specific datacolumns: i.e. Sepal.Length, 
Sepal.Width, Petal.Length, Petal.Width 
 
pr3 <- pam(iris.x, 3)  # Perform the clustering by the PAM-method with 3 clusters 
si<-silhouette(pr3)    # Compute the Silhouette information for the given 
clustering 

                                                      
5 Cf. http://cran.r-project.org/web/packages/cluster/ 
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plot(si, col = c("red", "green", "blue")) # draw a silhouette plot with 
clusterwise coloring 
 
clusplot(iris.x, pr3$clustering, shade=TRUE,color = TRUE, col.clus= c("red", 
"green", "blue")) # draw a 2-dimensional clustering plot for the given clustering 

 
 
For more information on outlier-detection and analysis we refer to section 7.11 in Han 
and Kamer, 2006, who distinguish 4 different approaches to outlier analysis: statistical 
distribution-based, distance-based, density-based local outlier detection and the 
deviation-based approach. 
 
2.3.2 Data integration  
 
When integrating multiple data-sources (databases, files or data-cubes) redundant data 
can occur, since e.g. the same attribute or object may have different names in different 
sources, or one attribute may be a ‘derived’ attribute in another source (e.g. annual 
values, instead of monthly values). Correlation analysis can e.g. be used to point at 
potential redundancies in the data, while additional post-processing (e.g. data-
reduction; see later) can be used to alleviate their effects.  
In data integration one should also be aware of potential data value conflicts which 
can occur when attribute values from different sources are different e.g. due to 
different representations or scales. These problems can be avoided by carefully 
performing and checking the data integration. 
 
2.3.3 Data transformation  
 
Data transformation first of all includes normalization of the data to bring them into a 
form which is more amenable for the subsequent analysis. It is well-known that 
measurement scale can have a large effect in performing cluster analyses, as 
illustrated in Figure 5 of Kaufman and Rousseeuw, 1990 or in Silver, 1995. Therefore 
it is considered important to bring the data into a form which is less dependent on the 
choice of measurement/representation scale. A typical standardization (the 
“(min,max)-range standardization”) which is used for this purpose consists of 
determining the range of values6 and redefinining the value of X(i) by:  
(X(i)-min)/(max-min), thus obtaining values between 0 and 1, where 0 and 1 refer to 
the extreme values (i.e. min and max7). Other statistical transformations, like the Z-
transform - which replaces X(i) by (X(i)-mean)/stdev, with mean being the average 
value, and stdev the standard deviation of all data-values X(i) - are also conceivable, 
but are considered less apt when performing cluster-analysis (cf. Milligan and Cooper, 
1988, Kettenring, 2006).  
 
Remark: Though the (min,max) standardization has the function of transforming the variables 
into a comparable format, some caution is due in using it. E.g. in situations where certain 
variables are already measured in a commensurable scale, applying this additional 
standardization can result in an artificial rescaling of the variables which obscures their actual 
differences. E.g. when the actual min-max ranges differ (e.g. the actual values for variable A 
                                                      
6 This can e.g. be the actual range, consisting of the actual maximum-minimal value of the current data, 
or the maximal feasible range one can think of (i.e. beyond the actual data-sample). 
7 The min and max can here refer to the actual minimum and maximum of the dataset at hand, but can 
also refer to the feasible minimum and maximum which can realistically be expected, and which can be 
smaller (for the minimum) or larger (for the maximum) than the actual ones. 
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range from .2 to .25, while those of variable B range from .015 to .8), rescaling on basis of the 
actual min-max range will result for both variables in values running from 0 to 1 which 
renders a very different (and erroneous) view on their difference. In this situation one could 
argue for not automatic rescaling these variables, but proceed with the unscaled version. 
However, one can as easily argue against this, by stating that the use of an unscaled version 
for these variables will result in an unfair bias towards other variables which have been re-
scaled into the complete (0, 1) range by applying the (min,max) standardization. What choices 
will be made in the end will depend on what is considered important. This situation in fact 
asks for a sensitivity analysis to study what effects the applied alternative standardization 
options can possibly have on the clustering results. 
 
Another issue concerns the use of non-linear transformations on the variables to bring 
them into a form which e.g. fits more to the underlying assumptions: e.g. a right-
skewed distribution could possibly be transformed into approximately Gaussian form 
by using logarithmic or square-root transformation, to make the data more amenable 
to statistical techniques which are based on normality assumptions. In analyzing these 
transformed data one should however realize that re-interpretation of the obtained 
results in terms of the original untransformed data requires due care, since means and 
variances of the transformed data render biased estimates when transformed back to 
the original scale. Therefore, if the nonlinear transformations of the data are expected 
to have no noticeable benefits for the analysis, it is usually better to use the original 
data with a more appropriate statistical analysis-technique (e.g. robust regression in 
case one wants to relate variables to each other). 
 
2.3.4 Data reduction 
 
In situations where the dataset is very large, data reduction is in order to reduce run 
time and storage problems in performing cluster analysis. The challenge is to obtain a 
reduced representation of the dataset that is much smaller in volume but produces the 
same (or almost the same) analytical results. Various reduction strategies are in order 
to achieve this: 
 
(i) Aggregation: consists of combining two or more attributes (or objects) into a single 
attribute (or object), thus resulting in a reduced number of attributes or objects. One 
should strive to find aggregations which make sense, and highlight important aspects 
of the problem at hand. This can also involve a change of scale (e.g. cities aggregated 
into regions, states, countries; daily, weekly, monthly averages), and can render more 
‘stable’ data (less variability), however at the price of losing information on the more 
detailed scale. 
 
(ii) Sampling: Instead of processing the complete dataset one can decide to process 
part of the dataset which is obtained by selecting a restricted (random) sample. In this 
process one has to be sure that the selected sample accurately represents the 
underlying cluster- or populations structure in which one is interested. 
 
(iii) Feature selection: Feature Selection consists of identifying and removing features 
(or equivalently attributes, variables) which are redundant (e.g. duplicating much of 
the information in other features) or irrelevant (e.g. containing no information that is 
useful for the data mining task at hand, e.g. identifiers of objects). Apart from brute 
force approaches which try all possible feature subsets, more advanced techniques can 
be invoked as e.g. filter and wrapper approaches to find the best subset of attributes 
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(see the extensive literature on these topics in machine learning and data-mining, e.g. 
Blum and Langley, 1997, Kohavi and John, 1997; see also Xing, 2003, Guyon and 
Elisseeff, 2003, Guyon et al., 2006, Handl and Knowles, 2006, Liu, Yun, 2005, Saeys 
et al. 2007). This last class of techniques can be implemented in a forward (stepwise 
forward selection) or a backward (stepwise backward elimination) fashion, similar to 
stepwise regression. See also table 5 in Jain et al. (2000) where a number of feature 
selection methods are briefly discussed in the context of statistical pattern recognition.  
 
A number of (recent) publications more specifically address feature (or variable, 
attribute) selection for cluster analysis:  
• Friedman and Meulman (2004) proposed, in the context of hierarchical clustering 

methods, a method to cluster objects on subsets of attributes. It is based on the 
idea that subsets of variables which contribute most to each cluster structure may 
differ between the clusters. Software is available in R to perform this analysis 
(COSA; see http://www-stat.stanford.edu/~jhf/COSA.html). Damian et al. (2007) 
describe applications of this algorithm in medical systems biology. 

• Raftery and Dean (2006), in the context of model-based clustering, propose a 
variable selection method, which consistently yields more accurate estimates of 
the number of groups and lower classification error rates, as well as more 
parsimonious clustering models and easier visualization of results. See the CRAN-
package <<clustvarsel>>8 for related software.  
For interesting further developments see the recent paper of Maugis et al. (2008, 
2009). Methods which especially focus on situations with very many variables 
(high-dimensional data), are furthermore presented in McLachlan et al. 2002, 
Tadesse et al. (2005), Kim et al. (2006). See also Donoho and Jin (2008, 2009) for 
the related case of discriminant analysis (i.e. supervised classification).  

• Steinley and Brusco (2008b) compared various procedures for variable selection 
proposed in literature, and concluded that a novel variable weighting and selection 
procedure proposed by Steinley and Brusco (2008a) was most effective. 

• Mahoney and Drineas (2009) recently proposed so called CUR matrix 
decompositions, i.e., low-rank matrix decompositions that are explicitly expressed 
in terms of a small number of actual columns and/or actual rows of the original 
data matrix as a means for improved data-analysis, which can be usefully applied 
in clustering. 

• Donoho and Jin (2008, 2009) address optimal feature selection in the context of 
classification and discriminant analysis in case that useful features are rare and 
weak. Their idea of using a thresholding strategy for feature Z-scores can be 
extended to cluster analysis applications. 

• Fraiman et al. (2008) recently introduced two procedures for variable selection in 
cluster analysis and classification, where one focuses on detecting ‘noisy’ non-
informative variables, while the other also deals with multi-colinearity and general 
dependence. The methods are designed to be used after a ´satisfactory´ grouping 
procedure has already been carried out, and moreover presuppose that the number 
of clusters is known and that the resulting clusters are disjoint. The main 
underlying idea is to study which effect the blinding of subsets of variables (by 
freezing their values to their marginal or conditional mean) has on the clustering 
results as compared to the clustering the full variable set. To enable analysis for 
high-dimensional data a heuristic forward-backward algorithm is proposed to 

                                                      
8 Cf. http://cran.r-project.org/web/packages/clustvarsel/ 
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consecutively search (in a non-exhaustive way) for an appropriate variable 
selection. The performance of Fraiman’s methods in simulated and real data 
examples is quite encouraging, and at points it also outperformed Steinley and 
Brusco (2008a) method. 

• Krzanowski and Hand (2009) recently proposed a simple F-test like criterion to 
evaluate whether the ratio of the between-group and the within-group sum of 
squares for each specific variable is significantly greater than what would be 
expected in a single homogeneous population (i.e. if no clustering would be 
involved). On basis of this easily computable test they expect to make an 
appropriate pre-selection/reduction of the variables for clustering applications 
with very many variables involved. This is especially the case for applications like 
the genetic characterization of diseases by microarray techniques, where typically 
very many gene expression levels p are involved as compared to subjects n (e.g. 
values of n are in the hundreds, while values of p are in the thousands). More 
specialized approaches for these high dimensional situations are more 
computationally demanding and more specifically bound to specific cluster 
analysis techniques like mixture model-based approaches (cf. McLachlan et al. 
2002, Tadesse et al. (2005), Kim et al. (2006)). 

 
In appendix D, we highlight some simple alternatives related to the latter two methods 
that can be straightforwardly used for performing this feature selection, and give some 
examples of their use. 
 
Complementary to variable selection one can also consider the use of variable 
weighting to express the relative (ir)relevance of features or variables (Gnanadesikan, 
Kettenring and Tsao, 1995). De Soete, (1986, 1988) initially has developed optimal 
schemes for ultrametric and additive tree clustering (see also Milligan, 1989), and 
Makarenkov and Legendre (2001) have extended these9 also for K-means partitioning 
methods. For k-means type clustering Huang et al., 2005 propose a procedure that 
automatically updates variable weights based on the importance of the variables in 
clustering. Small weights reduce the effects of insignificant or noisy variables. As a 
further improvement on Huang’s procedure, Tsai and Chiu (2008) recently proposed a 
weight self-adjustment (FWSA) mechanism for K-means to simultaneously minimize 
the separations within clusters and maximize the separations between clusters. They 
discuss the benefits of their method on basis of synthetic and experimental results. 
Gnandesikan et al. (2007) recently proposed simple methods for weighting (and also 
for scaling) of variables. 
 
 (iv) Dimension Reduction/Feature Extraction: For reducing the dimensionality of the 
dataset, various methods can be applied which use (non-linear) transformations to 
discover useful and novel features/attributes from the original ones (cf. Jain et al. 
1999, 2000, Law and Jain, 2006, Camastra, 2003, Fodor, 2002). E.g. principal 
component analysis (PCA) (Jolliffe, 2002) is a classical technique to reduce the 
dimensionality of the data set by transforming to a new set of variables which 
summarizes the main features of the data set. Though primarily defined as a linear 
feature extraction technique, suitable non-linear variants (kernel PCA) have been 
developed in the last decades (see Schölkopf et al. 1999). PCA is often used as a 
preliminary step to clustering analysis in constraining attention to a few variables. But 

                                                      
9 For downloading this software see http://www.bio.umontreal.ca/casgrain/en/labo/ovw.html 
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its use can be problematic as illustrated by Sneath, 1980, Chang, 1983. These 
references show that clusters embedded in a high-dimensional data-space will not 
automatically be properly represented by a smaller number of orthogonal components 
in a lower dimensional subspace. Yeung and Russo, 2001 also demonstrate that 
clustering with the PC’s (Principal Components) instead of the original variables does 
not necessarily improve cluster quality, since the first few PC’s (which contain most 
of the variation in the data) do not necessarily capture most of the cluster structure.  
In addition to PCA, alternative techniques can be envisioned for the task of dimension 
reduction, like factor analysis, projection pursuit, independent component analysis, 
multi-dimensional scaling (MDS10), Sammon’s projection11, IsoMap, Support Vector 
Machines, Self-Organizing Maps etc. (cf. De Backer et al. 1998, Jain et al. 2000, 
Fodor, 2000, Tenenbaum et al. (2000)). However, the same caveats as mentioned 
before for the PCA remain active. Moreover one should realize that feature extraction 
- unlike feature selection - typically results in transformed variables, consisting of 
(non)linear combinations of the original features, for which the original meaning has 
been lost. This can be an impediment in interpreting the results of the subsequent 
clustering in terms of the original variables. 
In R the packages12 <<kernlab>> and <<MASS>> deal with several of these 
computational techniques. 
 
(v) Mapping data to a new space 
In order to highlight specific dynamics in the data, techniques like using Fourier 
transforms or wavelet transforms can be used to map the data into a new space, where 
further analysis can take place (cf. § 2.5.3. in Han and Kamber, 2006). Underlying 
rationale is that in the novel space less dimensions are needed to characterize the 
dataset to a sufficient extend, thus achieving data reduction. 

                                                      
10 MDS (multidimensional scaling) represents the similarity (or dissimilarity) among pairs of objects in 
terms of distances between points in a low-dimensional (Euclidean) space, and offers a graphical view 
of the dissimilarities of the objects in terms of these distances: the more dissimilar two objects are, the 
larger the distance between these objects in Euclidean space should be (Norg and Groenen, 1997). 
11 Sammon’s nonlinear mapping is a projection method for analysing multivariate data. The method 
attempts to preserve the inherent structure of the data when the patterns are projected from a higher-
dimensional space to a lower-dimensional space by maintaining the distances between patterns under 
projection. Sammon’s mapping has been designed to project high-dimensional data onto one to three 
dimensions. See Lerner et al. (2000) for information on initialising Sammon’s mapping. 
 
12 Cf. http://cran.r-project.org/web/packages/kernlab and http://cran.r-project.org/web/packages/MASS/ 
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2.3.5 Data discretisation  
 
By dividing the range of continuous attributes into intervals one can reduce the 
number of values. Reduction of data can also be established by replacing low level 
concepts by higher level concepts (e.g. replacing numeric values for the attribute ‘age’ 
by categories as young, middle-aged or senior). Techniques like binning, histogram 
analysis, clustering analysis, entropy-based discretisation and segmentation by natural 
partitioning can be applied for this purpose (cf. § 2.6 in Han and Kamber, 2006) 
 
2.3.6 Cluster tendency  
 
One difficulty of cluster algorithms is that they will group the data into clusters even 
when there are none. Later we will discuss the possibilities of validating the results of 
a clustering but here we present a number of ways by which the user can estimate a 
priori whether data contains structure.  
 

