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Abstract

We construct an orthogonal wavelet basis for the interval using a linear combination of Legendre
polynomial functions. The coefficients are taken as appropriate roots of Chebyshev polynomials of
the second kind, as has been proposed in reference [1]. A multi-resolution analysis is implemented
and illustrated with analytical data and real-life signals from turbulent flow fields.
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1 Introduction

Fischer and Prestin [1] have shown a general method for constructing wavelet bases on the interval
based upon orthogonal polynomials. The only example—amongst those cited in the above reference—
in which the basis has the orthogonality property, is built from Chebyshev functions of the second
kind, which leads to a scalar product weighted by the function w(x) = (1 − x2)1/2. For the pur-
pose of data analysis, any weight other than unity is undesirable since the interpretation of coefficient
values w.r.t. their energy contributions turns out to be non-intuitive. Prestin (private communica-
tion) proposed a modification to the original construction in which a “hybrid” basis would be built
from Chebyshev and Legendre polynomials, thereby carrying over the orthogonality of the original
Chebyshev-only basis to a weight function of unity.

In [1] linear combinations of orthogonal polynomials Pk(x) are used for constructing scaling
functions ϕji(x) and wavelet functions ψji(x), where j is the scale index and i the translational
(position) index. The former functions (ϕ) are assembled from low-order polynomials, while the
latter (ψ) re-group higher-order-only contributions, viz.

ϕji(x) =

2j∑

k=0

aijk Pk(x) , (1a)

ψji(x) =

2j+1∑

k=2j+1

bijk Pk(x) . (1b)

The construction can be applied to general orthogonal polynomials. Here, we consider the case
of the interval [−1, 1] and define a scalar product with respect to a given weight function w(x) as
< f(x), g(x) >w=

∫ 1
−1 f(x)g(x)w(x)dx. For wavelets and scaling functions spanning an orthonor-

mal basis of a multi-resolution analysis (MRA), these need to fulfill the following orthogonality con-
ditions:

< ϕji, ϕjl >w = δil , (2a)

< ψji, ψml >w = δil δjm , (2b)

< ϕji, ψml >w = 0 , (m ≥ j) . (2c)

Substituting the ansatz (1), we obtain:

< ϕji, ϕjl >w =

2j∑

k=0

2j∑

n=0

aijkalmn < Pk, Pn >w , (3a)

< ψji, ψml >w =
2j+1∑

k=2j+1

2m+1∑

n=2m+1

bijkblmn < Pk, Pn >w , (3b)

< ϕji, ψml >w =

2j∑

k=0

2m+1∑

n=2m+1

aijkblmn < Pk, Pn >w . (3c)

It is clear that due to the orthogonality of the polynomials (i.e. < Pk, Pn >w= δkn) the choice of the
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coefficients a, b alone determines the orthogonality properties of the basis. Therefore, we find:

< ϕji, ϕjl >w =
2j∑

k=0

aijkaljk , (4a)

< ψji, ψml >w = δjm

2j+1∑

k=2j+1

bijkbljk , (4b)

< ϕji, ψml >w = 0 , (m ≥ j) . (4c)

The factor δjm in relation (4b) follows from the fact that the bounds of the two sums in (3b) need to
be equal if the scalar product is to be non–zero.

As a consequence it is possible to interchange freely the particular type of polynomial—amongst
the class of orthogonal ones—without changing the above properties. Therefore, we can go about
and modify a given basis whose a’s and b’s are such that (2) is verified and replace its Pk(x)’s with
Legendre polynomials which have an associated weight w(x) = 1. In the following we will take a
closer look at these Legendre wavelets.

2 The wavelet basis

2.1 Definition

We define the following wavelets and scaling functions based upon Legendre polynomials Lk(x) and
coefficients related to the Chebyshev polynomials of the second kind Uk(x):

ϕji(x) = Cϕ
ij ·

2j∑

k=0

Uk(y
(2j+1)
i ) ·

√
k + 1/2 · Lk(x) , j = 0, 1, . . . i = 0 . . . 2j (5a)

ψji(x) = Cψ
ij ·

2j+1∑

k=2j+1

Uk(y
(2j )
i ) ·

√
k + 1/2 · Lk(x) , j = 0, 1, . . . i = 0 . . . 2j − 1(5b)

where Lk(x) and Uk(x) on the interval x ∈ [−1, 1] can be defined by [2]

Lk(x) =
1

2k

int(k/2)∑

l=0

(−1)l
(
k
l

)(
2k − 2l
k

)
xk−2l , (6a)

Uk(x) =
sin((k + 1) arccos(x))

sin(arccos(x))
, (6b)

or in terms of their three-point recursion formula

Lk+1(x) =
2k + 1

k + 1
xLk(x)− k

k + 1
Lk−1(x) , L0(x) = 1 , L1(x) = x , (7a)

Uk+1(x) = 2xUk(x)− Uk−1(x) , U0(x) = 1 , U1(x) = 2x . (7b)

