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Abstract:

Recent trends towards the construction of mass and energy conserving,
non-hydrostatic, and fully compressible flow models for purposes of numer-
ical weather prediction and regional climate modelling motivate the present
work. In this context, a proper numerical representation of the dominant hy-
drostatic balance is of crucial importance: unbalanced truncation errors can
induce unacceptable spurious motions, in particular near steep topography.

In this paper we develop a new strategy for the construction of discretiza-
tions that are “well-balanced” with respect to dominant hydrostatics. The
popular subtraction of a “hydrostatic background state” is avoided by the
introduction of local, time dependent hydrostatic reconstructions. Balanced
discretizations of the pressure gradient and the gravitation source term are
achieved through a judicious implementation of a “discrete Archimedes’
buoyancy principle”.

This strategy is applied to extend an explicit standard finite volume
Godunov-type scheme for compressible flows with minimal modifications.
We plan to address a large time step semi-implicit version of the scheme in
future work. The resulting method inherits its conservation properties from
the underlying base scheme and has three distinct and desirable features: (i)
It is exactly balanced, even on curvilinear grids, for a large class of near-
hydrostatic flows. (ii) It directly solves the full compressible flow equations
while avoiding the non-local, possibly time-consuming computation of a
(slowly time-dependent) background state. (iii) It is robust against details
of the implementation, such as the choice of slope limiting functions, or the
particulars of boundary condition discretizations.
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1. INTRODUCTION

Atmospheric motions on scales relevant for numerical weather prediction
and climate modeling are small perturbations of some hydrostatic state, see
[14], [35], [4], [23]. Albeit small, such perturbations are relevant and models
based on the Euler equations of compressible fluid mechanics, which do not
explicitly assume a hydrostatic balance, have been introduced for research
and operational purposes, [9]. For the present purposes it suffices to consider
the equations for a dry atmosphere without rotation. These equations are

ρt + ∇ · (ρv) = 0

(ρv)t + ∇ · (ρv◦v) + ∇p = −ρ∇Φ (1)

(ρe + ρΦ)t + ∇ · ((ρe + p + ρΦ)v) = 0

together with a state equation for the pressure p := ϕ(ρ, ρv, ρe), a time
independent gravity potential Φ and suitable initial and boundary conditions.
Nearly hydrostatic motions are such that

(∇p + ρ∇Φ)·k = O(ε) � |∇p·k| = O (|ρ∇Φ·k|) (2)

where k := ∇Φ/|∇Φ| is a unit vector aligned with the acceleration of
gravity and ε is of the order of magnitude of (ρv)t ·k. Importantly, the
smallness of ε is due to cancellation of almost equal quantities and the
“vertical” pressure gradient ∇p·k does not vanish as ε → 0. For nearly
hydrostatic motions, standard numerical approximations for (1) are either
inaccurate or unacceptably expensive. A detailed analysis will be presented
in section 2, but the reason for inaccuracy is obvious: On grids of grid
spacing h, r-th order approximations to ∇p, ρ∇Φ introduce local truncation
errors (LTE) of order hr. Depending on the grid spacing h and on the actual
value of ε, these spurious accelerations can be orders of magnitude larger
than the true vertical acceleration (ρv)t ·k.

To motivate this quantitatively, consider a typical low Mach number flow,
i.e., M � 1, with a horizontal scale of 10 km. Its computational rep-
resentation would necessitate a non-hydrostatic model. Let its vertical
characteristic scale be d, and the pressure scale height D ≈ 10 km. In
the absence of strong acoustic modes, deviations of pressure from a nearly
time invariant background pressure distribution are then of order O(M 2), as
is known from low Mach number asymptotic theories [39], [22]. Vertical
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accelerations scale as |dw/dt| ≈ M 2pref/(ρref d), and we find that
∣
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For bulk motions that affect the entire pressure scale height we have d ≈ D
and ε = O(M 2).

If we require next that the relative (dimensionless) LTEs of a second order
accurate numerical computation, i.e. LTEs ≈ (h/D)2, are at least by one
order of magnitude smaller than ε, then we obtain the following requirement
on the vertical grid spacing h:

(

h

D

)2

< 0.1ε ≈ 0.1 M 2D

d

For realistic flow Mach numbers M ≈ 0.03 and situations in which d ≈ D,
this estimate yields

h

D
< 0.01 .

This corresponds to vertical resolutions of 100 layers, which is at the limits
of feasibility of production runs in NWP or regional climate modelling.

The problem sketched above is typical. It always occurs in the approxi-
mation of nearly balanced solutions, the balance being often between flux
divergence and source term. It also arises in the numerical solution of the
shallow water equations with bottom topography, in steady state reactive
flows, and in many other fields. Numerical methods conceived to cope with
this problem are called well balanced methods, see [6], [16], [19], [31]. A
natural approach for constructing well balanced methods is via balanced
solutions. For nearly hydrostatic flows these are functions p(0), ρ(0) such that

(∇p(0) + ρ(0)∇Φ)·k = 0 (3)

If both ∇p·k and ρ∇Φ·k are order ε deviations from ∇p(0) ·k, ρ(0)∇Φ·k
respectively, i.e.

∇ (p − p(0))·k = O(ε) (ρ − ρ(0))∇Φ·k = O(ε) , (4)

then p(0), ρ(0) can be used to rewrite (1.2) as

(ρv)t + ∇ · (ρv◦v) + ∇δp = −δρ∇Φ

with δp := p− p(0), δρ := ρ− ρ(0) and both ∇δp·k and δρ∇Φ·k of order ε.
Any r-th order approximate gradient operator will then lead to well balanced
LTEs of order εhr.
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The problem is, of course, that of computing p(0), ρ(0). In many models
for numerical weather forecasting (NWF) and climate research p(0), ρ(0)

are approximated by time independent horizontally constant “reference”
hydrostatic profiles. In general, these functions satisfy (3) but not (4) leading
to LTE which do not scale with ε. One can argue that, for short time NWF,
good approximations for p(0), ρ(0) can be extracted from the initial data. In
climate simulations, however, these approximations may significantly differ,
after some finite time, from the slowly evolving hydrostatic components p(0),
ρ(0).

Numerical methods for reducing the LTE associated with the discretization
of∇p have been proposed over the past three decades, see [7], [34], [43] and,
more recently, [41], [24] and references therein. In all these approaches the
governing equations – hydrostatic or non-hydrostatic Boussinesq approxi-
mations and, more recently, full compressible Navier-Stokes equations – are
not formulated in a Cartesian coordinate system, say (x, z) for horizontal
and vertical coordinate, respectively. Instead, a coordinate transformation
to curvilinear terrain following coordinates (ξ, ς) is introduced, e.g., as pro-
posed in [13]. In this framework, approximations to differential operators
like ∂p/∂x are computed by summing up products between finite difference
approximations to ∂p/∂ξ, ∂p/∂ς (taken along the grid coordinate lines)
and approximations of the metric terms ∂ξ/∂x, ∂ς/∂x. In this context, the
balancing problem consists, roughly speaking, of finding approximations to
these terms that minimize the LTE associated with ∂p/∂x.

Here we follow a novel approach. It relies on a conservative finite volume
formulation of the governing equations with vectors described in a Cartesian
frame of reference. This is canonical in finite volume methods, but does
not mean that one uses also a Cartesian computational grid, see figure 1.
Moreover, the approach employs local approximations of p(0), ρ(0) and a
discrete version of Archimedes’ buoyancy principle.

Consider standard finite volume approximations of the exact pressure
gradient∇p and of the exact source term ρ∇Φ. Let Pi, Ri be approximations
of p, ρ on a cell ci of boundary ∂ci. Then, finite volume approximations of
the cell averages δci

(∇p), δci
(ρ∇Φ) of ∇p, ρ∇Φ on ci read

δci
(∇p) ≈

1

|ci|

∮

∂ci

Pi n dS

δci
(ρ∇Φ) ≈

1

|ci|

∫

ci

Ri∇Φ dV

(5)

where n is the unit vector normal to ∂ci and pointing outwards, see figure
1, and we have used the divergence theorem to replace integration on ci by
a boundary integral in (5.1).
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y ∇Φ

1

|ci|

∮

∂ci

P (0)

i n dS

n

ci

∂ci

xi

1

|ci|

∮

∂ci

Pin dS

≈ ∇p + ρ∇Φ

x

ξ

P (0)

i (ξ)

FIG. 1. Control volume ci, acceleration of gravity −∇Φ, local hydrostatic pressure P (0)

i and approximate
∇p + ρ∇Φ.