 
Figure 2: Artificial data set (left), image-plot (R-function) of the distance matrix of this data 
set (centre), image-plot of the data set after applying VAT-algorithm (right). 

 
In the VAT-algorithm Bezdek, Hathaway and Huband (2002) represent each pair of 
objects by their distance. The emerging dissimilarity matrix is subsequently ordered 
and visualized by grey levels (0 if distance is zero and 1 for the maximum distance) 
(Figure 2, right). See also Bezdek, Hathaway and Huband (2007) where a technique is 
presented for the visual assessment of clustering tendency on basis of dissimilarity 
matrices.  
Hu and Hathaway (2008) further developed this idea beyond the pure graphical 
interpretation of the result. They implemented several tendency curves that average 
the distances in the dissimilarity matrix. The peak-values in the tendency curves can 
then be used as a signal for cluster structures and for automatic detection of the 
number of clusters.  

 

 
Figure 3: Artificial data set with uniformly distributed values (left) – h=0.5, Artificial raster 
data set (centre) – h=0.1, data with three artificial normally distributed clusters (right) – h=1. 
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Another possibility to check whether there are clusters in the data or not is the 
Hopkins-Index, which is described in Runkler (2000) or Jain&Dubes (1988). The 
latter reference proposes to use hypothesis tests of randomness for getting insight into 
the data structure. Also tests like quadrate analysis, inter-point distance and structural 
graphs can be employed. 
 
 
 
 
 
 
 
 
 
 
 
2.3.7 Visualizing clusters  
 
A number of graphical techniques for visualizing and identifying clusters in one or 
two dimensions can be employed, such as histograms, scatter plots and kernel density 
estimators. For multivariate data with more than two dimensions one can e.g. use 
scatterplot matrices, but these only project two-dimensional marginal views and do 
not necessarily reflect the true nature of the structure in the p-dimensional dataspace. 
An alternative approach is to project the multivariate data into one or two dimensions 
in a way that the structure is preserved in some sense as fully as possible. A common 
way (although not necessarily the most appropriate) is principal component analysis. 
Other methods like exploratory projection pursuit, multidimensional scaling, support 
vector machines are also potential candidates for visualization of clusters. See e.g. 
chapter 2 and section 8.6 in Everitt et al. 2001, and chapter 9 in Xu and Wunsch, 2009 
for more information. Also graphical techniques for exploring the structure in 
multivariate datasets, like co-plots or trellis graphics (see e.g. chapter 2 in Everitt and 
Dunn, 2001) can offer useful insights for cluster analysis. R offers various 
possibilities to generate such plots. In chapter 6 some of these will be discussed. 
 
Summary 
 
In this chapter we extensively highlighted what issues and decisions are involved in 
selecting and pre-processing data of interest for the problem at hand. This not only 
involves the treatment of missing values and outliers, but also a judicious selection of 
variables or features of interest (e.g. removing redundancies, avoiding overly strong 
dependencies) for the subsequent cluster analysis, as well as adequate data 
transformations to bring the data values to a more even and comparable scale. 
Preliminary checks on whether the data indeed contain clusters, and whether some 
group structure is visible will also render important information for the next steps in 
the actual clustering. Finally, since data-processing can influence the outcomes of the 
clustering, it will be important at the end to study the sensitivity of the identified 
clusters for feasible alternative choices in data selection and pre-treatment. 
 

Which datasets are ‘clusterable’? 
Ackerman and Ben-David (2009) theoretically assess several notions of clusterability 
discussed in literature and propose a new notion which captures the robustness of the 
resulting clustering partition to perturbations of the cluster centres. They discover that 
the more clusterable a data set is, the easier it is (computationally) to find a close-to-
optimal clustering of that data, even showing that near-optimal clustering can be 
efficiently computed for well clusterable data. In practice it is however usually a 
computer-intensive problem (NP-hard) to determine the clusterability of a given dataset. 
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3 Selection of a distance measure in the data space 
 
A central issue in clustering objects is knowledge on how ‘close’ these objects are to 
each other, or how far away. This reflects itself in the choice of the distance measure 
or the (dis)similarity measure on the objects. 
 
In case that the distances between the objects are ‘directly available’, as e.g. in 
surveys where people are asked to judge the similarity or dissimilarity of a set of 
objects, the starting point of the clustering is a n-by-n proximity matrix, which stores 
the (dis)similarities between the pairs of objects (i.e. d(i,j) is the dissimilarity between 
objects i and j, with i, j = 1,…, n).  
 
If distances are not directly available, information on the objects is typically available 
on their features/attributes. The typical starting point for a cluster analysis is then a 
data-matrix in the form of a table or n-by-p matrix that represents the n objects (rows) 
with their associated p attributes (columns). In discussing how this data-matrix can be 
transformed into a dissimilarity matrix, we assume that after the previous step high-
lighted in section 2 (i.e. “data pre-treatment”) the data space is in a definite form, and 
does not need additional normalization or weighing. This means e.g. that the 
application of weights to individual features to express differences in relevance has 
already been established. Moreover it presupposes that care has been exerted not to 
include non-informative features in our data, since they can trash the clustering by 
disturbing or masking the useful information in the other features/ variables. 
 

3.1 The binary data case 

 
In case that all the attributes are binary (say 0 or 1, or no/yes), the similarity between 
objects is typically expressed in terms of the counts in the matches and mismatches 
the p features for two objects are compared.  

 
  Object j  
 Outcome 1 0 Total 
Object i 1 a b a+b 

0 c d c+d 
 Total a+c b+d p 
 
Table 1: Counts of binary outcomes for two objects 

 
A number of similarity measures have been proposed, and a more extensive list can be 
found in Gower and Legendre (1986).  
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 Measure Similarity-measure 
S1 Matching coefficient S(i,j)=(a+d)/(a+b+c+d) 
S2 Jaccard coefficient (Jaccard, 1908) S(i,j)=a/(a+b+c) 
S3 Rogers and Tanimoto (1960) S(i,j)=(a+d)/[(a+2(b+c)+d)] 
S4 Sokal and Sneath (1963) S(i,j)=a/[a+2(b+c)] 
S5 Gower and Legendre (1986) S(i,j)=(a+d)/[a+.5*(b+c)+d] 
S6 Gower and Legendre (1986) S(i,j)= a/[a+.5*(b+c)] 
 
Table 2: Similarity measures for binary data, cf. table 3.3 in Everitt et al. (2001) 
 
Notice that some of these similarity measures do not count zero-zero matches (i.e. d). 
In cases where both outcomes of binary variables are equally important (e.g. as in 
gender: male/female) it is logical to include zero-zero-matches when expressing the 
similarity between objects. However, in more asymmetric situations where the 
presence of a feature (e.g. an illness) is considered more important than the absence, it 
is advisable to exclude the zero-zero matches (i.e. the d) when assessing the similarity 
of objects, since these could dominate the similarity between objects, especially if 
there are many attributes absent in both objects (i.e. d is large, corresponding to a,b,c). 
When co-absences are considered informative, the simple matching coefficient S1 is 
usually employed, while Jaccard’s coefficient S2 is typically used if co-absences are 
non-informative. S3 and S5 are examples of symmetric coefficients treating positive 
and negative matches in the same way, but assigning different weights to matches and 
non-matches. Sokal and Sneath (1963) argue that there are no fixed rules regarding 
the inclusion or exclusion of negative or positive matches, and that each dataset 
should be considered on its merits. The choice of the specific similarity measure can 
influence the cluster analysis, since the use of different similarity coefficients can 
result in widely different distance values, as is e.g. the case for S1 and S2. Gower and 
Legendre show that S2, S4 and S6 are monotonically related, as are S1, S3 and S5.  
 

3.2 The categorical data case 
 
Categorical data where the attributes have more than two levels (e.g. eye colour) 
could be dealt with similarly as binary data, when regarding each level of an attribute 
as a single binary variable. This is however not an attractive approach since many 
‘negative ’matches (i.e. d) will inevitably be involved. A far better approach is to 
assign a score sijk of zero or one to each attribute k, depending on whether the two 
objects i and j are the same on that attribute. These scores are then averaged over all p 
attributes to give the required similarity coefficient as: 
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Notice that this similarity coefficient is a generalisation of the matching coefficient S1 
for binary data. 
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3.3 The continuous data case 
 
When all the attribute values are continuous, the proximities between objects is 
expressed in terms of a distance-measure in the dataspace. Often Euclidean distance is 
used: 

22
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but various other distance measures can be applied as well, as the Manhattan or city-
block distance: 
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or the general Minkowski distance (q ≥1) 
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We assume that missing values have been treated, e.g. by replacing them by the mean-
value over the non-missing part, or by redefining the distance measure accordingly. 
 
Also the correlation between the p-dimensional observations of the ith and jth objects 
can be used to quantify dissimilarities between them, as in:  
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with mi and mj the corresponding averages over the p attribute-values. This measure is 
however considered contentious as a measure for dissimilarity since it does not 
account for relative differences in size between observations (e.g. x1=(1,2,3) and 
x2=(3,6,9) have correlation 1, although x1 is three times x2). Moreover the averages are 
taken over different attribute values, which is problematic if their scales are different. 
But in situations where attributes have been measured on the same scale, and refer to 
relative profile (e.g. for classifying animals or plants absolute sizes of organism or 
parts are often considered less important than their shapes), correlation measures can 
be also used to express dissimilarities. Further information can be found in section 3.3 
in Everitt et al. (2001), Gower and Legendre (1986) and Calliez and Kuntz (1996). 
 

3.4 The mixed data case 
 
When the attribute values are mixed, i.e. containing both continuous and categorical 
data values, a similarity measure can be constructed from weighing and averaging the 
similarities for the separate attribute values, as proposed by Gower (1971): 
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where sijk is the similarity between the ith and the jth object as measured by the kth 
feature, and wijk is typically one or zero depending on whether or not the comparison 
is considered valid. E.g. wijk can be set to zero if the outcome of the kth feature is 
missing for either or both of the objects i and j, or if the kth feature is binary and it is 
thought appropriate to exclude negative matches. For binary variables and for 
categorical variables with more than two categories the component similarities, sijk, 
take value one when the two objects have the same value and zero otherwise. For 
continuous variables the similarity measure is defined as: 
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where Rk is the range of observations for the kth attribute (i.e. the city-block distance 
is used after scaling the kth variable to unit range). 
 

3.5 The proximity between groups of objects 
 
The proximity between the individual objects can be used as a basis to construct 
expressions for the proximity between group of objects. Various options exist for this: 
e.g. taking the smallest dissimilarity between any two objects, one from each group, 
leads to a nearest-neighbour distance and is also the basis for the hierarchical 
clustering technique applying ‘single linkage’. 
The opposite is to define the inter-group distance as the largest distance between two 
objects, one from each group and renders the furthest-neighbour distance which is the 
basis for the ‘complete linkage’ hierarchical clustering technique. An in-between 
approach is taking the average dissimilarity, which leads to a form of ‘group average’ 
clustering when applied to hierarchical clustering methods. Cf. Everitt et al. 2001, 
section 3.5, where also alternative ways to express inter-group distances are proposed 
which are based on group summaries for continuous as well as for categorical data. 
 
Summary 
 
In order to express the similarity or dissimilarity between data points a suitable 
distance measure (metric) should be chosen. It forms the basis for performing the 
clustering to identify groups which are tightly knit, but distinct (preferably) from each 
other. Often Euclidean distance is used as a metric, but various other distance 
measures can be envisioned as well.  
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4 Selection of clustering method 
  
The extensive (and ever-growing) literature on clustering illustrates that there is no 
such thing like an optimal clustering method, an observation which is further 
underpinned by theoretical insights from Kleinberg (2002); see also Zadeh and Ben-
David (2009). From the multitude of methods we will consider a number of classes of 
methods, giving most attention to traditional methods based on performing the 
clustering hierarchically and methods that constructively partition the dataset into a 
number of clusters (section 4.1 and 4.2), while describing the other methods only 
briefly (section 4.3-4.6). We will finish this chapter with a brief discussion on which 
method to choose (section 4.7). 
 

4.1 Hierarchical methods 
 
A hierarchical clustering method groups data objects into a tree of clusters. It does so 
in an iterative way by constructing clusters from joining (agglomerative) or dividing 
(divisive) the clusters obtained in a previous iteration. Agglomerative methods start 
this iterative process from the initial situation where each data point is considered as a 
separate cluster, and form the hierarchical composition in a bottom up fashion by 
merging the clusters. Divisive methods start with the mega-cluster consisting all data 
points, and work in a top-down fashion by splitting the clusters subsequently. 
Merging or splitting is done on basis of the mutual distances between the clusters. A 
number of linkage-rules can be applied to express the distance between clusters. For 
example the “simple”-rule (‘single-linkage’) always takes the smallest of all possible 
distances between the data points within two different clusters; the “complete”-rule 
(‘complete-linkage’) chooses the largest of all distances, while the “average”-rule is 
based on the average distance (‘average-linkage’). A popular linkage-rule is the 
“Ward’s” method which merges clusters that produce the least within-cluster 
variance. All the information on the process of merging can be represented in a tree 
(dendrogram) which can be cut at a selected point (number of clusters), revealing a 
suitable cluster structure for the data. A more formal method for determining the 
number of clusters, based on detecting the ‘knee’ in an associated clustering 
evaluation graph, is proposed in Salvador and Chan (2004) and favourably compared 
with two alternative methods.  
 
Hierarchical clustering methods have a large computational complexity (O(n2)), 
where n is the number of data points or objects, which constrains their application 
usually to small and medium data size. In building the dendrogram, non-uniqueness 
and inversions can occur due to ties in data and due to the order of the dataset, cf. 
Morgan and Ray (1995), MacCuish et al. (2001) and Spaans and Heiser (2005).  
 
The linkage-rule in hierarchical clustering can be tuned to the data, and thus also non-
spherical clusters can be identified. One should however be aware that applying 
hierarchical clustering can lead to very different results on the same dataset, 
dependent on the linkage rule used: the single linkage strategy tends to produce 
unbalanced and elongated clusters, especially in large data sets, since separated 
clusters with ‘noise’ points between them tend to be joined together (‘chaining’); 
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complete linkage leads to compact clusters with equal diameters; average linkage 
tends to join clusters with small variances and is an intermediate between single and 
complete linkage; Ward’s method assumes that the objects can be represented in 
Euclidean space and tends to find spherical clusters of similar size. It is sensitive to 
outliers. See e.g. table 4.1 in Everitt et al. (2001) and Kaufman and Rousseeuw for 
more information on the effects of linkage rules. 
 
In their pure form hierarchical methods suffer from the fact that is not possible to 
adjust a merge or a split decision which was taken in a previous iteration. This rigidity 
is useful since it restricts computational costs in preventing a combinatorial number of 
different choices, but it may lead to low-quality clusters if the merge or split decisions 
turn out to be not well-chosen. To improve this one can try to integrate hierarchical 
clustering with other clustering techniques, leading to multi-phase clustering. Three 
such methods are discussed in more details in Han and Kamber (2006). The first, 
called BIRCH, applies tree structures to partition the objects into ‘microclusters’ and 
then performs ‘macroclustering’ on them using another clustering method such as 
iterative relocation. The second method, called ROCK, merges clusters based on their 
interconnectedness, and is a hierarchical clustering algorithm for categorical data. The 
third method, called Chameleon, explores dynamic modelling in hierarchical 
clustering. 
 