The parameters y(n)
i in equations (5) are the zeroes of the nth order Chebyshev polynomial of the

second kind, i.e.

y
(n)
i = − cos

(
(i+ 1)π

n+ 1

)
, i = 0 . . . n− 1 . (8)

5



For convenience, the present numbering is different from the standard numbering in that we have
y

(n)
i < y

(n)
i+1. Equations (5) define the coefficients aijk and bijk in (1). In [1] the orthogonality of the

resulting basis with Pk = Uk in (1) is proved. As discussed above, this property carries over to the
functions defined by (5). The constant factors Cϕ

ij , C
ψ
ij are introduced for the purpose of normalization

in order to fulfill equations (2) without further constants. We obtain

Cϕij =




2j∑

k=0

(
sin
[
(k + 1)(i + 1)π/(2j + 2)

]

sin [(i+ 1)π/(2j + 2)]

)2


−1/2

, (9a)

Cψij =




2j+1∑

k=2j+1

(
sin
[
(k + 1)(i+ 1)π/(2j + 1)

]

sin [(i+ 1)π/(2j + 1)]

)2


−1/2

. (9b)

With the above functions ϕ, ψ, the following decomposition of a square-integrable function u(x) is
possible

u(x) = c00 ϕ00(x) + c01 ϕ01(x) +

∞∑

j=0

2j−1∑

i=0

djiψji(x) , (10)

where, by orthonormality, the coefficients are obtained from

dji =

∫ 1

−1
u(x)ψji(x)dx , (11a)

cji =

∫ 1

−1
u(x)ϕji(x)dx . (11b)

Again due to orthonormality the decomposition (10) yields a corresponding decomposition of the
“energy” of the signal in terms of the coefficients

∫ 1

−1
u(x)2dx = c2

00 + c201 +
∑

j,i

d2
ji . (12)

2.2 Convergence of the approximation

We illustrate the global convergence of the approximation of a function by its wavelet expansion
through numerical tests with analytical signals. For that purpose, a partial reconstruction according
to equation (10) with the upper bound of the j-summation being J < ∞ is performed. As a repre-
sentative example, Figure 8 shows the variation of the maximum error and the L2-error for the signal
u(x) = exp(−4x2) when the truncation index J is increased. Spectral convergence is observed. This
is to be expected, and in fact constituted a test for the implementation, since the truncated wavelet
sum by means of (5) is just a re–ordered Legendre expansion. Hence, the approximating function is
the same in both cases resulting in the same convergence behavior.

At present, the scalar products (11) are evaluated by a Gauss-Lobatto quadrature, i.e. first per-
forming a Legendre transform of the data—sampled on a Gauss-Lobatto grid—and then computing
the linear combination of Legendre coefficients which leads to the respective wavelet coefficients. If
data is given in terms of coefficients of orthogonal polynomials of a different type, explicit conversion
formulas can be used [e.g 3] or spectral interpolation onto the Legendre grid might be considered (cf.
§ 2.6). The construction of a fast version of the present algorithm is left as a future extension.
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Legendre wavelets Chebyshev wavelets

j i xtail
∫ +1
xtail

ψ2
jidx xtail

∫ +1
xtail

ψ2
jidx

5 15 0.879 6.17e-3 0.933 4.40e-2
12 0.850 1.46e-2 0.933 1.17e-1
10 0.922 1.67e-2 0.933 1.59e-1
8 0.922 2.80e-2 0.962 2.03e-1
6 0.922 5.54e-2 0.996 2.15e-1
4 0.957 7.87e-2 0.996 3.31e-1

7 63 0.844 1.79e-3 0.953 1.12e-2
50 0.932 2.15e-3 0.992 2.29e-2
40 0.932 3.79e-3 0.992 3.47e-2
30 0.932 7.64e-3 0.992 5.29e-2
20 0.975 1.04e-2 0.992 8.66e-1

Table 1: Energy contained in the “tails” of the wavelet functions at two different levels j and various
positions i (cf. Figure 2 and 3). The “tail-location” xtail has been determined visually, using a grid
with N = 1024, and the integral has been evaluated by a low-order quadrature. For comparison, the
last two columns show the corresponding quantities computed for the wavelets of Fischer and Prestin
[1] based upon Chebyshev polynomials of the second kind.

2.3 Localization properties

Figure 1 shows some wavelet functions of scale j = 5. It can be observed that they are close to being
translationally invariant near the center of the interval, while they visibly increase their amplitude and
frequency near the boundary. This effect of varying shape is more vividly illustrated in Figure 2,
where the “envelope” of the square of several wavelet functions is shown. Particularly, the existence
of a second local maximum of the amplitude at the nearest boundary can be observed. From the semi-
logarithmical plots in Figure 3 the spatial decay of the functions around their center location can be
judged. This decay is approximately O(x−2) (cf. Figure 5), i.e. the wavelets themselves decay at a
rate of 1/x.