Notice that, in numerical methods, the integrals on the right hand side are
usually approximated by finite sums. This fact, however, is not relevant for
our discussion. Let P (0)

i , R(0)

i be exact solutions of

∇P (0)

i + R(0)

i ∇Φ = 0

with P (0)

i , R(0)

i interpolating Pi, Ri in the center xi of ci. Using these
functions, the integral on the right hand side of (5.2) can be replaced, with
second order accuracy, by

1

|ci|

∫

ci

Ri∇Φ dV =
1

|ci|

∫

ci

R(0)

i ∇Φ dV + O(h2
i )

= −
1

|ci|

∮

∂ci

P (0)

i n dS + O(h2
i )

(6)

We have thus approximated the source term in discrete gradient form by
replacing the volume integral of R(0)

i ∇Φ by means of the boundary integral
of P (0)

i n. This is what we referred to as discrete Archimedes’ principle.
The above formulation yields the following second order finite volume
approximation to the average of ∇p + ρ∇Φ over ci:

δci
(∇p + ρ∇Φ) ≈

1

|ci|

∮

∂ci

(

Pi − P (0)

i

)

n dS (7)
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This formulation and a careful construction of P (0)

i allows us to control the
scaling of the LTE associated with the discretization of ∇p + ρ∇Φ. A few
remarks are in order here:

The approach outlined above is independent of the number of space di-
mensions and does not require any special grid arrangement. In particular,
it does not require any grid coordinate to be aligned with the direction of
the acceleration of gravity ∇Φ and can be used both on structured and on
unstructured, e.g., triangular grids, see x, y coordinate system in figure 1.

In the proposed formulation, numerical approximations to the gravity
source term are always computed as vector quantities. As shown in (7),
this is done by using exactly the same discrete gradient operator which is
used for the computation of the approximate pressure gradient. This is
crucial for guaranteeing the proper scaling of the LTEs associated with the
discretization of ∇p + ρ∇Φ.

In the multidimensional case, in particular, this is the key for avoiding
unbalanced approximations of projections of ∇p+ρ∇Φ also in “horizontal”
directions normal to ∇Φ.

As already mentioned, such approximations are constructed, in standard
finite differences methods on terrain following coordinates, by summing up
products between finite difference approximations of the partial derivatives
of p along grid coordinates and metric coefficients. In the same methods,
however, projections of ρ∇Φ in horizontal directions are set to zero i.e. they
are computed exactly ! Virtually all numerical methods used in NWF are
based on this separation of terms which are physically in balance. In fact,
such methods require sophisticated (optimal) approximations, for instance
of the metric terms, see [24], to enhance LTE cancellation.

In our approach this cancellation is obtained per construction. We first
compute a numerical approximation to the sum∇p+ρ∇Φ with (7) and then
project it in no matter what direction. As long as Pi − P (0)

i is of order ε, the
LTE associated with any projection scales with ε. This holds independently
of the quadrature rule used to approximate the integral on the right hand side
of (7) or, in the finite difference parlance, for any consistent discretization
of the metric terms.

The approach proposed here allows to accurately describe nearly hydro-
static flows by means of local operations. P (0)

i , R(0)

i are cell functions that
can be computed, usually analytically and at almost zero computational cost,
on the basis of local data. This approach can be implemented with minimal
modifications of the recovery stage of standard finite volume schemes. The
implementation in existing standard finite difference methods is straightfor-
ward.

By avoiding the introduction of global approximations to p(0), ρ(0), the
approach proposed here does not destroy the locality of the flux function
of the Euler equations. This property is essential for constructing Godunov
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type finite volume methods, whose built-in conservation properties make
them promising candidates for climate applications. This class of schemes
is considered in the present work.

In the next section we will analyze a one-dimensional standard central
scheme and explain our strategy for controlling the LTE associated with
∇p + ρ∇Φ in this simple framework. We also introduce the basic notation.
In section 3 we extend these ideas and construct a class of second order
well balanced Godunov type finite volume methods. In section 4 we discuss
method validation criteria and present numerical results for a second order
method in one and two space dimensions.

2. BALANCING IN THE CONTEXT OF CENTRAL FINITE DIFFERENCES

Let q := {ρ, ρv, ρe} be an exact solution of (1) for some initial and
boundary conditions, a state equation ϕ and a gravity potential Φ. A semi-
discrete time dependent numerical method for (1) is a rule

dQω

dt
= Aω(Qω, Φ)

to advance a set Qω(t) of time dependent approximations to some functionals
qω(t) := δω(q(·, t)) of q(·, t). These may be the values of q(·, t) at some set
of grid points ω = x := {x1, . . . , xn}

δ � (q(·, t)) := {δ �
1(q(·, t)), . . . , δ �

n
(q(·, t))} δ �

i
(q(·, t)) := q(xi, t)

as in finite difference methods, or the averages of q on grid cells ω = c :=
{c1, . . . , cn}

δc(q(·, t)) := {δc1(q(·, t)), . . . , δcn
(q(·, t))} δci

(q(·, t)) :=
1

|ci|

∫

ci

q(x, t) dx

as in finite volume methods. The rule Aω is written in terms of consistent
approximations to the functionals of the differential operators appearing in
(1). For the discussion to be developed here the dependence of q, qω, Qω,
Aω on the time t is nonessential. We therefore simplify the notation and
neglect the dependency of these and other quantities on t for the rest of this
section.

We have pointed out that standard approximations Gω(Qω), Sω(Qω, Φ)
to δω(∇p), δω(ρ∇Φ) introduce local truncation errors even when applied to
exact, nearly hydrostatic data Qω = qω. Furthermore, on finite grids these
errors can be orders of magnitude larger than the true, order ε, acceleration.
For example, in one space dimension and on a regular grid xi := ih,
i = −∞, . . . ,∞ and with exact, nearly hydrostatic data pxi

:= ϕ(q(xi)),
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ρxi
:= ρ(xi), the approximation

Gxi
:=

pxi+1
− pxi−1

2h
Sxi

:= −ρxi
∇Φ(xi) (8)

leads, for sufficiently smooth data ϕ(q), to

Gxi
− Sxi

= O(ε) +
1

6

d3ϕ

dx3

∣

∣

∣

∣

x=xi

h2 + o(h2) . (9)

The O(h2) term clearly comes from the approximation of δxi
(dp/dx).

In general, the problem of constructing well balanced approximations to
δω(∇p), δω(ρ∇Φ) can therefore be stated as follows

Problem 2.1. Given a nearly hydrostatic state q in the sense of (2), and
discrete approximations Qω to qω with Qω = qω + O(εhr) on some grid of
grid parameter h, find approximations Gω(Qω), Sω(Qω, Φ) to δω(∇p) and
δω(ρ∇Φ) such that

lim
ε→0

h=const

(Gω − Sω) = 0 . (10)

This problem is difficult to solve in general and we will consider a particu-
lar case. Here we are not interested in solving the problem of reconstructing
order εhr approximations to q, ϕ(q) from given order εhr approximations to
qω. The solution of this problem may be trivial or quite difficult depending
on the order of accuracy r, on the functionals δω, and on the functional form
of ϕ, see [17].

We assume we are given exact point values p � = ϕ(q(x)) of nearly
hydrostatic data q. Under this assumption consider, in one space dimension
and for each point xi of a regular grid of grid spacing h, functions P (0)

i , R(0)

i

defined locally near xi through

P (0)

i , R(0)

i :
dP (0)

i

dx
= −R(0)

i

dΦ

dx
, P (0)

i

∣

∣

x=xi
= pxi

,

with P (0)

i , R(0)

i being coupled through some given distribution Θ(0)

i of, e.g.,
the entropy (potential temperature) θ(p, ρ),

θ(P (0)

i (x), R(0)

i (x)) = Θ(0)

i (x) .

Moreover, let

Pi(x) := P (0)

i (x)+(x−xi)

(

pxi+1
− P (0)

i (xi+1)
)

−
(

pxi−1
− P (0)

i (xi−1)
)

2h
∀x ∈ IR .

P (0)

i and R(0)

i depend on the initial condition pxi
and on the functions θ

and Θ(0)

i . Θ(0)

i is an approximation to θ around xi. The only constraint
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we impose on Θ(0)

i is that Θ(0)

i (xi) = θ(pxi
, ρxi

). This constraint and the
initial condition for P (0)

i guarantee that P (0)

i , R(0)

i interpolate p, ρ at x = xi,
respectively. For simple choices of the thermodynamic variable θ and its
local approximation Θ(0)

i , P (0)

i and R(0)

i can be computed analytically at
virtual zero computational cost. With P (0)

i and Pi one can construct, for
each point xi, the following “balanced” approximations to δxi

(dp/dx) and
δxi

(ρdΦ/dx)

Gb
xi

:=
Pi(xi+1) − Pi(xi−1)

2h
Sb

xi
:= −

1

2h

xi+1
∫

xi−1

R(0)

i (x)
dΦ

dx
(x) dx (11)

Notice that, per construction, 2hSb
xi

= P (0)

i (xi+1)−P (0)

i (xi−1) i.e. δxi
(ρdΦ/dx)

has been approximated via the discrete Archimedes’ buoyancy principle
sketched in the introduction. Notice also that Gb

xi
and Sb

xi
are second order

approximations to dp/dx and ρdΦ/dx at x = xi in the standard sense. In
particular, Gb

xi
= Gxi

(see (8), left) and the local truncation error associated
with this operator does not scale with ε. One has

Gb
xi
− Sb

xi
=

(

pxi+1
− P (0)

i (xi+1)
)

−
(

pxi−1
− P (0)

i (xi−1)
)

2h

= O(ε) +

∞
∑

k=1

1

(2k + 1)!