In R hierarchical clustering can be invoked by the general function hclust(); various 
more specific hierarchical clustering techniques have also been implemented, e.g. the 
methods proposed in Kaufman and Rousseeuw (1990) (see the R-package 
<<cluster>>): 

• DIANA() for divisive clustering 
• MONA() for clustering binary data., using the monothetic divisive algorithm. 
• AGNES() for agglomerative clustering, providing six methods for the 

agglomeration process: 
 
Other R-packages with hierarchical clustering methods are <<ctc>> (function “xcluster()”); 
<<amap>> (function “hcluster()” and “hclusterpar()”). 
 

 

Figure 4: Example of hierarchical clustering: clusters are consecutively merged with the most 
nearby clusters. The length of the vertical dendogram-lines reflect the nearness.  
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4.2 Partitioning methods 
 

Partitioning algorithms divide a data set into a number of clusters, typically by 
iteratively minimizing some criterion expressing the distances between the data points 
and prototypical elements of a cluster (e.g. cluster-centroids). 
 Usually the square error criterion is used, defined as  


= ∈

−=
k

i Cx
i

i

mxE
1

2
          

where E is the sum of the square error for all objects in the data set; x is the point in 
the space representing a given object, and mi is the mean of cluster Ci. I.e. for each 
object in each cluster the distance from the object to its cluster centre is squared and 
the distances are summed. This criterion tries to make the resulting k clusters as 
compact and as separate as possible. The number of clusters k is usually 
predetermined, but it can also be part of a search procedure using an explicit error-
function. 
When using the popular k-means partitioning algorithm one starts with k initial cluster 
centroids. The data points are then assigned to the nearest centroid. Subsequently the 
new center is determined as the average of all points within the cluster thus obtained 
and again all points are re-assigned to their nearest centroid. This procedure is 
repeated until a convergence is reached (e.g. points no longer change position), see 
Figure 5. 

 

 

Figure 5: Example of the iterative cluster-partitioning by K-means. Starting with an initial 
guess of the centroids (a), consecutively the data points are grouped to the nearest 
centroids (b), and the new centroids are determined as the centres of these groups. In the 
next step (c) the points are regrouped to the nearest (new) centroid. This process is 
repeated until the groups don’t change anymore.  

 
k-means has a computational complexity of order O(kn), where n is the number of 
data points, and is therefore also suitable for large datasets (n large). Its outcomes are 
sensitive for the initialization of the iterative search process and an appropriate 
initialization is therefore of concern. E.g. Milligan (1980) proposes an initialisation on 
basis of Hierarchical clustering with Ward’s method on a small random subset of the 
large dataset; Arthur and Vassilvitskii (2001) recently proposed a smart seeding 
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technique for initializing k-means. See Steinley & Brusco (2007) on various strategies 
for initializing k-means. 
 
Another shortcoming of k-means is that it does not perform well for non-spherical and 
non-well separated clusters, or for clusters of very different sizes. Moreover it is 
sensitive to noise and outlier data points since a small number of such data can 
drastically influence the mean value/center points.  
 
There are quite some variants of the k-means method (see e.g. Steinley (2006)), which 
have been developed to improve the weak points. E.g. when clustering categorical 
data, the means of the clusters are not suitable representatives, and k-means has been 
replaced by the k-modes method (Chaturvedi, Green and Carroll (2001)) which uses 
new dissimilarity measures to deal with categorical objects and a frequency-based 
method to update modes of clusters. For data with mixed numeric and categorical 
values k-means and k-modes can be integrated. 
 
To deal with the sensitivity to outliers Kaufman and Rousseeuw (1990) proposed k-
medoids clustering by the PAM-approach (Partitioning Around Medoids; see the 
function pam() in the R-package <<cluster>>)). The main difference to k-means is 
the choice of representative objects as cluster centres instead of the arithmetic mean. 
In the same way as above after choosing k representative medoids the objects of the 
data set will be assigned to the nearest representative medoids. In fact the partitioning 
method is performed by minimizing the sum of the dissimilarities between each object 
and its corresponding representative point, i.e. using the absolute error criterion which 
is less sensitive to outliers 
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where oi is the representative medoid, being the most centrally located object of its 
cluster. In an iterative way the set of representative medoids will be calculated 
followed by a new assignment of the objects and so on. A nice feature in connection 
with PAM is the Silhouette plot (in R: silhouette () or by plotting the PAM-Result). 
This plot illustrates how well an object lies within a cluster or merely at the edge of 
the cluster (Rousseeuw (1987).  
 
The computational complexity of PAM is in the order O(k(n-k)2, which makes 
computation very costly for large values of n and k. For these situations Kaufman and 
Rousseeuw constructed a method called CLARA (Clustering LARge Applications). In 
the first step a small portion of the dataset is chosen as a representative of the 
complete dataset. Using PAM on this small sample, medoids are determined, which 
are subsequently used to assign each object of the complete dataset to a specific 
cluster or medoid. CLARA draws multiple small samples from the complete dataset, 
applies PAM on each sample and returns its best clustering as the output. The 
computational complexity is of the order O(ks2+k(n-k)), where s is the size of the 
subsample. The effectiveness of CLARA is dependent on the sample sizes and - in 
case that the best medoids of the selected subsample do not cover the best overall 
medoids - CLARA will never find the best clustering. The quality and scalability of 
CLARA can be enhanced by allowing for an extra randomization in the iterative search 
for new medoids, leading to the so-called k-medoids algorithm CLARANS (Clustering 
Large Applications based upon RANdomized Search) proposed by Ng and Han 
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(1994), and improved by Ester, Kriegel and Xu (1995). CLARANS also enables the 
detection of outliers and has a computational complexity of about O(n2). Its clustering 
quality is dependent on the sampling method used. See also section 7.4.2 in Han and 
Kamber (2006).  

 
Another way to generalize k-means is to explicitly consider other clustering criteria 
for an optimal partitioning of the clusters. In chapter 5 of Everitt, 2001 some 
alternatives are presented to minimizing the total within-cluster sums of squares, 
which underlies k-means (i.e. trace W), and which are less sensitive to scale changes 
in the observed data and which can also tackle clusters of different shapes (than 
spherical) and sizes. 
 
Also k-means can be generalized by considering it as a special case of model-based 
clustering, which applies a mixture of normal distributions to describe the underlying 
probability density of the dataset (see section 4.5). 
 
Other extensions of k-means - as e.g. X-means (Pelleg and Moore, 1999, 
Ishioka,2005), G-means and PG-means (Hamerly and Elklan, 2003; Feng and 
Hamerly,2006), PW-K-means (Tseng,2007) - focus especially on the automatic 
estimation of the number of clusters, where the X-means variant implements Bayesian 
Information criterion to tackle the choice of dimension. See also Tseng (2007) who 
proposes the use of penalty terms and weighting (PW-K-means) to extend K-means 
for clustering with scattered objects and prior information. See Bies et al. (2009) for a 
recent comparison study of X-means, G-means and some other methods for 
estimating the number of clusters. 
 
 
To identify non-convex clusters, extensions as kernel k-means and spectral clustering 
have been put forward, which enable identifying clusters that are non-linearly 
separable in input space (see e.g. Schölkopf et al.,1999, Girolami, 2002, Camastra and 
Verri,2005, Filipone et al. 2007, Chang et al., 2008). See also section 4.6.  
 
Finally, the sensitivity to initial conditions in K-means is a well-known problem for 
which many initialization strategies have been proposed (see e.g. Arthur and 
Vassilvitskii, 2001, Steinley and Brusco, 2007). Barbakh and Fyfe (2008) propose a 
new family of algorithms to solve the problem of sensitivity to initial conditions in K-
means, by applying alternative performance functions which incorporate global 
information.  
 
 

4.3 Density-based methods 
 
Density-based clustering methods have been developed to discover clusters with 
arbitrary shape. These methods typically regard clusters as dense regions of 
objects/points in the dataspace that are separated by regions of low density 
(representing noise). DBSCAN grows clusters according to a density-based 
connectivity analysis. OPTICS is an extension of DBSCAN, producing a cluster 
ordering obtained from a wide range of parameter settings. DENCLUE clusters 
objects based on a set of density distribution functions. It has a solid mathematical 
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foundation, allowing compact mathematical description of arbitrarily shaped clusters 
in high dimensional datasets. It generalizes various clustering methods, including 
partitioning and hierarchical methods, and applies a computationally efficient 
calculation by applying a tree-based access structure. However the method requires 
careful selection of the density parameters and noise threshold that may significantly 
influence the quality of the clustering results. For a concise description of these 
methods we refer to Han and Kamber, 2006. See Tan et al., 2010 for a recent proposal 
for improvements of density-based clustering algorithms. 
 

4.4 Grid-based methods 

 
This approach uses a multi-resolution grid data structure. For this purpose it quantizes 
the data space into a finite number of cells, forming the grid structure. 
The main advantage of the approach is its fast processing time, which depends only 
on the number of cells in each dimension of the quantized space, and not on the 
number of data objects. Approaches as STING, WaveCluster and CLIQUE are various 
examples of this approach and can be found in section 7.7 and 7.9 of Han and 
Kamber, 2006. 
 

4.5 Model-based clustering methods 

 
Model-based clustering methods hypothesize a model for each of the clusters and find 
the best fit of the data to the given model. The clusters are determined by constructing 
a density function reflecting the spatial distribution of the data points. Often also the 
number of clusters can be automatically determined on basis of statistical criteria 
taking account of noise and outlier effects (see the textbox below).  
In fact the k-means method can be viewed as a special case of model-based clustering 
for a Gaussian mixture model with equal mixture weights and equal isotropic 
variances (see Celeux and Govaert, 1992). As noticed before, this directly offers a 
fruitful alley for generalization of k-means and finding more suitable forms of 
clustering non-spherical clusters and large datasets. Celeux and Govaert (1995), 
propose a generalization of k-means which enables the clustering of non-spherical 
models (Biernacki et al.,2006). The MIXMOD- software that they developed to 
analyse multivariate datasets as mixtures of Gaussian populations, for clustering and 
classification purposes, can be downloaded from http://www-math.univ-
fcomte.fr/mixmod/index.php. Another popular package is the EMMIX-software 
which was developed by McLachlan et al. (2000). Related is also the R-package  
<<mclust>> developed by (McLachlan, Fraley and Raftery (2002), Fraley and 
Raftery (2007). See also Samé et al. (2007), Maugis et al. (2009) which discuss the 
application in variable selection; see also Li (2005), Yeung (2001). 
Establishing such a probabilistic framework for clustering also suggests the use of 
several information criteria to automatically determine the number of clusters, like 
Akaike’s first information criterion, Schwartz Bayesian information criterion, and the 
integrated classification-likelihood (see textbox below). See also Fraley and Raftery 
(1998) and Tibshirani et al. (2001) paper on the use of the gap statistic for estimating 
the number of clusters (the R-package <<clusterSim>> provides functionality to 
calculate this statistic). 
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Information criteria for k-means 
 
To view k-means in a statistical context it is assumed that the underlying density for the points in the 
data space can be expressed as a mixture of K equally weighted Gaussian distribution having mean μk 
and common variances σ2: 
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In fact the μk refers to the centres of the resulting clusters k=1, …, K, while the variance σ2 refers to 
the within-cluster variances,  
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where N is the number of data points. The associated likelihood of the complete dataset D={xj} is 
equal to, under the assumption of independence: 
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By assigning each data point xj to the mixture component kj having highest probability, the 
classification likelihood of the data point xj  is equal to: 
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K-means can be viewed as an attempt to maximize the joint negative classification log-likelihood of 
the data: 
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In the light of this interpretation a number of information criteria can be proposed to estimate the 
optimal number of clusters (see the appendix in Goutte et al. 2001): 
− Akaike’s first information criterion:  

)1(2),|(ln(2 2 +⋅⋅−⋅= pKMDPAIC c σ  

 where (Kp+1) is the number of free parameters in the underlying mixture model with K components 
(i.e. K times the number of parameters in the mean μk and the variance σ2) 
− Schwartz Bayesian information criterion: 
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− The integrated completed likelihood (Goutte et al., 2001): 
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with p being the number of attributes, N the number of data points where =
k

kNN with Nk being 

the number of data points in cluster Ck. The number of clusters Kopt  rendering the highest value of 
the information criterion is chosen in the end as the number of clusters K.  
The AIC is known to overestimate the number of clusters, especially if the clusters are non-sperical, 
while the BIC is known to asymptotically estimate the ‘true’ model structure  in case that the 
underlying Gaussian mixture model is an adequate model. The ICL takes into account that the 
underlying mixture model might not be an adequate model for classifying the data points accordingly. 
See (Goutte et al. 2001) for further details and  references. 
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For a good recent overview paper on finite mixture models and model-based 
clustering methods see Melnikov and Raita (2010). We notice that other approaches 
also can be listed in the category of model-based approaches, like COBWEB which is 
a conceptual learning algorithm taking concepts as a model for clusters and 
performing an associated probabilistic analysis. SOM (or self-organized feature map; 
see next section) is a neural-network-based algorithm that maps high-dimensional 
data into a 2-D or 3-D feature map, which renders useful data visualization and can be 
used subsequently as a basis for clustering.  
 

4.6 Clustering methods: Miscellanea  

 
Below we briefly discuss various alternative methods which have been developed for 
specific application situations. 
 
SOM 
The self-organizing map (SOM) due to Kohonen (1982) is a well-known neural 
network method for unsupervised learning and thus can be suitably applied for cluster 
analysis. The network classifies the data points according to internally generated 
allocation rules, which it learns from the data. SOM’s goal is to represent all points in 
the original (often high-dimensional) data space by points in a low-dimensional one 
(usually 2-D or 3-D), such that the topology (distance and proximity relations) is 
preserved as much as possible. The method is particularly useful when a nonlinear 
mapping is inherent in the data, and it is an appropriate tool for clustering and data-
visualisation of high dimensional data spaces. 
See Murtagh and Hernandez-Pejaras (1995), Flexer (2000), Vesanto (1999), Vesanto 
and Alhoniemi (2000) and Bacao et al. (2005) for further information. Waller et al. 
(1998) compared SOM with two partitioning and three hierarchical methods for more 
than 2500 datasets and showed that SOM was similar to or better in performance than 
the other methods. Moya-Anegón et al. (2005) compared SOM to Multi Dimensional 
Scaling (MDS) and Ward’s method for analysing co-citations in the context of 
scientometrics and illustrated the complementarity of the various methods. See also 
Yiang and Kumar (2005) for further results on comparison of SOM with k-means. 
 