The decay, however, is only local while close to the boundaries the wavelet functions have a
tendency to increase and to exhibit the “tails” mentioned above. Table 1 gives the contribution of
these “tails” to the energy of the wavelet, i.e. the integral

∫ +1
xtail

ψ2
jidx with xtail being the—visually

determined—location where the slope of the envelope reverses. This quantity is below one percent
for centrally located wavelets.

For comparison, Figure 4 shows the corresponding decay of the wavelets of Fischer and Prestin
[1] which are based upon Chebyshev polynomials of the second kind (Uk instead of Lk in (5)). In the
latter case the “tails” are similar and even more pronounced. This is also reflected in the values of
Table 1.

We recall that both families of wavelets are related through the basic equation (1) inasmuch as
they have common coefficients aijk, bijk and only differ in the definition of the associated polynomial
function Pk(x). These coefficients aijk are plotted in Figure 6 where the same indices i, j as in the
graphs discussing the decay have been chosen. At the same time, the coefficients represent the Legen-
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dre spectrum of the present wavelets. It is evident from the graphs that the exact spectral distribution
of the basis functions varies with the position index. However, the low-pass filter nature of the scaling
functions and the band-pass property of the wavelets is obvious.

One question which arises naturally with respect to the usefulness of the current basis is its ability
to pick up existing features of a given signal without creating artifacts due to the particular shape of
the wavelet functions near the boundary. We will address this point in § 2.5.

2.4 Definition of a scale parameter

From the definition of the wavelets and from the plots in Figure 1 it is obvious that the period of
oscillation of wavelets with the same scale index j varies over the interval. Hence, the physical
“scale” is no more constant with the scale index j but changes with the position index i. Defining
a “scale” and drawing a scalogram hence becomes a delicate issue. Here we use the centers of the
wavelet functions for this purpose as described now.

Recall that the zeroes of the Legendre polynomials are not available in closed form. As a conse-
quence, the locations of the “centers” of the wavelets and scaling functions defined here are not avail-
able in closed form but need to be determined numerically. To be specific, by “centers” zϕji, z

ψ
ji we

mean the position of the largest positive local maximum values, excluding the boundaries of the inter-
val, which can be obtained e.g. by a fixed point iteration of the first derivative of (5). In practice, this
procedure is however very cumbersome and an analytic expression—even approximate—would be
preferable, particularly in view of the way of presenting information with respect to scale as discussed
below. Therefore, we propose—solely for the definition of the “scale” of a wavelet function—to work
with the roots of the Chebyshev polynomials of the second kind instead and define:

ẑϕji = y
(2j+1)
i , (13a)

ẑψji = y
(2j)
i , (13b)

with y given in (8). Figure 7 shows the difference between the two definitions zψji and ẑψji. It exhibits
a minimum in the center of the interval and near the boundaries.

For the purpose of data analysis, we will associate a physical scale parameter to each wavelet
function. In the classical MRA, where wavelets are translationally invariant, the scale is simply sj =
2−jLx, where Lx is the physical size of the domain. We solve this problem by defining the discrete
scale parameter sji as follows

sji =
Lx
2





zψji+1 + zψji
2

+ 1 if i = 0

1−
zψji + zψji−1

2
if i = 2j − 1

zψji+1 − z
ψ
ji−1

2
else

(14)

This results from a division of the interval into subintervals according to the mid-points between
neighboring center locations. Consequently, it implies that

∑
i sji = Lx and in particular that s00 =

Lx. Unfortunately, the quantity sji can not be determined analytically if the exact centers zψji are

used. As a remedy we propose to use the roots of the Chebyshev polynomials ẑψji in (14) which upon
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substitution of (8) leads to

sji(ẑ
ψ
ji) =

Lx
2





cos

(
(2j − 1/2)π

2j + 1

)
cos

(
π/2

2j + 1

)
+ 1 if i = 0

1− cos

(
3/2π

2j + 1

)
cos

(
π/2

2j + 1

)
if i = 2j − 1

sin

(
(i+ 1)π

2j + 1

)
sin

(
π

2j + 1

)
else

(15)

Figure 7 shows the resulting relative difference in scale between the definition of sji with the exact
and with the approximated centers. These differences are only appreciable near the boundary, where
they amount to a very localized maximum of 25 percent. In the present situation, the definition of a
“scale” associated to a wavelet certainly is somewhat arbitrary, in particular close to the boundaries.
We therefore feel that the definition (15) suits the purpose of data analysis and visualization.

Two ways of presenting the coefficients of the present transform can be constructed based on
the above definitions of the scale parameter sji. They will be detailed and illustrated by means of
analytical signals in the following paragraph. In the sequel, we will then adopt the definition (15).

2.5 Transform of analytical signals and coefficient scheme

Before considering real-life signals it is instructive to study the transform itself by means of analytical
signals. We consider as a first case the transform of a periodic signal, u(x) = sin(2π x a), with
various frequencies a. This is a particular case of a signal which can be analyzed with the present new
algorithm as well as with a standard method for periodic signals.