(

d2k+1ϕ

dx2k+1

∣

∣

∣

∣

x=xi

−
d2k+1P (0)

dx2k+1

∣

∣

∣

∣

x=xi

)

h2k .

(12)

As in (9), the error associated with the approximation of dp/dx + ρdΦ/dx
at x = xi depends on the grid parameter h. Here, however, we have control
over this error. First of all notice that, for all P (0)

i , R(0)

i constructed with the
exact θ-distribution, i.e., with Θ(0)

i (x) = θ(p(x), ρ(x)) one has

d2k+1ϕ

dx2k+1

∣

∣

∣

∣

x=xi

−
d2k+1P (0)

dx2k+1

∣

∣

∣

∣

x=xi

= O(ε) ,

and the scheme is well balanced. Of course this distribution is not known
exactly in general but must itself be approximated discretely. In this case one
can still control the balancing error by constructing higher order accurate
approximations to θ, e.g., by means of polynomial reconstructions. Equation
(12) also shows that Gb

xi
, Sb

xi
are well balanced for all p = ϕ(q), ρ such

that dθ/dx, dΘ(0)

i /dx = O(ε). This is a realistic scenario corroborated by
non-dimensionalizations of a typical Brunt-Väisälä-frequency (buoyancy-
frequency) of N ∼ 10−2 s−1, e.g., in [23, 33]. The authors show that this
order of magnitude for N is equivalent with small relative entropy variations
of order δθ/θ ∼ 10−1. The special case of a homentropic atmosphere with
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Θ(0)

i chosen so that θ(p(x), ρ(x)) = Θ(0)

i (x) ≡ const suggests itself as a
crucial analytical test case for validating our numerical approach and, up to
a certain extent, its implementation, see section 4.

As mentioned in the introduction we cannot, at this stage, propose a
method which is well balanced for arbitrary nearly hydrostatic initial data.
However we have characterized classes of solutions for which our approach
does yield well balanced approximations and we have argued that these so-
lutions are relevant for typical atmospheric motions. For nearly hydrostatic
flows not belonging to these classes of solutions improved balancing prop-
erties can still be achieved by increasing the accuracy of the approximation
of a single scalar variable, such as the entropy or potential temperature. In
the next section we apply this approach to construct well balanced finite
volume methods in conservation form.

3. WELL BALANCED GODUNOV TYPE FINITE VOLUME METHODS

Finite volume Godunov type methods for (1) are rules to compute numer-
ical approximations Qc(t) to the averages δc(q(·, t)) of q(·, t) on some set
of grid cells c. For the purpose of constructing well balanced finite volume
methods we only need to consider semi-discrete time dependent rules. In
one space dimension and on a regular grid xi := ih, i = −∞, . . . ,∞, these
have the form:

−h
d

dt
Qci

(t) = F (Qi(xi + h/2, t), Qi+1(xi + h/2, t), Φ(xi + h/2))

− F (Qi−1(xi − h/2, t), Qi(xi − h/2, t), Φ(xi − h/2))

− Sci
(Qc, Φ) .

(13)

Qci
(t) is a numerical approximation to δci

(q(·, t)), the average of q on
(xi −h/2, xi +h/2). F is a numerical flux consistent with the flux function
of (1):

F (q, q, Φ) = f(q, Φ) f(q, Φ) :=





ρv
ρv2 + p

(ρe + p + ρΦ)v





Sci
(Qc, Φ) is a consistent approximation to the integral of the right hand side

of (1) over ci. Equipped with a quadrature rule for time integration and with
some initial cell average, (13) yields finite volume methods in conservation
form. The function Qi(·, t) is an approximation to the exact solution q(·, t)
on the i-th cell ci. Let Q(·, t) be the relation obtained by piecing together
all local approximations Qi(·, t) i.e. ∀x ∈ IR

Q(x, t) := Qi(x, t) for x ∈ [xi − h/2, xi + h/2] .
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For the rest of this section we will simplify the notation and drop the depen-
dency of all quantities on time. Q is reconstructed from the approximate
cell averages Qc. In standard methods it is a piecewise polynomial function
of degree one or two, see, e.g., [30]. On each cell, degree one approxima-
tions to q can be easily constructed by localizing the cell averages in the
cell centers and adding an approximation to dq/dx in the cell centers to the
localized values. This approximation is usually computed by comparing
neighboring finite differences through a limiting function L

Qi(x) := Qci
+ (x − xi)L

(

Qci
− Qci−1

h
,
Qci+1

− Qci

h

)

∀x ∈ IR .

(14)
L is constructed for Q to satisfy two conditions. The first condition requires
Q to be a second order approximation to q for smooth exact data Qc = δc(q).
The second condition requires the total variation of Q to be less or equal to
the total variation of Qc in order to avoid spurious oscillations in the vicinity
of sharp transitions, see [30].

In the previous section we have seen how to construct well balanced ap-
proximations to the grid point values of dp/dx + ρdΦ/dx from given exact
grid point values of p = ϕ(q) and ρ. The task proved to be particularly
straight-forward for homentropic and weakly stratified data. The approach
consisted of 3 steps: first compute hydrostatically balanced local approx-
imations P (0)

i , R(0)

i to the hydrostatic components p(0), ρ(0) of p = ϕ(q)
and ρ. Second, construct local approximations Pi to p by adding linear
approximations of p − p(0) to P (0)

i . Third, given linear functionals Gb
xi

,
construct consistent discretizations Sb

xi
of the source term which exactly

balance the hydrostatic components Gb
xi

(P (0)

i ). The keys for constructing
Sb

xi
were the hydrostatic relationship between P (0) and R(0) imposed in step

1 per construction and the linearity of Gb
xi

.
This construction can be extended to Godunov type finite volume methods

by replacing standard piecewise polynomial reconstructions with functions
involving the local approximations P (0)

i , R(0)

i in analogy with the derivations
in the previous section. There is a caveat, however. In Godunov type
methods the discrete pressure gradient is not a stand alone quantity. It is a
component of the discrete flux divergence appearing on the right hand side
of (13). The flux divergence depends, through the numerical flux function,
both on the interface values of Qi and of Qi−1 and Qi+1. We can still apply
the 3-tier approach of section 2 but we must be able to ensure that, in the limit
of exactly hydrostatic data, Q is continuous through cell interfaces. If this
condition is not satisfied the approximate flux divergence will depend both
on Qi and, through the numerical flux function, on Qi−1 and Qi+1 in a non-
trivial and non-linear fashion. In this case it is of course still possible to apply
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the discrete Archimedes’ principle to construct a consistent discretization
of the source term in gradient form. This discretization, however, will not,
in general, balance the flux divergence.

On the other hand, continuity of Q and consistency of the numerical
flux function allow for the pressure gradient component of the discrete flux
divergence to be expressed explicitly: Let xi± := xi ± h/2, and let Fρv, fρv

denote the ρv components of the approximate and exact flux functions F
and f , respectively. Then the continuity conditions

Qi−1(xi−) = Qi(xi−) , Qi(xi+) = Qi+1(xi+)

imply

∆Fρv,i := Fρv (Qi(xi+), Qi+1(xi+), Φ(xi+)) − Fρv (Qi−1(xi−), Qi(xi−), Φ(xi−))

= Fρv (Qi(xi+), Qi(xi+), Φ(xi+)) − Fρv (Qi(xi−), Qi(xi−), Φ(xi−))

= fρv (Qi(xi+), Φ(xi+)) − fρv (Qi(xi−), Φ(xi−))

= ϕ(Qi(xi+)) − ϕ(Qi(xi−)) + ρv2(Qi(xi+)) − ρv2(Qi(xi−))

(15)

This information is crucial for the subsequent construction of a consistent
well balanced discretization in that we will require cell interface disconti-
nuities of the reconstructed distributions, such as Qi(xi−) − Qi−1(xi−), to
vanish sufficiently rapidly as ε → 0.

Let T be the transformation which maps q to the so-called primitive
variables u: density, velocity and pressure:

T : IRN 3 q :=





ρ
ρv

ρe



 → u = T (q) :=





ρ
ρv/ρ
ϕ(q)



 ∈ IRN .

N is equal to 2 plus the number of space dimensions. For the one-
dimensional finite volume method described above N = 3. We describe
the construction of a well balanced finite volume method in this case. The
extension to the multidimensional case and to the case in which the equa-
tions are augmented by some evolution equation for tracers, water vapor,
or chemical species is straightforward, see algorithms 1 and 2 in the next
section. Let Uci

= {Rci
, Vci

, Pci
} = T (Qci

) denote the primitive variables
associated with the approximate cell averages. As with Qci

we localize these
values in the cell centers xi. This is consistent with second order accuracy.
In this manuscript we stay within the framework of second order methods
and use Qci

(and Uci
, Rci

, etc.) to denote both approximate cell averages
and approximate cell center values. For the much more involved problem
of recovering higher order point values from higher order cell averages see
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[17]. On each cell, let R(0)

i , P (0)

i be the functions computed in the previous
section with initial values P (0)

i

∣

∣

x=xi
= Pci

and with Θ(0)

i satisfying the inter-

polation condition Θ(0)

i (xi) = θ(Pci
, Rci

). Then R(0)

i , P (0)

i interpolate Rci
,

Pci
in x = xi, respectively. Let also V (0)

i (x) := Vci
∀ x ∈ IR.