Fuzzy clustering 
All the methods described so far have in common that an object is always fully 
assigned to one and only one cluster. In the so called fuzzy clustering the 
objects/points have a degree of belonging (‘membership’ expressed in a value 
between 0 and 1) to the various clusters. Points on the edge of a cluster may thus be in 
the cluster to a lesser degree than points in the centre of a cluster. For each point x we 
have a coefficient uk(x) giving the degree of which it is in the k-th cluster. Typically 
these coefficients are normalized such that they sum up to 1 for each x. k-means can 
now be generalized into ‘fuzzy c-means’, where the centroid of the cluster is a kind of 
‘mean’ of all points, weighted by their degree of belonging to the specific cluster: 
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with v ≥1 being a coefficient which is called the fuzzifier. Typically v is taken as 2. 
See Hathaway and Bezdek (1988) for further details. See also Kaufman and 
Rousseeuw, 1990 with their fuzzy cluster analysis program FANNY, which is 
available as function (fanny()) in the R-package <<cluster>>13. Mingoti and Lima 
(2005) present a comparative study between SOM, fuzzy c-means, k-means and 
traditional hierarchical clustering, showing that especially fuzzy c-means has a very 
good performance and renders robust results in the presence of outliers and 
overlapping clusters. 
 
Clustering high-dimensional data 
The curse of dimensionality is plaguing the clustering in applications where objects 
that contain a large number of features or dimensions have to be classified (e.g. text-
documents containing thousands of keywords as features; DNA microarray data 
providing information on the expression levels of thousands of genes under hundreds 
of conditions). Many dimensions may not be relevant, moreover the data become 
increasingly sparse when the number of dimensions increases, causing the distance 
measure between pairs of points to become meaningless, while the average density of 
points in the data-space is likely to be low. This requires specific clustering 
methodologies for high-dimensional data. CLIQUE and PROCLUS are two influential 
subspace clustering methods, searching for clusters in subspaces or subsets of 
dimensions, rather than in the entire data-space. Another methodology, so called 
frequent pattern-based clustering, extracts patterns to group objects into meaningful 
clusters. An example of this is pCluster. See section 7.9 of Han and Kamber (2006), 
and chapter 8 in Xu and Wunsch (2009). 
 
Constraint-based clustering 
Most clustering approaches discussed by now are implemented in an automatic, 
algorithmic fashion, with little user guidance or interaction involved. However in 
situations where there are clear application requirements (e.g. preferences and 
constraints), one ideally wants to use these requirements to guide the search for 
clusters.  
This can include e.g. information on the expected number of clusters, the minimal or 
maximal cluster size, weights for different objects, and other desirable characteristics 
of the resulting clusters. For clustering tasks in high-dimensional spaces, user input on 
important dimensions or desired results can render crucial hints or meaningful 
constraints for effective clustering. Some examples how constraints and semi-
supervised clustering tasks can be established are presented in section 7.10 of Han 
and Kamber (2006). 
 
Multi-objective clustering 
When clustering a dataset having different properties or when analyzing it from 
various user-perspectives, the reliance on one sole clustering criterion is often not 
appropriate. In these cases it is more of interest to consider various clustering criteria 
simultaneously, although they can be partially complementary and even conflicting to 
a certain extent. The framework of multi-objective clustering allows this perspective, 
by framing clustering as a multi-objective optimization problem, see e.g. Handl and 
Knowles (2006a). They propose MOCK (Multi Objective Clustering with automatic 
K-determination) as an multi-objective extension of k-means, which uses an 

                                                      
13 See http://cran.r-project.org/web/packages/cluster/ 



33 
 

evolutionary search algorithm to obtain a set of trade-off solutions between the 
various (often conflicting) goals as a good approximation of the Pareto front. These 
solutions correspond to different compromises of the considered objectives, and 
provide a range of alternative hypotheses to the researcher. Moreover they may lead 
to additional insight into the properties of the data, and thus increase confidence in the 
results obtained. The algorithm is shown to give robust performance for data with 
different properties and outperforms traditional single-objective methods. Moreover it 
allows for automatic determination of the number of clusters. Runtime of the method 
is however high, and for data where clustering criteria are more specifically known, 
specialized methods will generally be more efficient. In Handl and Knowles (2007) 
and Handl, Kell and Knowles (2007) alternative applications of multi-objective 
optimization are presented in the context of semi-supervised learning and feature 
selection. 
 
Mining sequential data (data streams, time-series)  
Sequential data consist of a sequence of sets of objects with possibly variable length 
and other changing characteristics like dynamic behaviour and time constraints. 
Recognizing patterns or groups in these dynamic datasets requires specific 
approaches, which we will not discuss. We refer to chapter 8 of Han and Kamber 
(2006) and chapter 7 in Xu and Wunsch (2009) for more information on these topics. 
 
Spatial clustering 
When spatial dimensions are involved in the data, e.g. for objects having a location or 
having features which differ as function of location, then it can be beneficial to 
explicitly account for spatial structure when looking for clusters in the data. Methods 
for exploratory spatial data analysis can serve as means to identify groups in the data. 
E.g. methods for identifying (local) spatial associations and correlations from the field 
of spatial statistics and GIS (see e.g. Jacquez, 2008), like Moran’s I or Geary’s c (cf. 
Bao and Henry, 1996) of Anselin’s LISA (Local Indicators of Spatial Association, cf. 
Anselin, 1995, 2005), or Getis and Ord’s statistics (Getis and Ord, 1996, Ord and 
Getis, 2001, Aldstadt and Getis, 2006) for identifying statistical significant hot spots 
can be a good basis for these analyses, leading to the identification of characteristic 
spatial patterns (see e.g. Premo, 2004, Nelson and Boots, 2008). For software see the 
R-package <<spdep>>14 which supports part of these analyses. See also the 
information page on spatial statistical software in R15 for further software for further 
software, as e.g. packages as <<DCluster>> and <<clustTool>>16.  
 
 
Discovering clusters in networks 
The analysis of networks and their structure and behaviour is presently an important 
topic in studying complex systems in nature and society (e.g. Palla et al. 2005). 
Especially the property of the ‘community structure’, in which network nodes are 
joined together in tightly knit groups, between which there are only loose connections, 
is an important research topic, as exemplified by Girvan and Newman (2002), 
Newman (2003,2004), Newman and Leicht (2007), Mishra et al. (2007), Handcock 

                                                      
14 http://cran.r-project.org/web/packages/spdep/index.html 
15 http://www.spatialanalysisonline.com/output/html/R-Projectspatialstatisticssoftwarepackages.html 
16 http://cran.r-project.org/web/packages/DCluster/index.html and http://cran.r-
project.org/web/packages/clustTool/index.html 
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et al. (2009, 2007). See also the R-package <<latentnet>>17 which has been 
developed for the analysis reported in the latter reference.  
Remark: According to (Newman, 2003) network clustering is not to be confused with 
data clustering which detects groupings of data points in high-dimensional data 
spaces. The two problems have common features, and algorithms for the one can be 
adapted for the other, and vice versa, but, on balance, one typically finds that this 
transposition of algorithms between fields works less than the algorithms which have 
been directly developed. 
 
 
Bootstrapping cluster analysis  
By experimentally replicating the cluster analysis, using e.g. random 
restarts/initializations or random noise simulations, one can get clues about the 
stability (robustness) of the clustering results. Kerr and Churchill, 2001 elaborate on 
this technique in an ANOVA setting, allowing for a distinction between systematic 
sources of variations and noise. They illustrate the bootstrapping technique with a 
publicly available data set and draw conclusions about the reliability of clustering 
results in light of variation in the data; implications of replication and good design in 
microarray experiments are discussed. See also the R-package <<maanova>> 
18which builds consensus groups (for k-means methods) or consensus trees (for 
hierarchical methods) on basis of bootstrap. 
 
Random Forest clustering:  
‘Random Forests’ (RF) is a popular ‘ensemble-based learning’ technique, based on 
constructing many classification trees from bootstrap sampling of the data, and 
subsequently generating a classification on basis of the thus generated ‘forest’ of 
trees. The procedure provides a classification with an associated estimate of the error 
rate, and moreover generates a measure of the importance of the involved (predictor) 
variables, as well as a measure of the internal structure of the data (e.g. the proximity 
of different data points to each other). The RF-technique is user-friendly and performs 
very well compared to many other classifiers, including discriminant analysis, support 
vector machines and neural networks, and is robust against over fitting (Breiman, 
2001).  
 
Though initially meant for supervised learning activities like classification and 
regression, it can also be applied for unsupervised learning, like clustering. To this 
end one invokes a ‘trick’, calling the original data “class 1”, and constructing a 
synthetic dataset, “class 2”. The synthetic dataset “class 2” can be constructed in two 
ways: (1) the “class 2” data are sampled from the product of the marginal distributions 
of the variables (by independent bootstrap of each variable separately); 
(2) the “class 2” data are sampled uniformly from the hypercube containing the data 
(by sampling uniformly within the range of each variable).  
 
Subsequently one tries to classify the combined data with the RF-procedure. The idea 
is that real data points that are similar to each other will often end up in the same 
terminal node of a tree, as measured by the proximity matrix returned by the RF-
technique. This proximity matrix can thus be taken as a similarity measure, and 
clustering or multi-dimensional scaling on basis of this similarity can be used to 
                                                      
17 http://www.stat.washington.edu/raftery/latentnet.html 
18 http://cran.r-project.org/web/packages/maanova/index.html 
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divide the original data points into groups for visual exploration. See the example in 
Liaw and Wiener (2002) as a work-out how to perform such an analysis with the 
<<randomForest>> package in R19. 
 
Kernel-Based Clustering, Support Vector Clustering and Spectral clustering 
All these approaches allow to identify non-spherical clusters, which is typically not 
provided for by direct k-means oriented methods. The kernel-based method 
approaches the problem by non-linearly transforming the data into a high dimensional 
‘feature space’. In this space it is more likely to obtain a linear separation of these 
clusters/patterns, applying e.g. a SVM (Support Vector Machines) which constructs an 
optimal hyper-plane on basis of a small number of support points (the “support 
vectors”). The difficulty of the curse of dimensionality in the mapping to a high-
dimensional ‘feature space’ can be overcome by the ‘kernel trick’, i.e. applying an 
inner-product kernel which avoids the time-consuming process of explicitly nonlinear 
mapping the data-points to the transformed space. Commonly used kernels include 
polynomial kernels, Gaussian radial basis function kernels and sigmoid kernels (cf. 
Muller et al. 2001). Different kernel functions usually lead to different non-linear 
separating hyper-surfaces (and thus clusters) in the original data-space. The selection 
of an appropriate kernel is still an open problem and is currently determined 
empirically. In the above way kernel versions of classical clustering algorithms can be 
constructed. See e.g. papers on kernel k-means and support vector clustering (Ben-
Hur et al. (2001), Moguerza, Munoiz, Martin-Merino (2002) and Winters-Hilt and 
Merat (2007).  
 
Spectral clustering is based on regarding the data as a graph with a set of vertices and 
edges (with corresponding weights). The clustering is configured as a graph cut 
problem where an appropriate objective function has to be optimized. The problem is 
solved by an eigenvector algorithm involving the matrix of weights, which performs 
the spectral decomposition. It results in an optimal sub graph-partitioning (see e.g. Shi 
and Malik, 200, Ng et al. 2002, von Luxburg, 2008). Dhillon et al. (2004), Filippone 
et al. (2007) show that spectral clustering and kernel-based clustering are in fact 
closely linked; see also Kulis et al. (2009a). 
To enable analysis of large datasets - for which a full spectral decomposition is 
computationally prohibitive – Fowkles et al. (2004) propose the use of the Nyström 
method for solving eigenfunction problems; see also Drineas and Mahoney (2005) for 
more information on the use of this approximation in kernel-based learning. Recently 
Belabbas and Wolfe (2009a) provide two methods, one based on sampling and 
sorting, to enable the use of spectral models for very large datasets. 
 
R-software for performing spectral clustering is available in the R-package 
<<kernlab>>20. The high-computational costs of the above methods (polynomial, 
order (O(n3)) can be prohibitive, but recently proposals for alternative faster variants 
have been put forward, see e.g. Yan et al. 2009, Kulis et al. 2009b, Belabbas and 
Wolfe (2009a, 2009b). 
 
Bi-clustering  
Bi-clustering (co-clustering or two-mode clustering) is a clustering method which 
attempts to simultaneously cluster both the samples and the features (i.e. rows and 
                                                      
19 http://cran.r-project.org/web/packages/randomForest/ 
20 http://cran.r-project.org/web/packages/kernlab/ 
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columns of the data-matrix), with the goal of finding “bi-clusters”, subsets of features 
that seem to be closely related for a given subset of samples. It is for example used in 
gene expression analysis by clustering microarray-data (see e.g. Cheng and Church, 
2000, Madeira and Oliveira, 2004, and Tanay et al., 2002). The field shows a rapid 
expansion of approaches and software tools, compare e.g. Wu and Kasif (2005), Kerr 
et al. (2007,2008), Li et al. (2009). See also the <<BicARE>> R-package21 for 
Biclustering Analysis and Results Exploration in the BioConductor-suite 
 
Consensus clustering 
Consensus clustering, also called ‘ensemble clustering’ or ‘clustering aggregation’,   
involves reconciling of diverse clusterings performed on the same dataset. The 
various clusterings come e.g. from different sources (e.g. using different clustering 
algorithms; different selections of attributes) or from different runs of the same 
algorithm (using other parameters; different subsamples, selections of attributes). 
When viewed as an optimization problem (“given a number of clusterings of some set 
of elements, find a clustering of those elements that is as close as possible to all the 
given clusterings”), it is known as “median partition”, and has been shown to be a 
computationally hard problem (NP-complete), see Goder and Gilkov (2008). For 
further information on alternative approaches to consensus clustering we refer to 
literature, e.g. Strehl and Ghosh (2002), Monti et al. (2003), Gionis et al. (2005). 
See also the R-software package <<clue>>22 which provides an extensible 
computational environment for creating and analysing cluster ensembles. 
 

4.7 Which method to choose? 

 
Against the background of the multitude of methods (different, as well related) for 
cluster analysis, one is confronted inevitably with the question ‘which one to choose’? 
In a certain sense clustering can be considered both as an art and as a science, as 
reflected by discussions on a recent conference on this issue 
(http://stanford.edu/~rezab/nips2009workshop).  
The choice of the clustering algorithm is not an application-independent issue, but 
should always be addressed in the context of its end-use, taking also account of the 
character and type of data which is available. Typically it is considered a good idea to 
try several algorithms on the same data to study what they will disclose. This however 
leaves one with the task to decide what methods to apply, and how to use and interpret 
them. An important issue in using and interpreting the results from the cluster analysis 
will be the flexibility in going back-and-forth from statistical technique to subject-
content. This involves combining expertise on cluster analysis with expertise on the 
specific subject area where the cluster analysis is applied, and typically requires a 
close cooperation between content-expert and cluster-analysts, if the analysis is not 
done by the content-expert. 
 
Obviously it will depend on the available expertise (on clustering and on the specific 
subject), software, time, money and mancraft to what extent the choice of the 
clustering algorithm is covered. Requirements with which one should account can be 
diverse, as exemplified e.g. by the list of issues like ‘scalability’, ‘ability to deal with  

                                                      
21 See http://www.bioconductor.org/packages/2.6/bioc/vignettes/BicARE/inst/doc/BicARE.pdf 
22 http://cran.r-project.org/web/packages/clue/index.html 
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different types of attributes’, ‘discovery of clusters with arbitrary shape’, ‘ease of 
using the cluster analysis procedure’, ‘ability to deal with noisy data’, ‘treatment of 
newly inserted data’, ‘insensitivity to the order of the input records’, ‘high 
dimensionality’ presented in chapter 7.1 Han and Kamber (2006). Moreover also 
issues related to cluster validity (see next chapter) will be of importance. 
 