Let us now discuss the way of visually presenting the resulting coefficients. In Figures 9 and 10
we confront two different types of drawing scalograms from the same coefficient values. In the first
method (Figure 10), the “exact”—i.e. iteratively determined—center locations zψji and resulting scales
sji(zji) are used to define rectangular cells Ωji in the following way:

(a1) The center of Ωji is defined by the coordinate pair (zψji,− log2(sji)).

(a2) The width of Ωji is equal to the scale sji.

(a3) The height of Ωji is set to an arbitrary constant value.

The plot is then obtained by drawing each cell colored with the absolute value of the corresponding
wavelet coefficient. Note that due to some overlapping of the rectangles they seem to have the shape
of more irregular polygons.

The other type of visual presentation—method (b)—in Figure 9 has been obtained by using the
approximate definition of center points and scales via the roots of the Chebyshev polynomials of the
second kind. Introducing the parameter θji = π(i + 1)/(2j + 1), we can rewrite the definitions (13),
(15) as

ẑψji = cos(θji) , (16a)

sji(ẑ
ψ
ji) = −Lx

2
sin(θji) sin

(
π

2j + 1

)
0 < i < 2j − 1 , (16b)

The previous relations represent a discrete mapping from dyadic θji to ẑji and sji, respectively, which
we can extend to the continuous case by replacing θji with θ ∈ ]0, π[. In this fashion, we can construct
a scalogram with cell boundaries which are progressively deformed such as to indicate a spatial change
of scale at fixed scale index j. In practice, we proceed as follows:
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(b1) Define a classical scalogram with rectangular cells centered at (θji,− log2(sji(ẑj,i=2j/2)), i.e.
using the scale of the centrally located wavelets given in (15), and separate the cells at the
mid-points between neighbors.

(b2) Transform the coordinate locations of the cell boundaries by the maps x = cos(θ), y =
− log2(sin(θ)).

The result is a pattern with strips of coefficients of common scale index j which are bent upwards near
the boundaries. By this method the coefficient values corresponding to small scale indices j appear
at different physical scales along their horizontal extent which in a way is a visual representation of
the fact that a single wavelet undergoes a similar variation in frequency along the interval. As Figures
9 and 10 demonstrate, both methods of visualization are of fairly similar quality with respect to the
readability of frequency content and position of the signal. For its smoothness and, because it allows
for a natural partitioning of the ordinate without gaps, we will henceforth retain method (b).

It can be seen in Figure 9 that the present base correctly shows a response at approximately
constant scale across the interval. Observe that the use of a real-valued wavelet always tends to yield
small-scale oscillations of the coefficients due to cancellations between the signal and the wavelet
itself. Therefore, a pure sine wave does not show up as a solid line in the scalogram, but rather as a
horizontal band with alternating values.

Next, let us turn to the transform of a Gaussian bump, u(x) = exp(−((x − xc)/(2σ))2), with
different standard deviations σ and center locations xc. Here, the question is whether the position of
the peak can be correctly determined from the scalogram and if information on the characteristic scale
can be extracted in this fashion. Looking at Figures 11–12, both seems to be the case. The maximum
amplitudes of the coefficients are not exactly pyramid-shaped when xc is off-center, but they do ap-
proximately point to the xc-locations. Furthermore, the scale of the cusp (i.e. the smallest scale where
a large amplitude is recorded) corresponds to the scale of the signal. The observed difference between
the cusps of the scalograms in Figure 11 and 12 is of roughly two octaves, i.e. a factor of 4, while the
standard deviation of the data varies fivefold.

2.6 Transform of data from turbulent flow and wavelet spectra

Figure 13 shows the transform of signals from a turbulent plane channel flow simulation of the second
author. The flow is fully developed and has a friction-velocity-based Reynolds number of Reτ = 590
and is therefore similar to the highest Reynolds number case studied in [4], except that the spatial
resolution has been increased substantially. The present data represents instantaneous wall-normal
profiles of the three velocity fluctuation components which have been spectrally interpolated from
385 Chebyshev modes to a N = 256 Legendre-Gauss-Lobatto grid. In turbulent channel flow, high
gradients and small structures are generated close to the solid surfaces, i.e. at the extrema of our
interval. In this particular snapshot, the streamwise component u′ shows such features near x=−1
and x=1, both of which are not unlike the narrow Gaussian bumps of § 2.5. The wavelet coefficient
scalogram again allows a localization of these peaks as well as a reading of their relative scales.
Several coarser undulations of u′ towards the center of the interval provoke responses at larger scales.