With U (0)

i := {R(0)

i , V (0)

i , P (0)

i } one can construct a local approximation
Q(0)

i to the hydrostatic component of q in each cell:

Q(0)

i (x) := T −1
(

U (0)

i (x)
)

∀x ∈ IR .

With Q(0)

i one can construct, again on each cell, the following local approx-
imation to q

Qi(x) := Q(0)

i (x) + (x − xi)L

(

Q(0)

i (xi−1) − Qci−1

h
,
Qci+1

− Q(0)

i (xi+1)

h

)

(16)
∀ x ∈ IR. Notice that, due to the interpolation properties imposed on R(0)

i ,
P (0)

i and V (0)

i , Q(0)

i (xi) = Qci
. Thus, the numerator of the first argument

of L can be written as
(

Qci
− Q(0)

i (xi)
)

−
(

Qci−1
− Q(0)

i (xi−1)
)

. Simi-
larly, the numerator of the second arguments reads:

(

Qci+1
− Q(0)

i (xi+1)
)

−
(

Qci
− Q(0)

i (xi)
)

. These expanded forms make clear that the arguments ofL
are one sided approximations to the slope of the deviation q− q(0) at x = xi.
We have not increased the order of accuracy of the standard reconstruction
(14); q − q(0) is still approximated by piecewise linear functions. However,
we have provided an improved representation of q(0) by introducing exact
solutions of the hydrostatic relationship in the construction of Qi. The last
step is to define a balanced approximation for the source term Sci

(Qc, Φ).
Similarly to the previous section we take

Sci
:= −

xi+
∫

xi−

R(0)

i (x)
dΦ

dx
(x) dx =

xi+
∫

xi−

dP (0)

i

dx
dx = P (0)

i (xi+) − P (0)

i (xi−) .

(17)
Let us now consider the finite volume method (13) with Qi, Sci

defined
according to (16) and (17), respectively. Qi depends on the cell averages of
a local neighborhood of ci, say n(ci). In the one-dimensional case n(ci) is
simply the set {ci−1, ci, ci+1}. We say that ci is in local hydrostatic balance
with its neighborhood n(ci) if Qcj

= Q(0)

i (xj) ∀ j : cj ∈ n(ci) i.e., if the
localized neighboring cell averages lie on the local approximate hydrostatic
manifold Q(0)

i of ci (Qci
is always identical to Q(0)

i (xi) per construction). In
this case Qi ≡ Q(0)

i because L(0, 0) is always zero for consistency. Consider
a set of cell averages Qc in local hydrostatic balance i.e.

Qc : Qcj
= Q(0)

i (xj) ∀j : cj ∈ n(ci) ∀i : ci ∈ c .
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Also, let the flow velocity be identically zero i.e. vci
= 0 ∀ ci ∈ c. Then,

under suitable boundary conditions, we should expect Qc to be exactly
balanced and therefore a fixed point of (13). This is indeed the case,
provided Q is continuous through cell interfaces. In this case (15) and (17)
imply, together with Qi = Q(0)

i

−h
d

dt
Qci

= ϕ(Qi(xi+)) − ϕ(Qi(xi−)) −
(

P (0)

i (xi+) − P (0)

i (xi−)
)

= ϕ(Q(0)

i (xi+)) − ϕ(Q(0)

i (xi−)) −
(

P (0)

i (xi+) − P (0)

i (xi−)
)

= 0

(18)

This analysis can be easily extended to the multidimensional case in which,
in general, the acceleration of gravity−∇Φ is not aligned with any grid coor-
dinate. In the x-z slice model shortly described in section 4, for instance, the
neighborhood n(ci,j) of an internal cell is the set {ci−1,j, ci+1,j, ci,j, ci,j−1, ci,j+1}
and a multidimensional analogon of (18) can be easily derived. The con-
tinuity of Q implies some restrictions both on the classes of data for
which the method can be exactly balanced and on the choice of the en-
tropy functions used to construct Q(0)

i . Notice that homentropic data Qc :
θ(ϕ(Qc), ρc) = const. are, under the assumptions discussed above and for
Θ(0)

i = θ(ϕ(Qci
), ρci

) = const., exactly balanced.
Thus, homentropic, zero velocity initial data with suitable boundary con-

ditions are a natural starting point for validating implementations of well
balanced methods: a failure to preserve such initial data unmistakably in-
dicates some implementation error. Homentropic, zero velocity initial data
characterize the first case discussed in the next section.

The case of almost hydrostatic data cannot be analyzed as easily as in
the finite difference case. The starting point here would be to estimate the
second term on the right hand side of (16) in much the same way as done for
the central finite difference in (12). One could then insert the result into the
numerical flux function and use Lipschitz continuity to obtain an estimate
for dQci

/dt. We do not expand on this analysis here.

4. METHOD VALIDATION CRITERIA AND RESULTS

In the previous section we have proposed a strategy for constructing well
balanced Godunov type finite volume methods. We have avoided specifying
important components of the method – among others the time discretization,
the limiting function L, the numerical flux F and the state equation ϕ – and
suggested that any standard method defined in terms of these components
can be modified to survive the hydrostatic limit by simply replacing recovery
and source term discretization.

Of course, we have, either implicitly or explicitly, required L, F , ϕ and, in
general, the standard method to satisfy some reasonable assumptions. Under
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these assumptions, e.g., consistency of the numerical flux, we have shown
in section 3 that zero velocity, hydrostatically balanced homentropic data
are, for Θ(0)

i = θ(ϕ(Qci
), ρci

), stationary solutions of the modified method
(13), (16) and (17). Thus, we have identified a class of discrete solutions for
which the modified method is exactly balanced. Ideally we would like to
show that, again under reasonable assumptions, any standard method, when
modified according to our strategy,

• is well balanced in that initial data satisfying (2) generate order ε accel-
erations independently of the grid size, h,
• converges, and
• is second order accurate.

Moreover, it would be desirable to construct particular well balanced meth-
ods which yield accurate results for standard benchmark problems, as de-
scribed, e.g., in [3], [36], [20], [40], [21].

In this section we give some numerical evidence that, at least for a par-
ticular method, these goals are achieved. We start with a specification of
the concrete method we have implemented for simulating the flow of a
calorically perfect gas. The equation of state used below reads

ϕ(q) = ϕ(ρ, ρv, ρe) := (γ − 1)(ρe − 1/2ρv ·v)

with γ = 1.4. ∇Φ is taken to be constant and equal to gk where g is the
acceleration of gravity and k is one of the unit basis vectors of a Cartesian
frame of reference. Two dimensional computations have been done on a
curvilinear grid fitted to the bottom topography. In all computations we have
used uniform spacing both in the horizontal and in the vertical direction, the
latter being that oriented in the direction of k. This means that, in a two
dimensional domain

IR2 ⊃ Ω :=
{

x1, x2 : x1 ∈ [a, b], x2 ∈ [zb(x
1), zt(x

1)]
}

between some bottom topography x2 = zb(x
1) and some upper boundary

x2 = zt(x
1) the coordinates x1

i,j , x2
i,j of the i, j-th grid point are

x1
i,j := x1

i = a + i (b − a)/(n1 − 1)

x2
i,j := zb(x

1
i ) + j

(

zt(x
1
i ) − zb(x

1
i )
)

/(n2 − 1)

for i ∈ In, j ∈ Jn with In and Jn one-dimensional index ranges. The
finite volumes ci,j ∈ c have been constructed by connecting the grid points
by means of straight line segments. In all cell centers, we assume that a
mapping J from a computational space y := {y1, y2} into the physical
space x := {x1, x2} exists, is regular and such that:

yk = (J −1(xi,j))
k =

{

i if k = 1 ,

j if k = 2 .
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Time integration is done with the standard 2 step Runge-Kutta method. The
maximal time step ∆tmax is estimated as follows

∆tmax := min
ω ∈ c

(

2
∑

k=1

1

∆tmax
ω,k

)−1

, ∆tmax
ω,k := min

(

∆tmax
ω,k−, ∆tmax

ω,k+

)

.