Three fundamental properties for clustering  
(according to Handl and Knowles (2005)) 
 
Handl and Knowles  (2005) distinguish three fundamental properties for clustering, which can 
give rise to conflicting objectives, and which would argue for a multi-objective approach 
towards clustering as exemplified e.g. in Handl and Knowles (2005).  
 
Compactness: Generally this is implemented by keeping intra-cluster variation small. 
Algorithms like k-means, average link-agglomerative clustering, self-organizing maps or 
model-based clustering fit into this category. These methods are very effective for spherical or 
well-separated clusters, but may fail for more complicated cluster structures. 
 
Connectedness: This more local concept of clustering is based on the idea that neighboring 
data items should share the same cluster, and methods as density based clustering and single-
linkage agglomerative clustering are related to this property. Detection of arbitrarily shaped 
clusters is possible, but these methods can lack robustness in case clusters are not clearly 
separated spatially. 
 
Spatial separation: This property on its own does not give much guidance for clustering, and 
can easily lead to trivial solutions. Typically it is combined with other objectives, as 
compactness of clusters or balance of cluster sizes.  
 

 
Examples of data sets exhibiting compactness, connectedness and spatial separation, 
respectively. Connectedness and spatial separation are related (albeit opposite), and in 
principle, the cluster structure in data sets B and C can be identified by a clustering 
algorithm based on either connectedness or on spatial separation, but not by one based 
principally on compactness.  
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Handl and Knowles (see textbox) state that in clustering various objectives are involved, 
which can be conflicting. Therefore they argue that multi-objective approach to clustering is 
appropriate. 
 
 
Summary 
 
The extensive – and ever-growing - literature on clustering illustrates that there is no 
such thing like an optimal clustering method. We have grouped the multitude of 
methods into a restricted number of classes, and have especially focused on two 
commonly used classes, one which is based on hierarchically performing the 
clustering, while the other consists of constructively partitioning the dataset into a 
number of clusters, using the k-means method. The other classes are briefly discussed 
with due reference to literature for further information. 
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5 How to measure the validity of a cluster? 
 

5.1 Comparing cluster solutions 

The comparison of cluster solutions (e.g. partitions or trees) either with each other or 
with benchmark information is an important aspect of cluster validation. For example, 
testing whether different subsamples of the same dataset or different methods applied 
to the data generate similar results is considered as a relevant activity in evaluating the 
cluster-quality (‘robustness issue’). Moreover, in situations where an external 
classification is available, one would like to check the similarity of this classification 
and the clustering results as an indication of external clustering validity.  

Below we briefly highlight a number of well-established techniques for comparing 
two partitions. See Everitt et al. 2001, section 8.4, for additional material on 
comparing two dendrograms/trees or two proximity matrices; see also Campbell, 
Legendre and Lapointe (2009) for further information on these issues. 

E.g., when two classifications of a group of n objects are available, one can represent 
them as a c1-by-c2 matrix N=[nij] where nij is the number of objects in group i of 
partition 1 (i=1, …, c1) and group j of partition 2 (j=1,…,c2). The labelling of the two 
partitions are arbitrary. When the partitions have the same number of clusters and 
their agreement is good, it is usually obvious from inspection how the labels 
correspond, and one partition can straightforwardly be relabelled to match the other. 
Using simple percentage agreement or the kappa coefficient (see Cohen, 1960) the 
partitions can then be compared, after relabeling. 

Remark: One can think of various procedures to match the labels of two cluster partions, say 
1 and 2.  
A straightforward strategy consists of: 
(a) first determining the Euclidean distances between the cluster-centres for clustering 1 and 

clustering 2. These distances are stored in a ‘distance matrix’ with entry di,j expressing the 
distance between the i-th cluster-centre for clustering 1 and the j-th cluster-centre for 
clustering 2; 

(b) next linking the labels for clustering1 and 2 by consecutively searching for the smallest 
entry in this matrix (smallest distance), matching the corresponding row and column and 
eliminating them from the matrix consecutively. 

In this way a match between the cluster-classes in clustering 1 and those in clustering 2 is 
obtained iteratively. This is however not the only procedure to perform this matching. One 
can easily come up with alternatives when considering these steps: 
 Concerning step (a): Matching can also be done by comparing the cluster-class counts in 

the cross table-matrix N. The idea behind this matching is to find a match which renders 
the largest number of counts (data points) in the corresponding matched cluster-classes.  
Notice that the match proposed sub (a) above, is based on the underlying (average) 
features of the data points, and aims to establish a match on basis of these averages. 

 Concerning the search step (b): Instead of performing the search heuristically like 
sketched above one can envisage to perform this search exhaustively (i.e. exact) by 
considering all cluster-combinations involved, and finding the one which renders the sum 
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of the distances minimal23. Although the number of all cluster-combinations involved is 
equal to k! (k is the number of clusters in clustering 1), this task of finding the exact 
optimum cluster combinations can be performed far more efficiently (in O(k3) steps) by 
using the ‘Hungarian algorithm’ proposed by Kuhn (1955) and Munkres (1957). This 
algorithm is available in the R-package “<<clue>>24”, i.e. use the LSAP function for 
optimal cluster matching/assignment 

 
A simple example illustrates that the outcomes of both search methods (in step (b) can be 
different. E.g. let the cross-table for two cluster partions (5 cluster-classes) be: 
   

17 24 1 8 15
23 5 7 14 16
25 6 13 20 22
10 12 19 21 3
11 18 25 2 9

 

The heuristic search method and the optimal search method match the rows 1,2,3,4, and 5 
with the columns 2, 5, 1, 4, 3 (heuristic) and 2, 1, 5, 4, 3 (exact) respectively, giving a total 
number count of 111 and 115 respectively, which shows the (slightly) suboptimal 
performance of the heuristic method.  

Remark: Cohen’s Kappa-statistic which corrects for chance effects in comparing two cluster 
partitions is given by (N* stands for the relabelled cross-table): 
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where 
realagreeP ,

 refers to the relative observed agreement between clustering 1 and 2, and 

chanceagreeP ,
 refers to the hypothetical probability of the agreement by chance, in case random 

classes would have been assigned to the objects for both clustering 1 and 2. If the clusterings 
are the same 

KappaI  is 1, if there is no agreement, other than the one happening by chance, 

KappaI  <=1. 

When the number of clusters differs between the two partitions/clusterings, one can 
take another alley towards comparing the partition rather than by analysing the cross-
tabulation of frequencies. Starting point is to investigate the co-occurrence of the 
groupings of every pair of n objects in the partitions. This can be presented in a 2 x 2 
contingency table: 

 
                                                      
23 For the case of matching on basis of cluster-counts, one would strive to find a match which renders a 
maximal sum of the number of counts. 
24 http://cran.r-project.org/web/packages/clue/index.html 
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  Partition 2  
  Pair in 

 same group 
Pair in 
different 
groups 

Total 

Partition 1 Pair in same 
 group 

a b a+b 

Pair in different 
 groups  

c d c+d 

 Total a+c b+d ( )
2

n  

 

This contingency table can be directly derived from the cross-table N with cluster-
class counts, using the relationships presented in table 1 and 2 of Hubert and Arabie, 
1985.  
The Rand and Jaccard index for expressing the correspondence of these partitions are 
defined by (a+d)/(a+b+c+d) and a/(a+b+c) respectively. Correcting for the effects 
of chance in grouping points in clusters, adjustments of the Rand index have been put 
forward in literature of which the adjusted Rand index of Hubert and Arabie (1985) is 
especially judged a suitable one (see also Steinley, 2004). It is defined as: 
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n
 denotes the total number of object-pairs (i.e. (a+b+c+d)). 

Meila (2007) recently proposed a novel criterion for comparing partitions, the 
“Variation of Information”-criterion, which accounts for the amount of information- 
loss and gain when changing from clustering 1 to clustering 2. It is calculated on basis 
of information theoretic measures which can be directly evaluated in terms of the 
entries in the cross-table-matrix N with the cluster-class counts. See Meila (2007) for 
details. Vinh et al. (2009) recently argue that also for information theoretic measures a 
correction for chance is needed, similar to the adjustment of the Rand index.  

The above mentioned indices that can be calculated on basis of the cross-table N of 
the cluster-class counts appear to be insensitive to permutations of the columns and 
rows of the cross-table. This implies that they do not depend on the cluster-label-
matching strategy involved in linking clustering 1 to 2. 

The presented indices have been implemented in the CRAN-package <<mcclust>>25 
where the adjusted rand index is evoked by the function arandi() and Meila’s criterion 
by the function vi.dist(). 

                                                      
25 http://cran.r-project.org/web/packages/mcclust/ 
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Remark: The above indices can be used to measure the influence of individual data points on 
a cluster analysis: by comparing the partitioning which results from deleting specific data 
points from the dataset, with the partitioning of the complete reference dataset one can detect 
highly influential data points that directly impact the resulting partition. Cheng and Milligan 
(1995, 1996a,b) e.g. advocate the use of the adjusted Rand index for this purpose. See also 
section 8.5.3 in Everitt et al. 2001. 

 

 

 

 

 

 

 

 

5.2 Validation measures 

Validation measures are intended to measure how well the clustering captures the 
underlying structure in the data. An excellent account of different types of validation 
measures and their potential biases is given in Handl et al. (2005). This reference 
underlines that there does not exist a golden standard in clustering methods nor in 
validation measures. It will often not be sufficient to use a single clustering algorithm 
and/or a single validation measure when the real underlying structure of the data is 
unknown. Rather one should apply a number of different clustering algorithms and 
validation measures that optimize different aspects of a partitioning for an appropriate 
range of cluster sizes. Also Brun et al. (2007) address similar points, and advise to be 
cautious with automatically applying and interpreting results from calculated validity 
indices.  

Typically three groups of validation measures are distinguished (see Figure 6): the 
first type is based on calculating properties of the resulting clusters, such as 
compactness, separation, roundness, and is called internal validation, since it does not 
require additional information on the data.  

The second approach is called relative validation and is based on comparisons of 
partitions generated by the same algorithm with different parameters (e.g. 
initializations), or different subsets of the data. This approach in fact measures 
robustness of the clustering results and - similar to internal validation - also doesn’t 
require additional information. 

An axiomatic approach to measure cluster quality 

Ackerman and Ben-David (2008) have recently initiated a systematic study of measures 
for the quality of a given data clustering. These measures, given a data set and its 
partition into clusters, return a non-negative real number representing how ‘strong’ or 
‘conclusive’ the clustering is. They propose to use the notion of ‘cluster quality measure’ 
as a basis for developing a formal theory of clustering, which unlike Kleinberg’s 
axiomatic approach (Kleinberg, 2002) does not lead to contradictions.  

Ackerman and Ben-David have proposed quality measures for wide families of common 
clustering approaches, like center-based clustering (e.g. k-means, k-median), loss-based 
clustering (e.g.  k-means) and linkage-based clustering (e.g. hierarchical clustering), and 
analyze their computational complexity. In addition, they show that using these quality 
measures, the clustering quality of a clustering can be computed in low polynomial time. 
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Figure 6: Different approaches for cluster validation 

The third approach, called external validation is based on comparison of the 
clustering partition of the data with a known class partition of the data, thus 
presupposing that the class labels are known and uncontested. It is clear that this kind 
of validation will only be possible for a limited number of situations, e.g. for 
benchmark data, or for situations where cluster labels are known beforehand. It will 
evidently depend on the application field whether (and which) explicit validation 
criteria are feasible and useful: e.g. Datta and Datta (2006) propose two specific 
evaluation indices in the context of gene expression data-analysis with a content 
related meaning, namely the biological homogeneity index and the biological stability 
index. 

In appendix E a large number of internal validation indices are listed that use the 
inter-cluster and the intra-cluster distances to identify the best partition. These indices 
use the inter-cluster and the intra-cluster distances to identify the best partition. They 
are appropriate when clusters are compact and well-separated, but fail when sub-
clusters exist or when the clusters are arbitrarily shaped (and thus have no 
representative centre points to assess the inter-cluster variance). Therefore frequently 
alternative approaches are put forward in literature, which are compared to the 
established ones on basis of synthetic and/or real data. These comparative studies are 
necessarily always limited to a certain extent: their scope is given by the datasets 
which are analysed, and one can often find other data on which the one method 
performs better than another candidate. Jonnalagadda and Srinivasan (2009) propose 
an approach that overcomes this limitation by not using inter-cluster distances, but 
instead focusing on information which is lost or gained when a cluster intersects with 
another. The proposed NIFTI-index (Net InFormation Transfer Index) was compared 
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with other ones - Dunn’s, Silhouette, Davies-Bouldin and the Gap-statistic – and it 
was shown - on synthetic datasets as well as on real-life data - that NIFTI outperforms 
these methods in determining the appropriate number of clusters. However, the 
proposed method has as limitation that it models clusters as hyper-spheres, which 
make it less appropriate for clusters that do not have a spherical shape. Also Saitta et 
al. (2008) propose a new bounded index for cluster validity, the score function (SF). It 
is found to be always as good or better than four common validity indices – Dunn’s, 
Silhouette, Davies-Bouldin and the Maulik Bandyopadhyay-statistic – in the case of 
hyper-spherical clusters. It works well on multidimensional data sets and 
accommodates unique and sub-cluster cases. 

Relative validation indices are based on measuring the consistency of algorithms, 
comparing the clusters obtained by the same algorithm under different conditions, or 
by different clustering algorithms, and two typical approaches are discussed 
subsequently: 

• The use of a Figure of Merit (FOM, see Yeung, Haynor and Russo, 2001) assesses 
the ‘predictive power’ of a clustering technique and strikes a balance between the 
external and internal criteria: FOM requires no prior knowledge nor relies entirely 
on information from the clustering process. It can e.g. be obtained by leaving out a 
variable, j, clustering the data (into k clusters), then calculate the RMSE (Root 
Mean Squared Error) of j relative to the cluster means: 
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Calculating the AFOM for each k and adjusting for cluster size, and dividing by 
the number of variables ‘left out’ renders the adjusted AFOM: 
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Low values of the clustering algorithm’s AFOM indicate a high predictive power. 
By comparing the AFOM values at each k for different clustering algorithms their 
performance can be compared. However, Yeung et al. (2001) comment that this 



45 
 

should only be done if the similarity metrics of the compared clustering 
algorithms are identical. Olex et al. (2007) show limitations of the FOM when the 
underlying similarity measure is non-Euclidean. For similarity measures based on 
the Pearson correlation coefficients they propose a more suitable alternative FOM. 

• The use of a stability measure expresses how the cluster-membership assignment 
is affected by small changes/alterations in the dataset (e.g. sampling different 
data(sub)sets; adding noise to data) or by applying different parameter-settings for 
the cluster algorithm. It provides information on the stability/robustness of the 
prevailing clustering partition for these alternative choices. The stability measure 
is typically based on the use of an explicit criterion for cluster comparison, like the 
adjusted Rand index, or Meila’s variation of information criterion, cf. Meila 
(2007). The stability-based approach can also be used to determine the appropriate 
number of clusters k, by studying for which k the resulting cluster partition is 
relatively stable/robust towards (re)sampling of the data or noise in the data. This 
approach is presently very popular and was initially advocated by Dudoit and 
Fridlyand (2002), Tibshirani et al. (2002), Ben-Hur et al. (2002), Bel Mufti and 
Bertrand (2007). Notice that these resampling methods in fact assume that the 
employed subset-samples are representative enough to reflect the inherent 
structure in the whole dataset. In situations where some clusters are of small size, 
this may be a problematic assumption. See also Lange et al. (2005), Hennig 
(2006), the <<fpc>> package26 and Volkovich et al. (2008) for related 
approaches. Kuncheva and Vetrov (2006) specifically analyse the stability of the 
k-means cluster results with respect to random initialization. See the next textbox 
for s critical remarks on the appropriateness of the stability approach for the 
determination of the number of clusters 

 

In the cluster analysis that we have set up for identifying patterns of vulnerability for 
global change we have implemented the above mentioned stability procedure in the 
following way in order to determine an adequate number of clusters k on basis of 
repetitively performing clustering for k=2 until a maximum value Kmax: 

 

1. Initialize k:=2; 
2. IF [k ≤ Kmax] THEN   

{ Repeatedly (e.g. n=150) perform two clusterings by k-means, initializing 
each clustering with a random start-setting and compare these clusterings on 
basis of a criterion which gives a value between 0 and 1 to express their 
similarity (values around 1 hint at high similarity of the pair of clusterings).  