We are now in a position to quantify these arguments somewhat more by looking at energy spec-
tra from the proposed wavelet analysis. Let us first define a global power-spectral density per unit
wavenumber as follows:

E(km) =
1

∆km

∑

j,i / kmL ≤kji≤kmR

d2
ji . (17)
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As indicated, the index pairs (i, j) are selected such that the resulting “wavenumber”, i.e. inverse scale
kji = 1/sji, falls into one of a total number of M pre-determined bins [kmL , k

m
R ], where 1 ≤ m ≤M .

The function (17) is normalized by the wavenumber increment ∆km in order for the following equality
to hold for the total energy:

Etot =

∫ +1

−1
u(x)2 dx =

1∑

i=0

c20i +

J∑

j=0

2j−1∑

i=0

d2
ji =

1∑

i=0

c20i +

M∑

m=1

E(km) ∆km . (18)

In the following, the bins are spaced logarithmically.
Next, we define a local power-spectral density per unit wavenumber:

E(kj , x) =
d2
jic

∆kj
, (19)

where the position index ic = ic(x) corresponds to the wavelet at scale index j whose center y(2j)
ic

lies
closest to the location x. In other words, the function E(kj , x) represents a cut through the scalogram
at the abscissa x. Therefore, there are exactly J+1 such spectral values at each location and the largest
scales are obviously redundantly reproduced in spectra evaluated at small distances from each other.
In particular, the j = 0-coefficient will enter all local spectra. In contrast to the fixed wavenumber
increment ∆km in (17), the increment ∆kj is based on kj,ic = 1/sj,ic , i.e. on the scale parameters of
the coefficients actually selected.

Figure 14 shows the local energy spectra of the streamwise velocity data from Figure 13, evaluated
at different locations. Not surprisingly, close to the center the largest scales dominate the flow, while
there is a distinct medium-scale peak at about midway towards the lower wall (x = −0.6) and at
x=−0.94 the maximum energy is recorded for the small scales.

Figure 15 finally shows the global energy spectrum for the three components of velocity of our
instantaneous profile from turbulent channel flow. Also shown are the corresponding Legendre coef-
ficient spectra, albeit in a separate graph. All curves are normalized by the respective total component
energy Etot and still a comparison is not useful due to the different meaning of “scale” in both cases
(the wavenumber associated to a Legendre coefficient is simply defined as k̃m = m/Lx). Further-
more, the physical significance of summing-up coefficients over the non-homogeneous flow direction
seems unclear.

3 Multi-dimensional basis

3.1 Definition

The construction of a wavelet basis in more than one dimension typically proceeds along either one
of the following lines [5, p.313]:

(i) Design of genuinely multi-dimensional wavelet/scaling functions with the desired orthonormal-
ity and angular selectivity properties.

(ii) Performing a tensor product of one-dimensional bases in each coordinate direction, e.g. setting
ψ
jx,jy
ix,iy

(x, y) = ψjxix (x) · ψjyiy (y). With this procedure the scale indices are “scrambled” and not
directionally invariant.

(iii) Performing a tensor product of one-dimensional MRA’s with a “global” scale index and differ-
ent wavelets for picking up the various directional features.
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We choose the method (iii) for our present purposes since it simplifies the interpretation of signals in
terms of scale.

Henceforth we wish to analyze two-dimensional flow data which possesses one periodic (x) and
one bounded (y) coordinate direction, i.e. we consider the space L2(R/Z × [−1, 1]). Therefore, we
propose a hybrid MRA, composed of a periodic wavelet basis as in [6] and the Legendre wavelet basis
of § 2. Let us define the two-dimensional scaling functions and the set of three wavelet functions as
follows:

ϕjix,iy(x, y) = ϕ̃j,ix(x) · ϕj,iy(y) iy = 0 . . . 2j (20a)

ψj,1ix,iy(x, y) = ϕ̃j,ix(x) · ψj,iy(y) iy = 0 . . . 2j − 1 (20b)

ψj,2ix,iy(x, y) = ψ̃j,ix(x) · ϕj,iy(y) iy = 0 . . . 2j (20c)

ψj,3ix,iy(x, y) = ψ̃j,ix(x) · ψj,iy(y) iy = 0 . . . 2j − 1 (20d)

where in all cases j = 0, 1, . . . and ix = 0 . . . 2j − 1. The functions ϕ(y), ψ(y) are defined in (5); the
periodic functions ϕ̃(x), ψ̃(x) are spline wavelets of order 4 and can be found in detail in references
[6, 7]. Let us recall that the two-dimensional scaling function ϕjix,iy represents the smooth content of

the signal at scale index j while the wavelets ψj,1ix,iy , ψj,2ix,iy , ψj,3ix,iy pick up the detail information with
respect to horizontal (x), vertical (y) and diagonal variations of the signal, respectively.