∆tmax
ω,k is the maximal time step which can be used for an explicit update of

ω based on the fluxes through the interfaces, ∂ωk− and ∂ωk+ crossed by the
k-th coordinate lines. For ω = cm,n, for instance, ∂ω1± = cm,n ∩ cm±1,n

and ∂ω2± = cm,n ∩ cm,n±1. ∆tmax
ω,k− and ∆tmax

ω,k+ are computed according to
the following CFL rules, [38]:

∆tmax
ω,k± :=

±|ω |

|∂ωk±|max
p

(

λp(Qωk±
, n|∂ωk±

), λp(Qω, n|∂ωk±
), 0
)

where |ω| is the area of ω and |∂ωk−|, |∂ωk+| are the lengths of ∂ωk− and
∂ωk+, respectively. ωk− and ωk+ are those neighboring cells of ω which
share the interfaces ∂ωk− and ∂ωk+ with ω. λp(q, n) are the eigenvalues of
the Jacobian of the flux function of the Euler equations

f(q, n) :=





ρv ·n
ρvv ·n + pn
(ρe + p)v ·n





of (1). n|∂ωk−
, n|∂ωk+

are unit vectors normal to ∂ωk−, ∂ωk+, respectively,
both oriented in the increasing direction of the k-th coordinate. All compu-
tations have been done with ∆t = 0.8∆tmax. On each finite volume ci,j ∈ c,
the functions Q(0)

i,j , Qi,j are reconstructed from the approximate cell averages
Qc and evaluated, at fixed discrete times and in the mid-points xi±,j and
xi,j± of the interfaces between ci,j and ci±1,j , ci,j±1, respectively, according
to Algorithm 1.

As mentioned in section 2, step 2 of algorithm 1 can be improved by
means of more accurate local approximations of entropy. All computations
presented in this section have been done with piecewise constant entropy
profiles: P

(0)
i,j /R

(0)
i,j

γ
= ϕ(Qci,j

)/Rγ
ci,j

.
Notice that different approximations to ∇(q − q(0)), GiδQi,j and GjδQi,j,

are used in the evaluation of Qi,j at cell interfaces crossed by the first
and by the second coordinate lines, respectively. In the computation of
these approximate gradients the metric terms ∂yl/∂xm have been computed
by inverting the Jacobian matrix of J . The limiting function L is the
monotonized central limiter, see [26], [42]. For scalar arguments a and b
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Algorithm 1 2d: interface mid-point recovery

1: for all i, j : i ∈ Ic, j ∈ Jc do
2: Compute U

(0)
i,j (ξ) := {R

(0)
i,j (ξ), V

(0)
i,j (ξ), P

(0)
i,j (ξ)} with R

(0)
i,j (ξ),

P
(0)
i,j (ξ) such that

dP
(0)
i,j

dξ
= −R

(0)
i,j g , P

(0)
i,j (0) = ϕ(Qci,j

) , P
(0)
i,j /R

(0)
i,j

γ
= ϕ(Qci,j

)/Rγ
ci,j

,

and V
(0)
i,j = V ci,j

.
3: Compute the (vertical) distances ξi±1,j, ξi,j±1 of the neighbor cell

centers xi±1,j, xi,j±1 of ci,j from the normal to k passing through
xi,j .

4: Evaluate Q
(0)
i,j := T −1(U

(0)
i,j ) in the cell centers xi±1,j and compute the

deviation between neighboring localized approximate cell averages
and the these values:

δQi±1,j := Qci±1,j
−Q

(0)
i,j (ξi±1,j) , δQi,j±1 := Qci,j±1

−Q
(0)
i,j (ξi,j±1)

5: for k = 1 to 2 do
6: Compute left and right approximations to the gradient of q − q(0)

in ci,j

GδQk
i±,j := δQi±1,j

∂y1

∂xk
+

1

4
(δQi,j+1− δQi,j−1+ δQi±1,j+1− δQi±1,j−1)

∂y2

∂xk

GδQk
i,j± :=

1

4
(δQi+1,j− δQi−1,j+ δQi+1,j±1− δQi−1,j±1)

∂y1

∂xk
+ δQi,j±1

∂y2

∂xk

7: Compute limited approximations to the gradient of q − q(0) in ci,j

GiδQ
k
i,j := L

(

GδQk
i−,j, GδQk

i+,j

)

, GjδQ
k
i,j := L

(

GδQk
i,j−, GδQk

i,j+

)

8: end for
9: Evaluate Qi,j at the mid-points xi±,j, xi,j± of the interfaces between

ci,j and its neighborhood:

Qi,j(xi±,j) = Q
(0)
i,j (xi±,j) + (xi±,j − xi,j) · GiδQi,j

Qi,j(xi,j±) = Q
(0)
i,j (xi,j±) + (xi,j± − xi,j) · GjδQi,j

10: end for
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x1

x2 k

ci,j

xi,j+1

xi,j

xi+,j

ξi,j+1

0
ξi+,j

FIG. 2. Control volume ci,j , “vertical” direction
�

, Cartesian frame of reference (x1, x2), coordinate
directions and distance functions.

this function is

L(a, b) :=







0 if ab ≤ 0,
a

|a|
min

(

2 min(|a|, |b|),
|a + b|

2

)

if ab > 0.

Whenever L has been applied to non-scalar arguments the above function
has been applied componentwise. We have modified the numerical flux
proposed by Einfeldt in [12] to account for the potential energy term as
follows. Let F E

ρ , F E
ρ � and F E

ρe be the components of Einfeldt’s numerical
flux for the Euler equations i.e. (1) with Φ = 0. The numerical flux we have
used for the full equations is simply F := {F E

ρ , F E
ρ � , F E

ρe +F E
ρ Φ}. Since the

original numerical flux is consistent with the Euler equations the modified
numerical flux is consistent with (1).

Consistently with the approach outlined in the introduction and with the
analysis presented in section 3 for the one-dimensional case, the source term
has been computed with algorithm 2.

Notice that, in spite of the fact that we are actually using a grid in which
one family of coordinate lines are in fact straight lines parallel to k, the
algorithms sketched above do not rely on this assumption and the method can
be used on general curvilinear grids. Note also the correspondence between
algorithm 1 and 2. It is this correspondence (together, as shown in section
3 for the one-dimensional case, with the continuity of the reconstruction
across cell interfaces and with the consistency of the numerical flux) that
guarantees that, for cell averages Qc in local hydrostatic balance

Qc : Qci,j
= Q(0)

m,n(xi,j) ∀i, j : ci,j ∈ n(Qm,n) ∀m, n : cm,n ∈ c ,
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Algorithm 2 2d: source term computation

1: for all i, j : i ∈ Ic, j ∈ Jc do
2: Compute U

(0)
i,j (ξ) := {R

(0)
i,j (ξ), V

(0)
i,j (ξ), P

(0)
i,j (ξ)} with R

(0)
i,j (ξ),

P
(0)
i,j (ξ) such that

dP
(0)
i,j

dξ
= −R

(0)
i,j g , P

(0)
i,j (0) = ϕ(Qci,j

) , P
(0)
i,j /R

(0)
i,j

γ
= ϕ(Qci,j

)/Rγ
ci,j

,

and V
(0)
i,j = V ci,j

.
3: Compute the (vertical) distances ξi±,j, ξi,j± between the mid-points

xi±,j, xi,j± of the interfaces between ci,j and its neighborhood and
the normal to k passing through xi,j.

4: Evaluate P
(0)
i,j at the mid-points xi±,j, xi,j± of the interfaces between

ci,j and its neighborhood and compute the approximate the source
term

Sci,j
:=

1

|ci,j|

∫

ci,j

R(0)

i,j∇Φ dV = −
1

|ci,j|

∮

∂ci,j

P (0)

i,j n dS

with exactly the same quadrature rule which is used for comput-
ing the discrete flux divergence (from the interface mid-point values
recovered as in algorithm 1).

5: end for
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the discrete flux divergence constructed with the mid-point values Qi,j(xi±,j),
Qi,j(xi,j±) computed in algorithm 1 exactly balances the source term of al-
gorithm 2 leading thus to exact zero tendencies.

4.1. Method implementation and stability
Here we check our implementation by considering the almost trivial test

case of a hydrostatically balanced atmosphere at rest over non-vanishing
topographical elevations. The numerical experiment is designed to show
that the implementation does not fail to reproduce stationary solutions for
zero velocity, hydrostatically balanced homentropic data. As shown in
section 3 for the one-dimensional case and explained in the introduction and
in the previous paragraphs for the multidimensional case, this is a property of
the method. There is a caveat, however. When a discrete method is mapped
into some implementation one cannot expect properties like the one we want
to check to hold exactly. This issue arises because we are bound to operate
with finite precision machine arithmetics. Therefore, implementations of
equation (18) will generally not yield an exact balance but accelerations of
the order of the round-off error. Since the first two terms on the right hand
side of (18) are computed by different sequences of operations than the last
two terms of the same equation, this true even for initial data which are
exactly representable in the available set of machine numbers.

At risk of stating the obvious let us stress that these tendencies have
nothing to do with the local truncation errors of the discretization which, for
the class of data considered, has been proven to be exactly balanced. On an
infinite precision machine these errors would disappear whereas the LTEs
of any discretization would not.

An interesting question which is closely related with important properties
of the method – stability and dissipativity – is that of the fate of such
perturbations. How will they evolve in time? The continuous problem
has no dissipation mechanism and there is no background flow to transport
perturbations downwind and advect undisturbed fields into the physical
domain. The original discrete method has some built-in dissipation in the
form of local truncation errors, and for sufficiently small time steps we expect
the LTEs of the balanced scheme to also have the structure of some grid
dependent dissipation. On the other hand, it is exactly the local truncation
errors which we are influencing by our balancing technique.