Next take the average of this criterion value )(kS  over all these n repetitions 
as a measure for the stability of this resampling procedure for the specific k.} 

ELSE Go to step 4 

                                                      
26 http://cran.r-project.org/web/packages/fpc/index.html 
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3. k:=k+1; Go to step 2; 

4. Plot the average values )(kS  as a function of k for k=2, …, Kmax. This is a so-
called consistency graph, which displays the average stability/robustness of 
the outcome of the clustering analysis for the resampling. 

Figure 7 gives a graphical overview of the procedure (from Dietz et al., 2011). Since 
we used the counting of overlap method we had to reallocate the labelling of the 
cluster via the straightforward method of the Euclidean distance (See 5.1) to achieve 
comparable maps. 

No Yes Yes Yes

Yes Yes Yes Yes

Yes Yes Yes Yes

Yes Yes No Yes

Yes Yes Yes No

1.

2.

identification of overlap

consistency measure =
number of overlaps

number pixel

1.
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the cluster centroids

number of identical colours for each pixel

comparable maps

 

Figure 7: Operational sequence for calculating the consistency measure exemplary for k=4.  

The value of k for which this consistency measure is optimal indicates a suitable 
choice for the number of clusters. Figure 8, shows an example from Kok et al. 
(2011). Besides the global optimum at k=3 there is an interesting relative 
maximum for eight clusters, suggesting that this number of clusters reflects also 
the structure of the data in case one is looking for a more differentiated partition. 
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Figure 8: Consistency graph for determining the number of clusters. The local optimum at 
k=8 indicates that possibly an interesting suitable clustering can result if choosing e.g. 8 
clusters. The number of repetitions n has been 150 in this case. 
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Although the above procedure is formulated primarily for the k-means method, it can 
also be applied to other clustering methods as well.  
Moreover, our R-code offers various options the choice of the criterion to express the 
similarity between the clusterings: next to using the adjusted Rand index or Meila’s 
variation of information criterion, it is possible to explicitly calculate the fraction of 
data points which have been clustered similarly when repeating the clustering with a 

random restart. In this case the average value )(kS can be viewed as the average 
fraction of data points which are clustered similarly when randomly restarting the 
clustering for this specific k. Typically the criterion choice does not lead to different 
choices in the ‘optimal’ number of clusters. 

 

 
 
 

5.3  Software for cluster validation 
 

The R-package <<clValid>> provides software for cluster validity (see Brock et al., 
2008), where the generic function cl_validity() can be used to evaluate cluster validity 
indices for partitions and hierarchies obtained by clustering. See also cluster.stats in 
package <<fpc>> for a variety of cluster validation statistics; fclustIndex in package 
<<e1071>> for several fuzzy cluster indexes; clustIndex in package <<cclust>>; 
silhouette in package <<cluster>>. The R-package <<clusterSim>> provides 
various measures to express the performance of a clustering on a dataset, including 
the Tibshirani et al. (2001) gap statistic. 

Criticism on the stability-based approach for choosing the number of clusters 
 
Ben-David and von Luxburg (2006) have recently criticized the popular stability-
based methods on basis of a theoretical analysis of stability issues in cluster-analysis  
methods that determine the clusters by globally minimizing an objective function. 
They discovered that for large datasets the common belief (and practice) that stability 
reflects the validity or meaningfulness of the chosen number of clusters is not true. 
For an elegant and useful exposition of the implications of these and other related 
findings see the recent publication von Luxburg (2009). Albeit the initial critical 
theoretical findings on the stability-based approach von Luxburg at the end draws a 
“carefully optimistic picture about model selection base on clustering stability for the 
k-means algorithm. Stability can discriminate between different values of k, and the 
values of k which lead to stable results have desirable properties. If the data set 
contains a few well-separated clusters which can be represented by center-based 
clustering then stability has the potential to discover the correct number of clusters.” 
(von Luxburg, 2009; italics are added by us). In case of very elongated clusters or 
clusters with complicated shapes the k-means algorithm cannot find a good 
representation of the dataset, regardless of the number k used, and in these situations 
stability based model selection breaks down. Von Luxburg moreover states that these 
results only hold true for situations where the number of clusters is relatively small 
(in the order of 10, rather than in the order of 100). For other clustering algorithms 
that work very different from k-means it remains an open question whether the 
stability-based model selection is a suitable approach.
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Alternative tools for validity assessment are proposed by Bolshakova et al. (2003, 
2005a,b) and contain also visualization method for evaluating the clustering results. 
 
Summary 
 
Various ways to evaluate clustering performance and compare different clusterings have been 
presented. A general (stability-based) approach is put forward which assesses the robustness 
of clustering results for repeated analysis of the dataset under different settings (e,g, 
initialisations) of the cluster algorithm. It can be used for estimating the number of clusters. 
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6 Graphical representation of the results 
 
Data visualisation can greatly support the interpretation of the cluster analysis. 
Various ways to visualize the results of the cluster analysis are possible (see also 
section 2.3.7). In the last chapter of this guideline we do not intend to give a 
comprehensive overview of all possibilities but to show some examples which 
occurred to be useful to us.  
 
 
 

 
Figure 9: Heatmap of the dataset shown in Gentleman et al. (2004). See 
http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/heatmap/ for further explanation. 

6.1 Hierarchical cluster analysis 
Hierarchical cluster analyses are typically illustrated by dendograms, showing clearly 
how the groupings are established. This information can further be enhanced by using 
heat-maps which provide a sorting/structuring of the data-matrix, permuting the 
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columns and rows of this matrix to conform with the hierarchical clustering of 
variables and objects (see Figure 9).  
 
The ‘clustergram graph’ proposed by Schonlau (2002,2004) as alternative to 
dendrogram-graphs (e.g. by using the R-function dendrogram()) is in fact of similar 
nature as the branching diagram. It examines how objects are assigned to clusters as 
the number of clusters increases. Clustergrams are useful for non-hierarchical 
clustering algorithms such as k-means as well as hierarchical cluster algorithms when 
the number of objects is large enough to make dendrograms impractical.  
 
Agrafiotis et al. (2007) propose radial clustergrams to visualize the aggregate 
properties of hierarchical clusters, which are specially apt for visualizing large trees 
which can not be displayed appropriately in straightforward dendrograms. One can 
also consider the use of the Dendroscope software from the University of Tübingen 
for this purpose (Huson et al. 2007, see Figure 10). 
 
 

  

Figure 10: Seven alternative views for visualizing the same tree, implemented in the 
Dendroscope software (Huson et al. 2007): Rectangular Phylogram, Rectangular Cladogram, 
Slanted Cladogram, Circular Phylogram, Circular Cladogram, Radial Phylogram and Radial 
Cladogram. 

 

6.2 Partitioning cluster analysis 
Partitioning cluster analyses are often visualized by projecting the data in two-
dimensional space, using e.g. multidimensional scaling (MDS) or self-organized maps 
(SOM) (see Figure 11, using Clusplot as in Pison et al. 1999; see also Vesanto, 1999, 
Ewing and Sherry, 2001).  
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These two components explain 95.81 % of the point variability.  
Figure 11: Two dimensional projection of the clusterpoints for the Iris dataset.  

 

6.3 Cluster membership 

 
Cluster membership is usually indicated by different colours and glyphs. The 
characteristics of the various clusters can e.g. be displayed by showing boxplots per 
variable/feature for the various clusters (see Figure 12), or by showing a graph of the 
cluster centres (see the spectral plot Fig. 13).  
In the boxplot the cluster centre is indicated by the circle, while the spread around this 
centre is indicated by the box-boundaries denoting the lower and upper quartiles (25th 
and 75th percentile) of the data; thus the box-length indicates the interquartile 
distance, IQR. The band near the middle of the box denotes the median. Typically, 
boxplots are extended by whiskers denoting the minimum or maximum data values 
within 1.5 IQR of the lower and upper quartile. But, since we are specifically 
interested in high/low end percentiles, and in highlighting potential asymmetry of the 
distribution, we have chosen to work with alternative whiskers, and indicate them by 
the ends of the dotted lines which show the 5th and 95th-percentile. So between these 
two points 90% of the objects within a cluster are located. Notice that the boxplots for 
the clusters in fact only display one-dimensional information, as projected on the 
individual axes associated to the various variables/indicators. Information on the 
specific spatial structure of the cluster of points in the multi-dimensional data space 
(spanned by all variables/indicators considered) does not clearly show up in the 
boxplot.  
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 Figure 12: Boxplots, showing the variation in indicator values per cluster (colours indicate 
clusters; all indicator values are between 0 and 1); see Kok et al. (2010).  
Note: the boxes present the 25-75 percentile range of the indicator values; the circles at the 
end of the dotted lines indicate the 5- and 95-percentile, while the red circle indicates the 
arithmetic mean; the band near the middle of the box indicates the median value. The 
number of points in the respective clusters is indicated in the top of the sub frames. 
 
Graphs of the normalized cluster centres give information on how the average 
characteristics of the clusters differ (see Figure 13). They are helpful in suggesting the 
(dis)similar properties and characteristics of the various clusters.  
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Figure 13: Cluster centres (= typical indicator values) for the 8 clusters C1 - C8; see Kok et al. 
(2010).  

 
In case that the data have a spatial dimension, showing maps can give a clue on how 
the clusters are geographically distributed, serving to identify and connect features 
with similar characteristics at different geographical locations (see Figure 14).  
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Figure 14: Distribution of clusters within the drylands (see Kok et al., 2010). Light grey: non-
arid areas. Each of the 8 clusters denotes a typical constellation of the 7 indicators road 
density, renewable water resource, agro-potential, soil erosion, population density, GDP/cap 
and infant mortality rate, which are also displayed in the boxplots of Figure 12.  

 

 

Figure 15: Branching diagram, showing cluster subdivision when increasing cluster-numbers 
in k-means cluster analysis of the dataset (N=45000) consisting of the indicators for the 
forest overexploitation archetype  
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6.4 Branching diagrams 
 
When performing the cluster analysis repeatedly for a consecutive number of clusters 
it is insightful to construct a ‘branching diagram’ (see figure 15) which displays how 
the clustering structure changes when using another number of clusters. This diagram 
grossly indicates which clusters are split or merged, and thus renders useful 
information on the potential relatedness of the clusters. 
 
 
Besides the above presented methods Leisch (2008, 2009) recently provide an 
overview of various visualization possibilities for centroid based clustering methods 
(neighbourhood graphs, convex cluster hulls, bar charts of cluster medoids etc.). The 
CRAN-package <<flexclust>> contains implementations of these visualization 
methods. See also the interactive visualization toolbox for cluster analysis in the 
context of gene expression data <<gcExplorer>> developed by Scharl and Leisch, 
2009. Additional information can be found in literature on visualization methods for 
bioinformatics applications, like analysing gene expression microarray clusters, see 
e.g. Hibbs et al., (2005), Saraiya et al. (2005).  
 
 
Summary 
 
A number of possibilities is given for graphically displaying different properties of clusters. It 
turned out that adequate graphical representations play a vital role in the process of 
identifying promising further questions and next steps in a clustering oriented research 
process.  
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Appendix A: The R software environment 
 
R is a software environment for data manipulation, calculation, and graphical display, and 
serves both as an environment and a programming language. R is available as Free Software 
in source code form under the terms of the Free Software Foundation’s GNU General Public 
License. R runs on a wide variety of platforms (Unix, Linux,Windows, MacOS, FreeBSD). 
Sources and binaries of R can be downloaded at http://www.r-project.org. Installation of R is 
very simple and a variety of packages can be added directly from the web site (e.g. Brock et 
al., 2008). R has a very active development community and many resources can be found 
including user guides, manuals, script samples, newsgroups, and mailing lists (e.g. Venables 
et al., 2002). Further an extensive amount of publications like Paradis (2002) or Maindonald 
(2008) exists. R is a command line application. Its integrated object oriented language allows 
for efficient data manipulation. Whereas use of R does require programming, scripts can be 
developed and used to automate analyses and provide additional functionality. Graphical user 
interface (GUI)s have been developed for certain applications to avoid user programming 
(see, for example, Rcommander). 
R has an amazing variety of functions for cluster analysis, which is illustrated at the web-page 
http://cran.r-project.org/web/views/Cluster.html. In this background document we will present 
a number of examples implemented in R. See also appendix A, which illustratively highlights 
some functionality of R for performing cluster analysis. 
 

Citing R: 
R Development Core Team (2005). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-
project.org. 
 
Brock, Pihur, Datta Su., Datta So, clValid: An R Package for Cluster Validation, Journal of Statistical 
Software, Volume 25, Issue 4, 2008 
 
Maindonald, Using R for Data Analysis and Graphics - Introduction, Code and Commentary, Centre 
for Mathematics and Its Applications, Australian National University. 2008 
 
Paradis, E., R for Beginners, Montpellier, 2002 
 
Venables, Smith and the R Development Core Team An Introduction to R, Network Theory Limited, 
Bristol, 2002 
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Appendix B: Cluster analysis in R27 
 
R has an amazing variety of functions for performing cluster analysis. In this appendix three 
of the many approaches will be described: hierarchical agglomerative, partitioning, and model 
based. While there are no best solutions for the problem of determining the number of clusters 
to extract, several approaches are given below.  

 
Data preparation  
Prior to clustering data, you may want to remove or estimate missing data and rescale 
variables for comparability. 
 

# Prepare Data 
mydata <- na.omit(mydata) # listwise deletion of missing 
mydata <- scale(mydata) # standardize variables  

 

Partitioning 
K-means clustering is the most popular partitioning method. It requires the analyst to specify 
the number of clusters to extract. A plot of the within groups sum of squares by number of 
clusters extracted can help determine the appropriate number of clusters. The analyst looks for 
a bend in the plot similar to a scree test in factor analysis. See Everitt & Hothorn (pg. 251).  
 
Determine number of clusters 

 
# Determine number of clusters 
wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var)) 
for (i in 2:15) wss[i] <- sum(kmeans(mydata,  
   centers=i)$withinss) 
plot(1:15, wss, type="b", xlab="Number of Clusters", 
  ylab="Within groups sum of squares")  
 
 

 
 

 

                                                      
27 This appendix is taken from the information about QuickR (see 
http://www.statmethods.net/advstats/cluster.html). See also 
http://inference.us/SolutionPlatform/Documents/R/Cluster%20Analysis.pdf 
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K-Means cluster analysis 
 

# 5 cluster solution 
fit <- kmeans(mydata, 5) # 5 cluster solution 
 
# get cluster means  
aggregate(mydata,by=list(fit$cluster),FUN=mean) 
 
# append cluster assignment 
mydata <- data.frame(mydata, fit$cluster)  

 
A robust version of K-means based on mediods can be invoked by using pam( ) instead of 
kmeans( ). The function pamk( ) in the fpc package is a wrapper for pam that also prints the 
suggested number of clusters based on optimum average silhouette width.  
 