The resulting decomposition of a two-dimensional function is as follows (recall that J=log2(N)−
1):

u(x, y) = c0
0,0 ϕ

0
0,0(x, y) + c0

0,1 ϕ
0
0,1(x, y)

+
J∑

j=0

2j−1∑

ix=0




2j∑

iy=0

dj,2ix,iy ψ
j,2
ix,iy

(x, y) +
∑

q={1,3}

2j−1∑

iy=0

dj,qix,iy ψ
j,q
ix,iy

(x, y)


 , (21)

which leads to a total number of 2 +
∑J

j=0{2j (2j + 1) + 2 · 22j} = N(N + 1) coefficients, as it
should. Splitting the sums results from the different number of scaling functions and wavelets with
the Legendre construction which is already reflected by the index bounds in (20).

Due to orthogonality the coefficients are obtained from the following scalar products:

dj,qix,iy =

∫

x

∫

y
u(x, y)ψj,qix ,iy(x, y)dydx , (22a)

cjix,iy =

∫

x

∫

y
u(x, y)ϕjix ,iy(x, y)dydx , (22b)

The integrals can be factorized because of the tensorial nature of the wavelets and scaling functions.
Therefore, we can first apply the standard Mallat algorithm to each “row” of data at constant y and
then proceed by scale-wise computing the remaining integration in the y-direction by our O(N 2)
scheme of § 2.2. The present decomposition algorithm therefore needs O(log(N)N 3) operations. As
mentioned above, this can be improved with by a recursive algorithm for the non–periodic part.

Figure 16 shows the shape of the three types of wavelets ψj,qix,iy(x, y), q = 1, 2, 3 of the scale
index j = 5 and at two locations, in the center of the domain and close to the boundary y = ±1. The
localization properties are quite different in the two coordinate directions since spline wavelets have
an exponential decay while the Legendre wavelets decay roughly with a power of −1 and exhibit the
characteristic “tails” near the boundaries discussed above.
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3.2 Transform of a two-dimensional analytical function and the coefficient scheme

When representing the coefficients obtained from a two-dimensional MRA graphically, one customar-
ily uses a block diagram where at each level j the rectangular domain is divided into quarters, three of
which are used for representing the current coefficients of level j, dj,qix,iy(x, y), and the fourth one be-

ing subdivided again for the following level j−1 and so on [8]. We locate the coefficients dj,2(x, y) in
the lower left quadrant, dj,3(x, y) in the lower right and dj,1(x, y) in the upper right (cf. the schematic
in Figure 17). This arrangement corresponds to the original proposition of Mallat [8] and differs from
the one used by Daubechies [5, p.315]. The size of the individual cells which are then color-coded
with the absolute values of the wavelet coefficients is set according to our definition of wavelet cen-
ters, i.e. uniform in the x-direction and according to the approximate center locations of the Legendre
wavelets (13) in the y-direction.

As an analytic test we consider a two–dimensional Gaussian bump now,

u(x, y) = exp

(
−(x− xc)2 + (y − yc)2

(2σ)2

)
(23)

with the finer scale σ = 0.01 of § 2.5 and three locations, one near the center of the domain, one
moderately close to the limit of the interval (yc=0.8) and one very close to the boundary (yc=0.95).
The domain has been mapped to Ω=[0, 2]× [−1, 1] for the analytical tests in this section.

The coefficient diagrams of the transform (Figure 18) demonstrate several points:

(i) The position of the bump can be correctly determined from the maximum of the response in
coefficient space.

(ii) The intensity of the response in horizontal direction, q= 1, does not change between different
bump locations, i.e. the maximum response in each scale index remains the same albeit shifted
to a new position. This is also approximately true for the diagonal direction q=3.

(iii) The intensity of the response in the vertical direction q= 2 shifts towards smaller scale indices
j when the bump is closer to the boundary, e.g. the block d6,2 showing a marked response for a
centrally located bump is nearly void when yc= 0.95. This reflects the fact that sj iy decreases
with iy and is therefore consistent with a constant scale σ of the bump.

(iv) The response appears much more smeared out in the vertical direction (dj,2) than in the two
others owing to the relatively poor spatial localization of the Legendre wavelets.

Concerning points (ii)-(iii) we should point to the difficulties of interpreting the present two-dimen-
sional coefficient scheme with respect to scale. The physical scale is not constant within one block
of the diagram nor is it isotropic. Rather are we dealing with a horizontal scale sx(j) = 2−j and a
distinct vertical scale sy(j, iy) = sjiy as defined in (14). In our graphical representation we indicate
those scales by choosing rectangular cells for each coefficient, reflecting the two scales by the aspect
ratio, i.e. by having flattened cells near the boundaries y=±1. Consequently, the same signal—when
shifted along the y-coordinate—gradually appears at a different scale index in coefficient space, as
has been observed under (iii). However, the present analysis still bears the strict hierarchical feature
of the original MRA locally in the sense that at a given location the scale varies exponentially with
the scale index j.

Finally we present the transform of a signal which consists of Dirac pulses at a set of cross-
shaped grid points near the lower boundary of the domain (cf. Figure 19). This test demonstrates the
present method’s ability to separate directional properties of the signal, i.e. horizontal from vertical
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variations. Furthermore, it shows that very sharp gradients produce approximately equally intense
responses irrespective of their spatial orientation.