Thus, it is interesting not only to assess the smallness of initial acceler-
ations but to investigate the time evolution of these perturbations on time
scales comparable with those of realistic simulations. Two such evolutions
are represented on the right of figure 3 for the maximum norm of the vertical
velocity. The two curves correspond to computations in double and single
precision. Time is measured in days and vertical velocity in meters per
second. Both computations have been done on the grid shown on the left of
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figure 3 where the units of length are kilometers. The initial cell averages are
the cell center values of a homentropic atmosphere at rest. This is defined
by the following functions of the vertical coordinate z:

p(z) = p
−

1

γ − 1
0

(

p0 −
γ − 1

γ
gρ0z

)

γ

γ − 1

ρ(z) = ρ0

(

p(z)

p0

)

1

γ
, ρ0 =

p0

RT0

∀ z ∈ [0, 8] km and with p0, T0, g and R equal to 105 Nm−2, 288.15 °K,
10 ms−2 and 287 NmKg−1°K−1, respectively. On the bottom boundary the
condition v ·n = 0 has been imposed on the numerical flux by computing,
for any given inner state q := {ρ, ρv, ρe} and any unit normal vector n,
the “reflected” outer state qo =: {ρ, ρR(v, n), ρe} with R(v, n) := v −
2(v ·n)n. On the other boundaries the outer state is fixed to its initial value.
The grid consists of 64 cells in the horizontal direction and 32 cells in the
vertical direction on a 16×8 km computational domain. Thus, all cells have
a width of 250 m. The vertical cell size ranges from about 190 m over the
top of the mountain and 250 m on the sides of the domain.
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FIG. 3. Hydrostatic homentropic flow at rest above steep topography. Left: computational domain (km)
and finite volumes grid (64 × 32). Right: vertical velocity maximum norm (ms−1) versus time (days).

The time step was fixed to 0.2 sec throughout the computation. In the
numerical results show in figure 3, attention is focused on the dynamics at
large times. A picture of the maximal vertical velocity at short times would
show that, during an initial time interval covered by about 300 steps, the
tendencies are, indeed, of the order of magnitude of the round-off error, see
4.2. After an initial growth, the maximal vertical velocity stabilizes around
values of about 1 and 10−8 ms−1 for single and double precision, respectively.
Notice that 10−8 is about twenty times the ratio between DBL_EPSILON
and FLT_EPSILON (in our architecture equal to 2.2204460492503131e-16
and 1.19209290e-07F, respectively).
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4.2. Smooth stratification and inversion: balancing properties
We first investigate the behavior of the well balanced scheme for smoothly

stratified initial data. As in the previous case, the atmosphere is in hydro-
static balance at rest but the variable χ, which is closely related to the
thermodynamic entropy or to the potential temperature, is a linear function
of the vertical coordinate z:

χ := α2 p

ργ
= α2 p0

ργ
0

(1 + σz) , α :=
2

γ − 1
.

This leads to the following distributions of initial pressure and density

p(z) = p
−

1

γ − 1
0

(

p0 −
1

σ
gρ0

(

(1 + σz)
γ−1

γ − 1
)

)

γ

γ − 1

ρ(z) = ρ0

(

p(z)

p0

1

1 + σz

)

1

γ
, ρ0 =

p0

RT0

∀ z ∈ [0, 8] km. The values for p0, T0, g, and R are chosen as in the
previous experiment. In figure 4 we have reported the time evolution of the
maximum norm of the vertical velocity for σ equal to 1.2 · 10−6, 1.2 · 10−5

and 1.2 · 10−4 m−1 and on two different grids. Time is given in minutes
and vertical velocity in meters per second. The rougher grid is the same
used in the previous experiment. The finer grid has twice as many cells
in both directions. The case σ = 1.2 · 10−5 m−1 corresponds to a lapse
rate of 0.0075 degrees per meter (0.0065 degrees per meter is the lapse rate
of a standard atmosphere). The value σ = 1.2 · 10−4 m−1 corresponds to
an unrealistically strongly stratified atmosphere in which the temperature
increases with altitude at a rate of about 0.01 degrees per meter.

According to the analysis discussed in section 2, the local truncation
errors associated with the discretization of the difference between pressure
gradient and weight vertical velocities should scale with σ times the square
of the grid parameter. Thus we expect the vertical velocity to behave in
much the same way. Figure 4 shows that, at least at short times, this is
indeed the case.

In order to assess the behavior of our balancing approach for more realistic
stratifications, we consider the case of an atmosphere with a stable layer
intersecting the topography. Geometry and discretizations are the same as
in the previous experiment, see also figure 3. The layer is located between
zb and za. Inside this layer the buoyancy frequency

N :=

√

−g

(

1

ρ

∂ρ

∂z
+ g

ρ

γp

)

(19)
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FIG. 4. Hydrostatic flow with linear entropy distribution at rest above steep topography. Left: Vertical
velocity maximum norm (ms−1) versus time (minutes) for σ equal to 1.2 · 10−6 , 1.2 · 10−5 and 1.2 · 10−4

m−1 and 64 × 32 and 128 × 64 finite volumes grids. Right: Vertical velocity maximum norm (ms−1) after 1
minute versus σ (m−1): 64 × 32 and 128 × 64 grids.

is constant and equal to N0 + ∆N . Above and below this layer N is equal
to N0.

The values of zb, za are 750 and 1250 m, respectively i.e. the layer is
centered at a height of one kilometer and is 500 m deep. The mountain top
is at 2 kilometers. We consider three cases with N0 = 0.01 s−1 and ∆N
equal to 0, 0.005 and 0.01 s−1 and a fourth case in which N is constant
and equal to 0.02 s−1. The third case corresponds to an inversion in which
the temperature increases with the altitude at a rate of about 0.0014 degrees
per meter. The values for p0, T0, g, and R are chosen as in the previous
experiment. The vertical profiles of pressure, density and temperature are

p(z), ρ(z) =











pb(z), ρb(z) for z ≤ zb

pl(z), ρl(z) for zb < z ≤ za

pa(z), ρa(z) for zb < z

T (z) =
p(z)

Rρ(z)
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FIG. 5. Hydrostatic flow with piecewise constant buoyancy frequency N at rest above steep topography.
Vertical velocity maximum norm (ms−1) versus time (minutes) for N = N0 + ∆N for zb < z ≤ za and
N = N0 otherwise. zb and za are equal to 750 and 1250 m, respectively. Top topography at z = 2000 m, see
figure 3. Four curves for (N0, ∆N) equal to (0.01, 0), (0.01, 0.005), (0.01, 0.01) and (0.02, 0) s−1. 64× 32
(left) and 128 × 64 cells grid.

4.3. Accuracy and robustness
We have mentioned, in the introduction, that standard discretizations of

(1) are, for nearly hydrostatic motions, either too inaccurate or too expen-
sive. Another serious drawback is that standard approximations are not
robust: numerical solutions are found to be very dependent on details of the
algorithm, e.g., on the choice of the limiting functionL and on the algorithm
used to recover Q on cells near boundaries.

This sensitivity does not decrease for increasing simulation times and
seriously restricts the usability of standard discretizations for, e.g., climate
research. It also forces expensive and systematic investigations to assess
the effects of small perturbations on the final results. Here we investigate
accuracy and robustness of the well balanced method and compare them
with those of a standard finite volume approximation. We consider an
ideal one-dimensional atmosphere at rest between two flat plates at zero and
18620 m. Pressure, temperature, and density are

p(z) = p0 exp

(

−
T0

β

(

1 −

√

1 −
2βgz

RT 2
0

))(

1 + η exp

(

−α

(

z − zc

H

)2
))

T (z) = T0

√

1 −
2βgz

RT 2
0

, ρ(z) =
p(z)

RT (z)

p0, T0, g and R are as in 4.1. β represents the rate of change of temperature
with the logarithm of the unperturbed pressure, i.e., for η equal to zero, see
[9] and [10]. For this case the atmosphere is in hydrostatic balance. We
consider zero velocity initial data with a pressure perturbation defined by β =
42, η = 10−3, α = 60, zc = 9310 m and H = 18620 m. This perturbation
generates weak acoustic waves which travel upwards and downwards, are
reflected at the solid boundaries, and bounce back and forth between the two
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plates. As is known from the theory of weakly nonlinear acoustics, [18],
these waves will steepen into weak shocks and begin to dissipate on time
scales of order O(H/Mc), equivalent to O(1/M) oscillation cycles. Here c
is a characteristic speed of sound and M is the characteristic Mach number
for the oscillatory vertical motions. Numerical methods for non-hydrostatic
models have to 1) guarantee that these waves generate spurious dynamics
neither over short nor over long time scales, and to 2) avoid the CFL time step
restrictions associated with the propagation of such waves. In operational
methods the second requirement can be met by implicit, semi-implicit, semi-
Lagrangian methods, sub-cycling for fast modes, or combinations of such
techniques. Here we concentrate on the first issue. Consider the evolution
of the initial perturbation at short times. The relative pressure perturbation

ϕ(q(t, ·)) − p|η=0

p|η=0

at time zero and after 12 sec is shown on the left of figure 6. On the
right of the same figure you can see the corresponding velocities (in ms−1).
Four curves are plotted in both figures for each time. They correspond to
the numerical solutions obtained with a standard method and with the well
balanced method presented above. For each method 2 computations are
shown: one with the monotonized central limiter and one with no limiter and
central slopes, i.e., L(a, b) = (a + b)/2. The curves are not distinguishable
because all computations have been done on a very fine grid of 8192 cells.
This shows that, as the grid parameter tends to zero, the numerical solution
obtained with the well balanced method converges towards the numerical
solution obtained with the standard method.
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FIG. 6. Hydrostatic flow between flat plates with pressure perturbation. Relative pressure perturbation (left)
and velocity (right, ms−1) versus altitude (km) at t = 0 and t = 12 (sec). Standard and well balanced methods
with monotonized central limiter and unlimited central slopes yield indistinguishable results on a high resolution
grid of 8192 cells (used as reference solutions below).