Hierarchical agglomerative 
 
There are a wide range of hierarchical clustering approaches, and Ward's method described 
below is a popular one.  
 
Ward hierarchical clustering 
 

# Ward Hierarchical Clustering 
 
# distance matrix 
d <- dist(mydata, method = "euclidean")  
 
fit <- hclust(d, method="ward")  
 
# display dendogram  
plot(fit)  
 
# cut tree into 5 clusters 
groups <- cutree(fit, k=5)  
 
# draw dendogram with red borders around the 5 clusters  
rect.hclust(fit, k=5, border="red")  

 
 
The pvclust( ) function in the pvclust package provides p-values for hierarchical clustering 
based on multiscale bootstrap resampling. Clusters that are highly supported by the data will 
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have large p values. Interpretation details are provided Suzuki28. Be aware that pvclust 
clusters columns, not rows. Transpose your data before using.  
 
 
Ward hierarchical clustering with bootstrapped p values 
 

# Ward Hierarchical Clustering with Bootstrapped p values 
 
library(pvclust) 
fit <- pvclust(mydata, method.hclust="ward", 
   method.dist="euclidean") 
 
# dendogram with p values 
 
plot(fit)  
 
# add rectangles around groups highly supported by the 
data 
pvrect(fit, alpha=.95)  

 
 

 
 

Model based approaches 
 
Model based approaches assume a variety of data models and apply maximum likelihood 
estimation and Bayes criteria to identify the most likely model and number of clusters. 
Specifically, the Mclust( ) function in the mclust package selects the optimal model 
according to BIC for EM initialized by hierarchical clustering for parameterized Gaussian 
mixture models. (phew!). One chooses the model and number of clusters with the largest BIC. 
See help(mclustModelNames) to details on the model chosen as best.  
 
 

                                                      
28 See http://www.is.titech.ac.jp/~shimo/prog/pvclust/ 
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Model based clustering 
 
# Model Based Clustering 
library(mclust) 
fit <- Mclust(mydata) 
 
# plot results  
plot(fit, mydata)  
 
# display the best model  
print(fit)  
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Plotting cluster solutions  
 
It is always a good idea to look at the cluster results. 
 
K-Means clustering with 5 clusters 
 

# K-Means Clustering with 5 clusters 
fit <- kmeans(mydata, 5) 
 

Cluster plot against 1st 2 principal components 
 
# Cluster Plot against 1st 2 principal components 
 
# vary parameters for most readable graph 
library(cluster)  
clusplot(mydata, fit$cluster, color=TRUE, shade=TRUE,  
   labels=2, lines=0) 
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Centroid plot against 1st 2 discriminant functions 
 

# Centroid Plot against 1st 2 discriminant functions 
library(fpc) 
plotcluster(mydata, fit$cluster)  

 

 
 
Validating cluster solutions 
 
The function cluster.stats() in the fpc package provides a mechanism for comparing the 
similarity of two cluster solutions using a variety of validation criteria (Hubert's gamma 
coefficient, the Dunn index and the corrected rand index)  
 
comparing 2 cluster solutions 
 

# comparing 2 cluster solutions 
library(fpc) 
cluster.stats(d, fit1$cluster, fit2$cluster)  

 
where d is a distance matrix among objects, and fit1$cluster and fit$cluster are integer 
vectors containing classification results from two different clusterings of the same data.  
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Example R-script for clustering 
 
The following R-Script is divided into four functions, called “consistency”, “sPIKcentres”, 
“initial” and “clus_graphs”. In the first function calls the loop for the overall repeating of the 
pair wise dissimilarity calculation and the loop for the size of the clustered partition. Further it 
performs the two of clusterings. The second function makes the dissimilarity calculation 
itself. The “initial” function is responsible for initialization of kmeans with hclust. And the 
last function delivers graphical representations of the cluster result.  
In the last part of the script the user settings have to be chosen. The script can be used for 
calculation of the consistency measure and for the clustering of the subsequent best number of 
clusters. 
The format of data has to be: rows represent the objects and columns represent the features of 
the objects. 
 
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
consistency <- function(Xdata,NmaxCluster,master,cm)  {  
  
  Ndata <- dim(Xdata)[1]              # total number of datapoints 
  Clust_cl <- matrix(0,Ndata,2)     # storing the cluster-class results for the two trial-clusterings 
  X0 <- matrix(0,NmaxCluster,master)           # storing info on every run for consist.meas. 
  C0 <- matrix(0,NmaxCluster,1)                    # Init.matrix with average consist.meas. 
  G0 <- matrix(0,Ndata,1)   # Matrix for best cluster result 
  ResMat <- list(MeanC=C0,SpecR=X0,Gold=G0) # global list for returning after calculation 
  ifelse(cm,whl<-2,whl<-1)  
  ifelse(cm,NminCluster<-2,NminCluster<-NmaxCluster) 
 
  for (iOuter in 1:master) {    # outer-loop for comparing pairs of clusterings  
    for (iClus in NminCluster:NmaxCluster) {   # Number of Clusters to be analysed 
      for (iInner in 1:whl) {  
        N_sel <- max(NmaxCluster,round(Ndata/200,0)) 
        ss  <- sample(1:Ndata)       # random permutation of data set            
        sss <- ss[1:N_sel]       # First N_sel indices of random permutation 
        Xdata_sel <- Xdata[sss,]   
        while( length(unique(rowSums(Xdata_sel)))<iClus ) { 
          ss  <- sample(1:Ndata)   ;  sss <- ss[1:N_sel]   ;   Xdata_sel <- Xdata[sss,] }   
        centro    <- initial(Xdata_sel,iClus)      
        indRand <- sample(1:Ndata)   # reshuffling  
        Xdata_shuffle <- Xdata[indRand,]           # shuffled data 
        cl_kmeans <- kmeans(Xdata_shuffle,centro,iter.max=50)  # clustering with centro initializatin        
        Clust_cl[indRand,iInner] <- cl_kmeans$cluster  # assign classes as indexed by non-shuffled data 
      }    
      ifelse(cm , {   # Evaluate dissimilarities for the clustering-pairs 
        ResMat$SpecR[iClus,iOuter] <- sPIKcentres(Xdata,Clust_cl[,1],Clust_cl[,2],Iheur=1)  
        } , { 
        for (j in 1:iClus) {  # withinclustersum ~~~~~~~~~~~~~ 
          clu_diff <- 0  
          clu_diff <- Xdata_shuffle[which(cl_kmeans$cluster==j),]-(matrix(1,cl_kmeans$size[j],1)  
 %*%colMeans(Xdata_shuffle[which(cl_kmeans$cluster==j),]))  
          ResMat$SpecR[iClus,iOuter] <- ResMat$SpecR[iClus,iOuter] + sum(clu_diff*clu_diff) } 
        ifelse(ResMat$SpecR[iClus,iOuter]==min(ResMat$SpecR[iClus,1:iOuter]) , gold <- Clust_cl[,1]         
        } )   }   }  
        ifelse (cm , { for (iClus in 2:NmaxCluster) { ResMat$MeanC[iClus,] <-  
 with(ResMat,mean(SpecR[iClus,1:master])) } },# average-value for consistency measure     
  { ResMat$Gold <- gold } ) 
 return(ResMat) 
}     # end function consistency 
 
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
sPIKcentres <-   function(dataCl,clust1,clust2,Iheur=1)  {  
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  Ncl1 <- max(clust1)      # maximum number of clusterclasses   
  Ncl2 <- max(clust2)      # maximum number of clusterclasses 
  Nclmin <- min(Ncl1,Ncl2) # minimum of Ncl1 and Ncl2 
  
  ## Determine cluster centers       --> # matrix of cluster-centres for clustering 1 and 2 
  cent1=rbind() ; for (i in 1:Ncl1) { ifelse(length(which(clust1==i))<2 , cent1 <-  

rbind(cent1,dataCl[which(clust1==i),]) , cent1 <-   
rbind(cent1,colMeans(dataCl[which(clust1==i),])) )}     

  cent2=rbind() ; for (i in 1:Ncl2) { ifelse(length(which(clust2==i))<2 , cent2 <-  
rbind(cent2,dataCl[which(clust2==i),]) , cent2 <-  
rbind(cent2,colMeans(dataCl[which(clust2==i),])) )}     

                  
  ## Determine the distance matrix  of cluster-centers 
  Distmat <- matrix(0,Ncl1,Ncl2) 
  Distmat <- as.matrix(dist(rbind(cent1,cent2)))[1:Ncl1,(1:Ncl2)+Ncl1]  
  ## Determination of association on basis of distances between clusters 
  match.listb <- array(0,length<-Ncl2)     # initialising list for renaming clusters 
  xft_tmp <- Distmat                       # storing Distmat in intermediate matrix 
  xft_max <- max(xft_tmp)+1        # setting an upperlimit to values of xft_tmp 
  for (d2 in 1:Nclmin) { 
    cc <- which(xft_tmp==min(xft_tmp),arr.ind=T)[1,2]    # in which column is minimum (ref to clu1) 
    rr <- which(xft_tmp==min(xft_tmp),arr.ind=T)[1,1]    # in which row is minimum (ref to clu2) 
    match.listb[cc] <- rr   ## the cc-th cluster of clus.2  corresponds the to rr-th  cluster of the clus.1  
    xft_tmp[rr,] <- xft_max ; xft_tmp[,cc] <- xft_max }   
  match.listb[which(match.listb==0)] <-  max.col(-t(Distmat[,which(match.listb==0)])) 
  clust2A <-  match.listb[clust2]    # second clustering in terms of its association with the first clus.          
  res <- length(which(clust2A==clust1))/(length(clust1))  # count of fraction of replicates                  
  return(res) } 
 
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
initial <- function(Xdata_sel,k) { # function for initializing Kmeans 
 
  geo_dist <- (dist(Xdata_sel))               # distance matrix of part of data set 
  cl_hcl   <- hclust(geo_dist,method="ward") # hclust with method: ward 
  ser      <- as.vector(cutree(cl_hcl,k))     # cut the tree into k clusters 
  cluster  <- list()                          # initializing to empty list 
  for (i in 1:k) { cluster[[i]] <- which(ser==i) } 
  centro <- matrix(ncol=ncol(Xdata_sel),nrow=k)   # storing cluster-centers 
  for (i in 1:length(cluster)){ 
    for (j in 1:ncol(Xdata_sel)){ 
      centro[i,j] <- mean(Xdata_sel[cluster[[i]],j]) 
    }  }  
   return(centro)  } 
 
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
clus_graphs <- function(gold,clu,clu_dim) { 
  
  ## worldmap 
  world <- matrix(scan("~/AT_CLUSTERUNG/R-Script+Data/geo_maske.dat"),ncol=1) ## land mask 
  for (z in 1:clu_dim[1]) {world[clus_dat[z,1]] <- gold[z]}              
  x11(11,8) ; par(mar=c(2,2,2,1)) 
  is.na(world)<-which(world==0,arr.ind=T)       ## all zeros out 
  z.a <- matrix(world,720,360)[,360:1] 
  for (i in 0:(clu-1)) z.a[(i*20):(i*20+20),51:70]<-i+1 
  farb<-c(rgb(0,0,0),rgb(1,0.6,0),rgb(1,1,0.3),rgb(0.5,0.5,0.5),rgb(0,1,0),rgb(0.5,0,0.5)  
 ,rgb(1,0,0.3),rgb(0,0,1),rgb(0.2,1,1),rgb(1,0.5,0)) 
  farb <- farb[c(9,4,7,3,8,6,1,5,2,10)] 
  image(1:720,1:360,z.a,col=c(grey(0.9),farb[1:clu]),xlim=c(0,720),ylim=c(50,360), 

main=paste("run.ident: ",round(min(clus_res$SpecR[clu,]),4),sep=""))   
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  x11(11,4);par(mfrow=c(1,clu),mar=c(2.5,1.8,1.4,0.3))  
  size <- array(0,clu) 
  for (j in 1:clu) {size[j]<-length(which(gold==j))} 
  for (k in 1:clu) { 
    bpdata <- as.data.frame(clus_dat[,feat]) 
    bpdata[which(gold!=k,arr.ind=T),]<-NA 
    bpdata <- na.omit(bpdata) 
    boxplot(bpdata, whisklty=0, staplelty=0, col=farb[k], outline=F, main=paste("C",k,": ", 

size[k]))->boxinfo 
    for (dd in 1:ncol(bpdata)) { 
      cen <- quantile(bpdata[,dd],  probs=c(5,95)/100) 
      segments(dd,boxinfo$stats[4,dd],dd,as.numeric(cen[2]),col="black",lwd=1,lty=3) 
      segments(dd,boxinfo$stats[2,dd],dd,as.numeric(cen[1]),col="black",lwd=1,lty=3) 
      points(dd,as.numeric(cen[1]),col="black",pch=1) 
      points(dd,as.numeric(cen[2]),col="black",pch=1) 
    } 
     mean.cl <- c(colMeans(bpdata,na.rm=T)) 
     points(c(1:length(feat)),mean.cl,pch=1,col=9,cex=1.4)   
  } } 
############################################################# 
## PARAMETERS THAT HAVE TO BE DEFINED BY USER ~~~~~~~~ 
## 
  namIndicat <- "choose name"                     
  namIndDir =   "choose directory" 
  colIndFile <- 9 
  featurenames <- c("choose list of feature names") 
  feat <- c(3:9)    ## feature columns - for clustering ! 
  NmaxCluster <- 8            ## choose as upper boundary for consistency measure calculation or already  
   ## as value for best cluster result  
  cm = T   ## consistency measure calculation or only best cluster number clustering 
## 
########################## 
 
namIndFile = paste(namIndDir,namIndicat,sep="")    ## reading data ~~~~~~~~~~~~~~~~~ 
clus_dat <- matrix(scan(namIndFile,sep=""),ncol=colIndFile,byrow=T) 
clu_dim  <- dim(clus_dat)   
 
is.na(clus_dat) <- which(clus_dat==-9999,arr.ind=T) ## erase missing values ~~~~~~~~~~~ 
clus_dat <- na.omit(clus_dat) 
 
x11(7,4);par(mar=c(2.1,4,2.3,0.5),mfrow=c(3,3))  ## Histogramm of Cluster Data ~~~~~ 
for (i in feat)  hist(clus_dat[,i],main=featurenames[i]) 
 
ifelse(cm,master<-200,master<-50) 
clus_res <- consistency(clus_dat[,feat],NmaxCluster,master,cm) ## Clustering ~~~~~~~~~~ 
 
## Ploting of Result ~~~~~~~~~~~~~~ 
if(cm) {x11(6,4);plot(c(2:NmaxCluster),clus_res$MeanC[2:NmaxCluster],cex.main=0.9,xlab="# 
Cluster",ylab=paste(master,"-Loops"),panel.first=grid())} else { 
 clus_graphs(clus_res$Gold,NmaxCluster,clu_dim)}  
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Appendix C: Data for comparing clustering methods 
 

(see http://www.ima.umn.edu/~iwen/REU/REU_cluster.html#code) 

Matlab code for generating random datasets  
 

• An example `.m' file that creates a 2D dataset with 3 clusters. It can also be 
modified to generate other artificial data (with different numbers of clusters, 
dimensions, and underlying distributions).  