3.3 Transform of a plane from turbulent channel flow data

Figure 20 shows a spanwise/wall-normal plane from the above mentioned turbulent plane channel
flow simulation. The size of the domain is Ω=[0, π]× [−1, 1] which corresponds to 1850×1180 wall
units at the chosen Reynolds number. The plotted quantity is a snapshot of the streamwise velocity
fluctuations. The original data has a dimension of 600 Fourier modes times 385 Chebyshev modes,
which has been spectrally interpolated on a 512 (uniform) by 512 (Legendre-Gauss-Lobatto) grid.

The signal bears a vast number of features and one clearly needs a formalism to help extracting
the desired information. Inspecting the wavelet coefficients in Figure 21, the well-known small-
scale intermittency [9] is apparent. In the present plot, the greyscales are adapted to vary between
[0,maxix,iy,q(|dj,qix,iy |)] for each scale index j and reveal that the high intensity regions become in-
creasingly localized, i.e. less space-filling, with increasing j.

We consistently obtain most high intensity responses from wavelets in block q = 1, i.e. corre-
sponding to horizontal variations of the data. This would mean that most of the structures bearing
sharp gradients are arranged in a vertical fashion. This observation, however, needs more backing and
cross-checking through the analysis of additional snapshots.

4 Conclusion

Starting from [1] we have constructed an orthonormal wavelet basis for the interval by an appropriate
recombination of Legendre polynomials. The wavelet functions decay approximately with a power
of −1 near their centers and have rising “tails” near the boundaries. Using these ingredients we have
implemented a multi-resolution analysis where the scale, however, is now a function of both scale
index and position.

The usefulness of the present basis for data analysis is demonstrated by studying the transforms of
analytical functions and data from turbulent flow simulations. We have defined local power-spectral
density functions and find that they represent an important tool for the analyst.

Note that with the present lumping of blocks of polynomials no better decay than ∝ 1/x can be
expected. This is readily understood by recalling the similarity with the so-called Shannon wavelets
defined by indicator functions in Fourier space. Fourier theory yields a decay of ∝ 1/x for discon-
tinuous Fourier transform. With the present construction we are in the same situation. While the rate
of decay can not be changed, the actual values and the properties of the “tails” might be improved.
Another route is to modify the lumping by using a smoother selection of polynomial coefficients as
employed in [10].

In a second part of the paper a hybrid two-dimensional MRA has been proposed and implemented.
It is constructed based on the tensor products between a periodic spline wavelets in the first direction
and the present Legendre wavelets in the second direction. The implementation of two non–periodic
directions can be accomplished in exactly the same way. Higher dimensions are also straightforward.

We have discussed the implications of a spatially varying scale parameter for the graphical repre-
sentation of the wavelet coefficients defining an appropriate scale parameter for each wavelet. In the
two–dimensional case the visualization is performed with an adaption of the coefficient scheme with
clustered scale and direction index. The transform of analytical data has again guided the way of in-
terpreting the proposed coefficient scheme, consisting of the usual block-wise presentation combined
with individual coefficient “cells” of a size that varies by scale index and position.
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Finally we have discussed the coefficients obtained by transforming a spanwise plane of turbulent
plane channel flow data. The instantaneous velocity fluctuations are found to be more intermittent at
small scales than on large scales, an observation which has already become popular in the wavelet
community [e.g. 11, p.23].
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Figure 1: Wavelet functions of scale index j = 5 computed on a grid with N = 512 points. Position
indices are i = 16, 19, 29 (top) and i = 26, 27, 28, 29, 30 (bottom). Observe that the abscissa of the
lower plot is zoomed.
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Figure 2: “Envelope” of the square of wavelet functions with scale index j = 5 (top) and j = 7 (bot-
tom) for different center locations, i.e. i = 16, 19, 21, 23, 25, 27 (top) and i = 64, 77, 87, 97, 107, 117
(bottom) computed on a grid with N = 512 points.
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Figure 3: Log-lin plot of the “envelope” of the square of wavelet functions with scale index j = 5
(top) and j = 7 (bottom) in the center of the interval and close to the boundary i.e. i = 15 = 6, 27
(top) and i = 64, 117 (bottom) computed on a grid with N = 512 points.
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Figure 4: As Figure 3, but for the wavelet functions of [1], being based upon Chebyshev polynomials
of the second kind instead of the present Legendre polynomials.
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Figure 5: Log-log plot of the decay of the square of wavelet functions of degree n = 32 (top) and
n = 128 (bottom) with center locations in the center of the interval. The straight line has a slope of
−2 in both cases.
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Figure 9: Wavelet transform of a periodic signal: u(x) = sin(2π x a) with a = 2, 4, 6.25 from top
to bottom. The left column shows the signal; in the scalogram on the right the abscissa relates to
the position in the domain x ∈ [−1, 1] while the ordinate gives the inverse of the scale parameter in
logarithmic scale, i.e. − log2(sji). Darker shading indicates higher (absolute) coefficient values on a
linear scale. The total number of modes is N + 1 = 257.
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Figure 10: Coefficient scalograms as in Figure 9, but the scale is defined from the “exact”, numerically
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Figure 11: Wavelet transform of a single Gaussian bump: u(x) = exp(−((x − xc)/(2σ))2) with
σ = 0.05 and the locations xc = 0.0, 0.2, 0.4, 0.6, 0.8 from top to bottom and from left to right.
Darker shading indicates higher (absolute) coefficient values on a linear scale. The abscissa relates to
the position in the domain x ∈ [−1, 1] while the ordinate gives the inverse of the scale parameter in
logarithmic scale, i.e. − log2(sji). The total number of modes is N + 1 = 257.
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Figure 12: As Figure 11, but the signal being a narrower bump with σ = 0.01.
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Figure 13: Wavelet coefficient diagram of the transformation of a fluctuation velocity signal from a
turbulent channel flow at friction velocity Reynolds number Reτ = 590. The profiles on the left are
taken across the channel, extending from wall to wall. Streamwise (top), wall-normal (middle) and
the spanwise (bottom) instantaneous fluctuations, respectively. Each signal has been normalized such
that its maximum absolute value is unity.
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Figure 14: Local wavelet spectra E(km, xc) as a function of the inverse of the physical scale parameter
km = 1/sij corresponding to the streamwise velocity data of Figure 13 and taken at the following
positions within the interval x ∈ [−1, 1]:

�
, xc = 0.1; ◦, xc = −0.6;4, xc = −0.94.
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Figure 15: The global wavelet spectrum E(km) (top) as a function of the inverse of the physical
scale parameter km = 1/sij corresponding to the transform of the data from turbulent channel flow.
The bottom figure shows the Legendre coefficient spectrum Ẽ(k̃m). In both cases, the values of the
spectrum are accumulated over logarithmically-spaced bins and normalized such that their integral
amounts to unity.

�
, streamwise fluctuations; ◦, wall-normal; 4, spanwise.
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Figure 16: Illustration of the basis functions of the two-dimensional MRA, sampled on a grid with
2562 points.

31



0
0.5

1

−1

0

1
−1

−0.5

0

0.5

1

x
yj = 5

q= 2
ix=15
iy=16

Figure 16: (continued)
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Figure 16: (continued)
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Figure 16: (continued)
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Figure 16: (continued)
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Figure 17: The graphical representation of the wavelet coefficients of the two-dimensional MRA. The
enlargement on the right shows that the individual colored cells of each block of data ( coefficients
which have common j and q indices) are uniformly spaced in the horizontal direction and spaced ac-
cording to the approximate definition of the Legendre wavelet centers in (15) in the vertical direction.
Note that the position of dj,2 and dj,1 is as proposed in [8] and therefore interchanged with respect to
[5, p.315].
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Figure 18: The wavelet transform of a two-dimensional single gaussian bump, u(x, y) = exp(−((x−
xc)

2 + (y − yc)2)/(2σ)2) with σ = 0.01 and the locations yc = 0.5, xc = 0.0, 0.8, 0.95. The top
graph (a) shows the signal, the bottom graph (b) shows the absolute value of the wavelet coefficients
at scale indices 2 ≤ j ≤ 6; the numerical grid has a dimension of N = 28. The greyscale is linear
from zero (white) to the maximum absolute coefficient value over all j, q, ix and iy (black).
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Figure 18: (continued)
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Figure 18: (continued)
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Figure 19: The transform of a cross-shaped binary signal close to the lower boundary of the domain.
The top graph (a) shows the signal, the bottom graph (b) shows the absolute value of the wavelet
coefficients at scale indices 2 ≤ j ≤ 7. The numerical grid has a dimension of N = 28. The
greyscale is linear from zero (white) to the maximum absolute coefficient value over all j, q, ix and
iy (black). The numerical values indicate the maximum value occurring in each data block with given
values of j and q. 41



Figure 20: Streamwise velocity fluctuations of a snapshot from a turbulent channel flow at friction
velocity Reynolds number Reτ = 590. The plane is spanwise/wall-normal, i.e. the mean flow is
perpendicular to the plane. The aspect ratio reflects the physical size of the domain.
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j = 5

Figure 21: The absolute value of the wavelet coefficients of the transform of streamwise velocity
fluctuations in a turbulent channel flow at friction velocity Reynolds number Reτ = 590. The plane
is spanwise/wall-normal. The graphs show the scale indices 5 ≤ j ≤ 7; the numerical grid has a
dimension of N = 29. The greyscale coloring is chosen such that white corresponds to zero intensity
and black to maximum intensity. This scale is adjusted independently for each level j.
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Figure 21: (continued)

        

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

j = 7

Figure 21: (continued)
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j = 8

Figure 21: (continued)
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