When reconstructing a piecewise linear Q from a given set of cell averages,
“left” and “right” one-sided approximations to the first derivative of the exact
solution have to be evaluated in each cell. These approximations are then
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injected into the limiting functionL. On a one-dimensional regular grid, left
and right approximations can be simply evaluated by computing first order
finite differences between the local cell average and the cell averages to the
left and to the right. In the first and in the last cell of the grid, however,
the left and the right neighbors are missing. As a consequence, the left
slope in the first and the right slope in the last cell must be approximated in
a different fashion. This can be done in various ways which may depend
on the boundary condition imposed on the corresponding boundary. The
associated procedures will be called boundary recovery algorithms below.

In the case of a rigid wall boundary condition, one can think of extrapo-
lating the slopes from the inside by means, e.g., of the last one, two, or three
inner slopes. Another strategy is to use some prescribed outer state and the
values in the first (last) cell to evaluate the left (right) slope.

Figure 7 and 8 show the reference solution of figure 6 and the results
obtained, on coarse 32 cell grids, with a standard and with the well balanced
method for different boundary recovery algorithms – among others with
the algorithm used for computing the reference solution –. Besides being
quite inaccurate, the numerical solutions obtained with the standard method
on the 32 cell grid depend sensitively on the boundary recovery algorithm.
Notice that, for the boundary condition considered here and in absence of
a specific stability analysis, there is no apriori argument for choosing a
particular algorithm. A stability analysis would help restricting the set of
meaningful boundary recovery algorithms but still leave a range of possible
choices.

What one really would like to have is a method that does not depend in a
critical way on this choice. Figure 8 shows that the well balanced method
satisfies this requirement and is far more accurate than the standard method.
In fact, the standard method requires about three times more cells to achieve
the same accuracy for this test case as the well balanced method.
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FIG. 7. Hydrostatic flow between flat plates with pressure perturbation. Relative pressure perturbation (left)
and velocity (right, ms−1) versus altitude (km) at t = 12 (sec). Standard method with unlimited central slopes
and 4 different boundary recovery algorithms. Reference solution and 32 grid cells solutions.
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FIG. 8. Hydrostatic flow between flat plates with pressure perturbation. Relative pressure perturbation (left)
and velocity (right, ms−1) versus altitude (km) at t = 12 (sec). Well balanced method with unlimited central
slopes and 2 different boundary recovery algorithms. Reference solution and 32 grid cells solutions.

Figures 9 and 10 show a comparison between standard and well balanced
methods for different limiting functions but with a fixed boundary recovery
algorithm. We have tested unlimited central slopes, the monotonized central
limiter, Van Leer’s limiter and the “minmod” limiter, see [42], [45]. For
the standard method we have used the boundary recovery algorithm that
gave the “best” results in the previous experiment. This corresponds to
the dash-dot line in figure 7 and consists of setting to zero the slope of the
deviation between the actual state and the initial condition. For the well
balanced method we have simply extrapolated the approximate slope (of
q − q(0)) from the inside.

As expected, the numerical solution obtained with the standard method
depends critically on the choice of the limiting function. The same argu-
ments used in the analysis of the sensitivity of the numerical results with
respect to perturbations of the boundary recovery algorithm hold here. On
very smooth functions – the ones considered here – there is no particular
reason to prefer the monotonized central limiter to the Van Leer limiter and
“good” numerical methods should not critically depend on this choice.

The numerical results obtained with the well balanced method have this
kind of robustness. There is, of course, a significant accuracy gap between
unlimited and limited computations. This is a well known problem which
stems from the fact that, even on smooth solutions, the accuracy of the
limited scheme in the vicinity of local extrema is not better than first order.
This problem affects both the standard and the well balanced method. Note,
however, that the effects of local accuracy losses on the standard method are
devastating. Also notice that the balancing approach proposed here can be
applied to more sophisticated recovery algorithms designed to avoid local
accuracy losses, see [17] and references therein.
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FIG. 9. Hydrostatic flow between flat plates with pressure perturbation. Relative pressure perturbation (left)
and velocity (right, ms−1) versus altitude (km) at t = 12 (sec). Standard method with unlimited central slopes
and monotonized central, Van Leer and minmod limiters. Reference solution and 32 grid cells solutions.
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FIG. 10. Hydrostatic flow between flat plates with pressure perturbation. Relative pressure perturbation
(left) and velocity (right, ms−1) versus altitude (km) at t = 12 (sec). Well balanced method with unlimited
central slopes and monotonized central, Van Leer and minmod limiters. Reference solution and 32 grid cells
solutions.

4.4. Convergence rate study
In this experiment we investigate the behavior of the well balanced method

when the grid parameter tends to zero. We consider a dry flow past the
idealized topography

zb(x) = h exp

(

−
x2

a2

)

cos2
(πx

λ

)

∀x ∈ IR

with h = 250 m, a = 5 km and λ = 4 km. In the initial condition the
buoyancy frequency (19) is constant and equal to 0.01 s−1. p0 and T0 are
equal to 105 Nm−2 and 273.16 °K, respectively. The vertical profiles of
pressure, density and temperature are

p(z) = p0

(

1 −
γ − 1

γ

1

RT0

g2

N2

(

1 − exp−
N2

g
z

))
γ

γ−1

ρ(z) = ρ0

(

p(z)

p0

)
1
γ

exp−
N2

g
z , T (z) =

p(z)

Rρ(z)
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TABLE 1

2-norm errors and convergence rates after about 17 minutes of simulation time.

density rate hor. vel. rate ver. vel rate pressure rate

400 × 64 4.341 1.310 1.468 3.531

800 × 128 1.369 1.66 0.719 0.87 0.433 1.75 0.888 1.99

1600 × 256 0.361 1.92 0.029 1.32 0.014 1.59 0.222 2.00

for z between zero and 19500 m. The computational domain is 200 km
wide. The horizontal velocity is equal to 10 ms−1 between zero and 10395
m and decreases linearly to zero between 10395 m and 19500 m. The
vertical velocity is zero in the whole domain. This test problem has been
proposed in [41] to investigate the impact of a new terrain-following grid on
the Canadian MC2 model [2].

The basic grid consists of 400 × 64 cells. All cells have a width of 500
m. The vertical cell size is about 300 m. Beside the basic grid, we consider
refinements of 800 × 128, 1600 × 256 and 3200 × 512 cells. Table 1 shows
the errors and the convergence rates of the well balanced method at short
times in the 2-norm. The results are consistent with second order accuracy.

Figure 11 shows the steady state results obtained with the basic grid – 8
cells per half wavelength i.e. λ = 8∆x – and with grids of 10, 12 and 16
cells per half wavelength (500 × 80, 600 × 96 and 800 × 128 cells grid,
respectively). On the coarsest grid the topography is hardly resolved and
the numerical solution has an unphysical wave pattern. This is in agreement
with the results discussed in [41]. As the grid is refined, the unphysical
pattern disappears and the numerical solution is in good agreement with
the linear analytical solution. Notice that, here, we are using the standard,
unsmoothed “sigma” coordinate, see [41] page 16 and figure 13.

In a recent work with an early version of the Weather Research and Fore-
cast model (WRF) prototype, see [24], Klemp et. al. show that, on a fixed
grid and for a given choice of a background state, numerical approxima-
tions of different order of accuracy along different coordinate surfaces –
called ”inconsistent” approximations in [24] – can lead to unphysical wave
patterns like those observed in figure 11 on rough grids. In other words,
the scheme can be sensitive w.r.t. perturbation of the discrete differential
operators: slightly different second order accurate approximations lead, on
a fixed grid and for a given choice of the background state, to qualitatively
different numerical results.

These results are disturbing and the authors propose a detailed analysis of
the linear steady Boussinesq equations to explain them. This analysis show
that ”inconsistent” approximations can lead to inhomogeneous terms in the



WELL BALANCED FVMS FOR NEARLY HYDROSTATIC FLOWS 33

wave equation for the approximate vertical velocity amplitude. Provided the
terrain topography has significant amplitudes at wave numbers in the vicinity
of the Scorer parameter, these inhomogeneous terms lead to singularities in
the integrand of the equation for the vertical velocity.