• The following matlab package contains a file called "generate_samples.m" for 
generating hybrid linear models. It is part of the larger GPCA package. In order to 
avoid intersection of subspaces (so that standard clustering could be applied) one 
needs to set the parameter avoidIntersection = TRUE (and also have affine 
subspaces instead of linear).  

 
 
Other data and data repositories  
 
• Clustering datasets at UCI Repository  
• Complete UCI Machine Learning Repository  
• Yale Face Database B  
• Some processed face datasets saved as Matlab data can be found here. Two 

matrices, X and Y, are included. If you plot Y(1:3,:) you will see three clearly 
separated clusters. The first 64 points are in one cluster, the next 64 points in 
another cluster, etc.. The original files are on the Yale Face Database B webpage 
(above). The folder names are yaleB5_P00, yaleB8_P00, yaleB10_P00. They 
have been processed following the steps described in Section 4.2.2 of the 
following paper. The matlab code used for processing them is here.  

• Here is an example of spectral clustering data. It contains points from 2 noisy 
circles: after loading the `.mat' file type "plot(X(:,1),X(:,2),'LineStyle','.');" to see 
them. You can embed them into 2D space for clustering with EmbedCircles.m. 
Note that changing sigma in this file will lead to different problems. 

• See also http://dbkgroup.org/handl/generators/ 
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Appendix D: On determining variable importance for 
clustering 
 
A plethora of methods has been proposed to select informative subsets of variables/features in 
the context of clustering analysis, as illustrated by recent literature on feature/variable 
selection (cf. Saeys et al., 2007, Steinley and Brusco, 2008b, Varshavsky et al. 2006, 2006). 
 
Below we discuss three straightforward (univariate) methods which can be applied easily to 
express variable importance in a clustering context. In presenting the methods, we restrict 
ourselves to continuous variables. 
We notice beforehand that the proposed techniques are univariate and consider each variable 
separately, thereby ignoring variable dependencies. This may lead to worse clustering 
performance when compared to other more advanced feature selection techniques (see e.g. 
Saeys et al. 2007).  
 
 
 
A. ANOVA-based method (for complete cluster-partitioning) 
 
This method is based on comparing what a specific variable/feature contributes to the within-
cluster variability as compared to the between cluster variability. The resulting importance-
index is expressed as the ratio BSS(j)/WSS(j) (see also Dudoit et al., 2002), defined by 
 

 

 
 
where BSS refers to the between sums of squares variability and WSS to the within sum of 
squares variability. The ratio is used as an indication of the contribution of the variable j to the 
overall clustering.  
Here j refers to the features/variables, k to the clusters, and i to the Nk objects within the k-th 

cluster. )(, jx ik refers to the value of the j-th variable (feature/component) of object i in cluster 

k; )(.. jx refers to the j-th component of the overall mean (population mean), while )(. jxk  

refers to the j-th component of the cluster-mean of the k-th cluster.  
 
Variables with the highest BSS(j)/WSS(j) are considered to have the largest ‘explanatory 
performance’ in respect to the ‘unexplained one’, and therefore are labeled as more important. 
See also the following textbox, which puts some caution in using these kind of indicators. 
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Remark: On the relation with ANOVA: 
 (a) Note that the total sums of squares can be written as the sum of the sums of squares of all 
variables/components, and be split into a within- and between-cluster part: 
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where BSS(j) refers to the explained part and WSS(j) to the unexplained part of the sums of squares. 
The k-means method is intended to minimize the total within-sum of squares WSS (= Σj WSS(j)) 
(unexplained) and thus in fact maximizes the in-between differences BSS ((= Σj BSS(j)) (explained). 
This however does not imply that the various components WSS (j) are minimized individually (or, 
equivalently, the BSS(j) are maximized individually), since trade-offs between the various  WSS (j) can 
be involved in minimizing their sum. 
 
(b) The ratio BSS(j)/WSS(j) is in fact directly related to the F-ratio in the context of an ANOVA for the 

specific j-th variable )(, jx ik . The F-ratio is )(/)( jMSSjMSS withinbetween  where the various mean-

sum of squares are defined as )1/()()( −= njBSSjMSS between  and 

)/()()( nNjWSSjMSS within −=  where 
=

=
n

k
kNN

1

. 

The F-ratio test is applied to test whether the underlying cluster-means )(. jkμ of )(, jx ik are all equal 

for k=1, …, n, in which case F should be nearly equal to 1. Notice that BSS(j)/WSS(j)=(n-1)/(N-n) × F. 
 
(c) One should however be careful to interpret this ratio completely in terms of ANOVA, since the 
underlying assumptions – concerning independence, normality and equal variance - for ANOVA are 
typically not valid in a clustering context where the clusters have been determined deliberately so as to 
minimize the within sum-of-squares (cf. Milligan and Mahajan (1980). Milligan and Cooper (1987)). 
Compare also Hartigan (1975) and Aldenderfer and Blashfield (1976) who illustrate the statistical 
inappropriateness of the use of (M)ANOVAs for indicating existence of clusters. 
 
 
B. t-test based method (cluster-wise) 
 
Another way to express the variable importance of the j-th variable in a specific cluster is by 
using the t-statistic, in fact checking to what extend the mean-value of the specific variable - 
when constrained to this cluster - differs from the overall mean-value. The corresponding 
importance index can be expressed as29:  
 

                                                      
29 As implemented in the TwoStep cluster method in SPSS.  
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The idea is that the importance of a variable for a cluster can be measured by the absolute 
value of this t-statistic, where variables with larger absolute t-statistics are considered as more 
important then variables for which the t-statistic is smaller. This measure is therefore initially 
related to a specific cluster (cluster-wise). A measure for the overall importance of the j-th 
variables for all clusters can e.g. be obtained by summing the absolute value |tk(j)| for all 
clusters k=1, …, n. Another possibility is to consider the maximum-value of the |tk(j)| over all 
clusters k=1, …, n., as a measure for the variable importance. See also Gat-Viks et al. (2003) 
who apply an ANOVA based test of equality of means amongst the cluster members. 
 
 
C. ‘Fraiman’ index (for complete cluster-partitioning) 
 
Fraiman et al. (2008) propose to ‘blind’ (subset of) variables, by fixing them at their mean-
value, and to repeat the clustering analysis subsequently. Then the pairwise agreement (e.g. 
by means of the adjusted Rand index introduced by Hubert and Arabie (1985)) is determined 
between the partition thus obtained and the original partition with all variables fully included. 
This index serves as an indication for the importance of the blinded variable(s). The adjusted 
Rand index is a value between 0 and 1, where large values (near 1) mean that there is a large 
agreement between the partitions with and without blinding the specific variable. To identify 
the most important variables one therefore should look for variables with small Fraiman-
indices. 

 
Fraiman-measure to identify the importance of the different variables for the total cluster 
partition (low values indicate high importance). 
 
Fraiman el al. 2008 show that this univariate procedure will falter if there are strong 
correlations between variables, since the effects of omitting one variable will be compensated 
by the other (non-blinded) related variable. This will typically result in a large agreement of 
the clustering partitions in the blinded and non-blinded case. 
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Therefore, in case of dependencies Fraiman et al. (2008) propose an alternative measure, 
where the blinded variable is not replaced by its marginal mean, but by its conditional mean 
over the set of other (non-blinded) variables.  
 
 
Intermezzo: Promising alternatives 
 
“Ensemble learning” methods that generate many classifiers and aggregate their results have 
been proposed during the last decade as efficient methods for analyzing the structure in data. 
Especially the procedure of random forests (RF), which uses a multitude of regression trees 
on different bootstrap samples of the data (cf. Breiman (2001)) is a popular and user-friendly 
method. This method renders a measure for the variable importance of the involved 
(predictor) variables, and gives also a measure of the internal structure of the data (proximity 
of different data points to one another).  
Although this method was first established for classification and regression problems (i.e. 
forms of supervised learning) the random-forest idea can also be applied for clustering 
purposes (unsupervised learning). The trick for this is to distinguish two datasets: the original 
dataset is called “class 1”, while a synthetic dataset, using information on the marginal 
distributions of the original data, is constructed which is called “class 2”. Next one uses the 
random-forest machinery to classify the combined data with a random forest. The underlying 
idea is that real data points that are similar to one another will tend to be classified in the same 
terminal node of the tree, as measured by the proximity matrix that can be returned using the 
RF-technique. Thus the proximity matrix can be taken as a similarity measure30, which can be 
applied for dividing the original matrix into groups for visual exploration on basis of 
clustering or multi-dimensional scaling. See the example in Liaw and Wiener (2002) as a 
work-out how to perform this analysis with the randomForest package in R.  
Along similar lines this method has been further applied and analysed by Horvath and Shi in a 
series of papers (Shi et al. 2005, 2006). They underline the attractiveness of the method since 
it enables handling mixed variable types, is invariant to monotonic transformation of the input 
variables and is robust to outlying observations. Moreover the RF-based dissimilarity easily 
deals with a large number of variables. 
 
The above reframing of clustering in terms of random forest procedure offers a link to recent 
interesting literature (Strobl et al. 2007, 2008) on measuring the importance of variables in a 
random forest context explicitly accounting for the (conditional) effects of correlated 
variables. These results suggest ways to do this also for clustering, but this will not be worked 
out here. See also R-software like part(y)itioning (Hothorn et al. 2006) which can be applied 
in this context. 
 
Another interesting related approach which deserves further exploration is offered by Questier 
et al. (2005), Smyth et al. (2006a) who put forward an extension of classification and 
regression trees, namely multivariate regression trees31, for (supervised and unsupervised) 
feature selection as well as for cluster analysis. The idea is to use the original data (x) as 
explanatory variables (x) and also as response variables (y=x), giving rise to so-called Auto-
Associative Multivariate Regression Trees. The suitability of this approach for clustering is 
further explored in Smyth et al. (2006b), while in Smyth et al. (2007) proposals are given to 
enhance the performance of the method by weighing the resulting cluster ensemble 
appropriately on basis of the prediction quality of the individual model. Also suggestions are 

                                                      
30 Concerning this similarity measure provided by the random forest method, one should realize that 
ideally the choice of the (dis)similarity measure ideally should be determined by the kind of patterns 
one hopes to find, which makes that there are situations where other dissimilarities are preferable. 
31 R-software has been developed for multivariate regression trees, namely MVPART  
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given for determining the variable importance and the number of clusters. For R-software on 
multivariate regression trees see the CRAN package mvpart32.  
 
 
 

Appendix E: Commonly used internal validation 
indexes 
 
 
In the sequel we present various internal validation indices (see also Günter, S, Bunke, H., 
2003): 
 
• Silhouette index: this composite index reflects the compactness and separation of clusters. 

A larger Silhouette index indicates a better overall quality of the clustering result 
(Kaufman & Rousseeuw, 1990). 
The Silhouette index (SI) calculates for each point a width depending on its membership 
in any cluster. This silhouette index is then the average of the silhouette widths of all 
points/objects: 
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where bi is the minimum of the average distances between the specific point i and the 
points in the other clusters, and ai is the average distance between the point i and all other 
points in the cluster where i is member of. The values s(i)=[b(i)-a(i)]/max[a(i),b(i)] vary 
between -1 and 1, where values close to -1 mean that the point is on average closer to 
another cluster than the one it belongs to, in fact indicating that the object i is 
‘misclassified’. Values close to 1 mean that the average distance to its own cluster is 
significantly smaller than to any other cluster, indicating that object i is ‘well classified’. 
When the width is near zero it is not clear whether the object should have been assigned 
to its current cluster or to the neighbouring cluster. The higher the silhouette index, the 
more compact and separated are the clusters. Kaufman and Rousseeuw, 1990, give 
guidance for the desirable size of the silhouette width; they consider a reasonable 
classification to be characterized by an average silhouette width above 0.5. Small 
silhouette width below 0.2 should be interpreted as a lack of substantial cluster structure. 

• Davies-Bouldin index: This measure tries to maximize the between-cluster distance while 
minimizing the distance between the cluster centroid and the other points. It expresses the 
average similarity between each cluster and its most similar one. Small values correspond 
to clusters that are compact and have well-separated centres. Therefore its minimum value 
determines the optimal number of clusters. 

• Calinski-Harabasz index: This index measures the between-cluster isolation and the 
within-cluster compactness, in terms of: 
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with N being the number of objects and SB and SW being the between and within-class 
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where Г={γij} is a partition matrix, with γij =1 if xj belongs to cluster i and 0 otherwise, 
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1 γ is the mean for the i-th cluster with Ni objects. The optimal 

number of clusters is determined by maximizing the CH-index. 
• Dunn index: this index is defined as the ratio between the minimum distance between two 

clusters and the size of the largest cluster. Depending on the choice of the distance 
measure and the size of the cluster, various Dunn indices can be defined. Maximizing this 
index reflects to a certain extent the maximization of the inter-cluster-distances while 
simultaneously minimizing the intra-cluster distances.  

• RMSSTD index (Root Mean Square Standard Deviation): This index is designed for 
hierarchical clustering, but can equally well be used for any clustering algorithm, and 
measures the homogeneity of the formed clusters (or the variance of clusters) at each step 
of the hierarchical clustering algorithm. A lower RMSSTD value indicates better 
clustering. 

• C index: This index (Hubert and Schultz, 1976) is defined as follows: 

minmax
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where S is the sum of distances over all pairs of objects from the same cluster. Let r be 
the number of those pairs. Then Smin is the sum of the r smallest distances if all pairs of 
objects are considered (i.e. also objects that can belong to different clusters). Similarly 
Smax is the sum of the r largest distances out of all pairs. Hence a small value of C 
indicates a good clustering. 

• Maulik-Bandyopadhyay index: This index is a combination of three terms 
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two and the number of clusters k is determined by maximizing MBk. 
• The Cophenetic correlation coefficient (CPCC) is an index to validate hierarchical 

clustering structures, and is based on the proximity matrix P={pij}, of the data X. It 
measures the degree of similarity between P and the cophenetic matrix Q={qij}, the 
elements of which express the proximity level where pairs of data points are grouped in 
the same cluster. 

CPCC is defined as: 
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with M=N(N-1)/2. The value of CPCC lies in the range of [-1,1] with an index value 
close to 1 indicating a significant similarity between P and Q. However for group average 
linkage (UPGMA) even large CPCC values (such as 0.9) cannot assure sufficient 
similarity between the two matrices. 

Remark: Also for Fuzzy clustering internal validation indices have been proposed, such as 
the partition coefficient (PC) and partition entropy (PE), the (extended) Xie-Beni index and 
the Fukuyama-Sugeno index, c.f. Pal-Bezdek (1995), Hammah and Curran (2000), Wu and 
Yang, 2005; cf. section 10.4.3 in Xue and Wunsch (2008). Wang and Zhang (2007) 
performed an extensive evaluation of the fuzzy clustering indices, while Zhang et al. 2008 
tested a newly proposed index. They conclude that cluster validation is a very difficult task 
and that ‘no matter how good your index is, there is a dataset out there waiting to trick it (and 
you)’ (Pal and Bezdek (1997)). Wu et al. (2009) recently analyse the robustness of the cluster 
indices for noise and outliers, and propose ways to robustify them. 
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