Here we are using piecewise linear reconstruction and slopes are computed
by means of second order central finite differences along both coordinate
lines, see algorithm 1. Thus, our numerical results suggest that the unphysi-
cal flow pattern observed in in [24] may appear, on coarse grids and for this
particular test case, no matter whether approximations are ”inconsistent” or
not.

Having in mind the robustness problem identified in [24], it is interesting to
investigate, how sensitive our methods is w.r.t. perturbations of the recovery
algorithm in general and of the local hydrostatic balanced state in particular.
Figure 12 shows the steady state results obtained, for the same problem and
on the same grids of figure 11, with a slightly different recovery algorithm.
Here we have replaced the piecewise constant entropy profiles of step 2 of
algorithms 1 and 2 by means of piecewise linear approximations:

P
(0)
i,j /R

(0)
i,j

γ
= ϕ(Qci,j

)/Rγ
ci,j

+ ∇ci,j
Θ·(x − xi,j)

In the above equation the discrete entropy gradient∇ci,j
Θ has been computed

by standard second order central finite differences along the grid lines.
Moreover, we have replaced the left and right approximations to the gradient
of q − q(0) in step 6 of algorithm 1 with the simpler (but still ”consistent”
and second order accurate) approximations:

GδQk
i±,j := δQi±1,j

∂y1

∂xk
+

1

2
(δQi,j+1− δQi,j−1)

∂y2

∂xk

GδQk
i,j± :=

1

2
(δQi+1,j− δQi−1,j)

∂y1

∂xk
+ δQi,j±1

∂y2

∂xk

(20)

These results are better than the ones shown in figure 11 in the sense that
the erroneous flow pattern disappears for resolutions somewhere between
λ = 8∆x and λ = 10∆x (between λ = 12∆x and λ = 16∆x in figure 11).
They are consistent with the results discussed in section 4.3 and show that
the balancing approach proposed here lead to robust numerical methods:
slightly different second order approximations and slightly different recon-
structions of the local balanced state lead to slightly different numerical
results. This is confirmed by numerical experiments with local piecewise
linear entropy profiles but left and right approximations to the gradient of
q − q(0) as in step 6 of algorithm 1. These results (not shown here) are
somewhere between those of figure 11 and those shown in figure 12.
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FIG. 11. Linear non-hydrostatic flow. Steady state vertical velocity near topography (40 × 10.8 km
sub-domain). 30 contour lines between −1 and −0.05 and between 0.05 and 1 ms−1. Contour interval 0.05
ms−1. From top to bottom: 8, 10, 12 and 16 cells per half wavelength.

4.5. Linear, non-hydrostatic gravity waves
In the last experiment we investigate the behavior of the well balanced

method for a linear non-hydrostatic flow above a mountain-like obstacle.
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FIG. 12. Linear non-hydrostatic flow. Steady state vertical velocity near topography (40 × 10.8 km
sub-domain). Reconstruction of the local balanced state via piecewise linear entropy distribution and left and
right local approximations to the gradient of q − q(0) as in 20. 30 contour lines between −1 and −0.05 and
between 0.05 and 1 ms−1. Contour interval 0.05 ms−1. From top to bottom: 8, 10, 12 and 16 cells per half
wavelength.
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Here linear means that the Froude number based on the buoyancy frequency
of the initial data and on the mountain height h, u/(Nh), is much larger
than one. Non-hydrostatic means, in this context, that the Froude number
based on the horizontal size of the obstacle a, u/(Na) is about unity. This
is a standard test problem for numerical methods for weather prediction.
In the limit for u/(Nh) → ∞ steady state analytical solutions have been
computed in [37], [32], [44], [8].

The initial conditions consist of an isothermal atmosphere with p0, T0

equal to 105 Nm−2 and 273.16 °K, respectively. The acceleration of gravity
g and the gas constants R and γ are, as in the previous examples, equal to
10 ms−2, 287 NmKg−1°K−1 and 1.4, respectively. In such atmosphere the
buoyancy frequency N is constant and about 0.0191 s−1. This gives, with
an initial horizontal velocity of 19.1 ms−1 and h, a equal to 100 and 1000
m, values of u/(Nh) and u/(Na) of 10 and 1, respectively.

As in the first and in the second experiment, the topography zb is a smooth
function

zb(x) =
h

(

1 +
(x

a

)2
)3/2

∀x ∈ IR

of the horizontal space coordinate x. Computational domain and finite
volumes grid are shown on the left of figure 13. On the right you can
see the isolines of the vertical velocity. The results are in good qualitative
agreement with those reported in the literature and with the linear solution.
Notice that, in this test problem, the quality of the numerical results very
much depends on the capability to avoid spurious reflection of the gravity
waves at the lateral boundaries and at the top of the atmosphere. The problem
of constructing non-reflective (radiation, transparent) boundary conditions
for modeling open artificial boundaries for the compressible Euler equation
is still open, see [11], [15] for a review of some popular approaches.

In most production codes this problem is partially circumvented by in-
troducing ad hoc “sponge” layers near the artificial boundaries. In these
layers the equations of motion are modified by means of correction terms
which drive the numerical solution towards some prescribed state. Here we
have followed a different approach. At the lateral boundaries we have used
boundary conditions based on the theory of characteristics. At the top of the
atmosphere we have prescribed an external fixed state. This state is used,
together with another one recovered from the inside, to compute the fluxes
through the boundary. The (approximate) Riemann problems associated
with the computation of the numerical flux, however, have not been defined
in the direction normal to the boundary. Instead we have used a rough
estimate of the gradient of the solution in the vicinity of the upper boundary
to define a time dependent direction. This direction has been used to solve
the approximate Riemann problems on the boundary.
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This approach requires further investigation and the results presented in
figure 13 are preliminary. An investigation of the new approach will be
presented in a separate work.

FIG. 13. Linear non-hydrostatic flow. Top: computational domain (km) and finite volumes grid (128 × 64
cells). Bottom: vertical velocity (ms−1).

5. CONCLUSIONS

We have shown that standard finite volume Godunov-type schemes for
compressible flows can be modified to provide accurate solutions for a
large class of nearly hydrostatic flows on terrain-following curvilinear grids.
These flows are relevant in numerical weather prediction and regional cli-
mate simulations and the balancing approach presented here can be easily
applied to other kinds of grids, e.g. unstructured grids and, obviously,
Cartesian grids.
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Our investigations indicate that the standard discretization of the pressure
gradient and of the gravitational source term is responsible for failures to
accurately describe nearly hydrostatic motions. This statement holds for any
choice of coordinates in which the governing equations are formulated, and
our balancing strategy should be general enough to be used in conjunction
with any coordinate system.

Balancing approaches based on the formulation of the governing equations
in terms of deviations from a prescribed, constant in time hydrostatic back-
ground state, often fail to describe stationary hydrostatic states at rest over
topography on terrain-following curvilinear grids. The same approaches
usually succeed on Cartesian grids over flat topography when the numerical
solution and the hydrostatic background state coincide. For finite devia-
tions from the prescribed background state, however, standard methods will
generally fail both on curvilinear and on Cartesian grids.

Grid skewness has, of course, a detrimental effect on the accuracy of
discretizations and leads to spurious entropy generation [1] and unphysical
mountain drag. As pointed out in [41], some of these effects can be alleviated
by designing suitably smoothed curvilinear grids.

Of course, both standard methods and well balanced methods take advan-
tage of more regular grids. For standard applications in numerical weather
forecasting and climate simulation, where the topography on a fixed grid is
hardly resolved, the introduction of smoothed topography and/or orthogonal
terrain following grids may significantly improve the quality of the numeri-
cal results, see [5].

The well balanced method presented here achieves balancing while avoid-
ing the computation of global approximations of a time-dependent hydro-
static background state. Instead, this state is approximated locally in the
recovery stage of a standard MUSCL [25], [26], [27], [28], [29] approach.
This requires the solution of a small number of scalar ordinary differential
equations for each grid cell per flux evaluation. In most cases these solutions
can be computed analytically. Thus, the well balanced method requires very
little extra computational costs. This allows one to significantly reduce the
number of grid cells needed to approximate nearly hydrostatic motions with
acceptable accuracy.

The new method is robust against details of the implementation, e.g., the
choice of slope limiting functions, or the particulars of boundary condition
discretizations, and second order accurate in space and in time. It inherits
the conservation properties of the underlying Godunov-type scheme: mass
and total energy are conserved exactly, independently of the grid size. These
properties – robustness, accuracy and conservation – seem to be essential for
coarse grid, long time simulations such as those typical of regional climate
modeling.
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Non-hydrostatic models for numerical weather forecasting could also take
advantage of the balancing approach proposed here to 1) increase the ac-
curacy in the vicinity of the hydrostatic regime and 2) improve the model
robustness against implementation details and grid geometry.
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