
KIP

FOR

POTSDAM INSTITUTE

CLIMATE IMPACT RESEARCH (PIK)

PIK Report

Thomas Slawig

No. 67No. 67

COUPLING DISTRIBUTED
FORTRAN APPLICATIONS USING C++ WRAPPERS

AND THE CORBA SEQUENCE TYPE



Author:
Dr. Thomas Slawig
TU Berlin (MA 6-2), Strasse des 17. Juni 136, 10623 Berlin
E-mail: slawig@math.tu-berlin.de

Herausgeber:
Dr. F.-W. Gerstengarbe

Technische Ausführung:
U. Werner

POTSDAM-INSTITUT
FÜR KLIMAFOLGENFORSCHUNG
Telegrafenberg
Postfach 60 12 03, 14412 Potsdam
GERMANY

Tel.: +49 (331) 288-2500
Fax: +49 (331) 288-2600
E-mail-Adresse: pik-staff@pik-potsdam.de

POTSDAM, DEZEMBER 2000



3

Abstract 

The CORBA standard lacks a mapping of its Interface Definition
Language IDL to FORTRAN which still is an important language of
many scientific and engineering applications. Using the given IDL to
C++ mapping and a wrapping technique an effective coupling of
FORTRAN codes can be realized that in most cases avoids data copying.
A way to use the IDL sequence type for the data transfer is shown which
allows highly flexible interfaces.



1 Introduction

The Common Object Request Broker Architecture (CORBA) standard [1]

with its Interface De�nition Language (IDL) provides an easy and eÆcient

way to de�ne interfaces for distributed components written in programming

languages for which so-called mappings are de�ned. Since such mappings

are available e.g. for C, C++, Java most business and logistic applications

can be coupled via CORBA. Moreover the IDL-to-Cobol mapping allows

coupling of legacy applications in these areas.

Conversely many numerical simulation codes in science and engineering

are (still) written in Fortran for which no IDL mapping is de�ned. Nev-

ertheless the growing computer power nowadays theoretically allows to run

complex coupled simulation codes, for example 
uid-structure interactions or

climate simulations. Since the coupling of C++ and Fortran codes is pos-

sible, one way to couple Fortran codes is to use the de�ned IDL-to-C++

mapping and \wrap" the Fortran applications in C++ code.

A major issue in simulation codes is the necessary data transfer. Most

simulations are time-dependent problems which are solved by a discrete time-

stepping scheme. The length of the time-steps is usually determined by

stability requirements and thus can not be chosen arbitrarily. To achieve

real coupling between di�erent parts of the simulation a transfer of data

(e.g. boundary conditions) on the physical or problem-de�ned interfaces is

necessary. A crucial point for eÆciency thus is to avoid any data copying.

Moreover simulation codes are often run with di�erent resolutions of the

underlying mathematical equations. For this purpose 
exible data structures

are desirable that do not require re-compilation when the resolution changes.

The IDL sequence type provides this 
exibility and therefore it is a useful

data type for coupled simulation codes.

For simplicity of notation in this paper a code is called a C++ code

even if it does not contain any special object-oriented features and can be

also compiled as pure C code. For the same reason a code is referred to

as a Fortran code when no special Fortran 90 features are used. In

the latter cases the notation Fortran 90 code will be used. Moreover all

examples given for Fortran subroutines are also valid for functions. The

�les which are generated by the IDL-to-C++ translator are named according

to the convention used by the ORBacus 3.1.2 software, see [2]. The compiler-

speci�c statements refer to the IBM XL C++ and Fortran compiler under

AIX 4.2.

4



Following the usual CORBA notation the component in a distributed

simulation which is called by another component is denoted as the server,

whereas the calling component in the simulation is called the client.

2 The basic wrapping technique

The complete de�nition of a mapping from IDL to a language as Fortran

would be rather complex. On the other hand the coupling of Fortran and

C++ codes (without CORBA) can be achieved in most cases in a rather

simple and eÆcient way. Combining this technique with the existing IDL-

to-C++ mapping thus is an appropriate way to couple Fortran codes via

CORBA for distributed simulations.

The available Object Request Broker (ORB) software packages include

an IDL translator that transforms given interface and data type de�nitions

described in IDL into code in the corresponding language. The CORBA

standard (see e.g. [3], [4]) de�nes in di�erent language mappings the relations

between the IDL data types and those in the corresponding language. The

ORB's IDL translator then writes so-called skeleton code. This has to be

completed by the user with an implementation of the methods de�ned in

the interface. A simple example in IDL and C++ describing an interface

for a typical simulation model with an initialization method and another

one performing a single time-step is the following (e.g. de�ned in a �le

model.idl):

#include types.idl

interface model f
void init(in p type p);

void step(inout x type x);

g;

The in and inout attributes describe whether the corresponding parameter

is supposed to be changed by the method or not. It is also possible to de�ne

pure out parameters. The two used types are here de�ned in an included

�le. The IDL translator which is usually just by invoked by idl model.idl

generates a skeleton code (in the �les model skel.h and .cpp in the case of

the ORBacus) which de�nes a class model skel. From this a sub-class has

to be derived (e.g. in model impl.h):

5



#include <model skel.h>

class model impl:public model skel f
virtual void init(const p type& p);

virtual void step(x type& x);

g;

The two methods of model impl have to be implemented, either directly in

C++ or by using the following so-called C++ wrapper which itself calls an

existing Fortran subroutine fstep:

#include <model impl.h>

extern "C" void fstep(...);

void model impl::step(x type& x) f
fstep(...);

g;

The init method can be designed as a similar wrapper for some Fortran

finit subroutine. The Fortran subroutines have to be declared as extern

"C" void like usual C functions. The form of the parameter list (marked here

as ...) of fstep depends on the data type mappings from C++ to Fortran

and some special points when passing parameters between these languages.

These aspects are discussed in the next section.

3 IDL { C++ { Fortran mappings

The mappings from IDL to C++ are de�ned in the CORBA standard which

introduces special C++ data types. These are implemented in the ORB

software and may thus be machine-dependent. Their Fortran counterparts

again depend on the used operating system and compilers.

For the basic data types Table 1 shows the relations or mappings between

the following four levels:

� The IDL types used in the interface de�nitions in the .idl �les.

� The corresponding CORBA C++ types de�ned by the CORBA IDL-

to-C++ mapping speci�cations [3].

� The transformation of the latter to basic C++ types by the ORB (here

for the ORBacus 3.1.2, to be found in the �le ob/include/OB/Basic.h

6



in the ORBacus' installation directory). These representations depend

on the sizes of basic C++ types on the current system.

� The corresponding Fortran types that result from the implementa-

tions by the C++ and Fortran compilers (here for the IBM XL

compiler [5]).

It becomes clear that the last two relations have to be checked carefully

according to the used machines and compilers.

Mapping general structured types requires a Fortran 90 compiler since

derived types (as they are called in Fortran) are not a part of the older

Fortran 77 standard. A structured data type de�ned in IDL e.g. as

struct fshort i; float x;g;

is mapped to C++ as

struct fCORBA::Short i;CORBA::Float x;g;

which can be represented in Fortran as

type new type

integer(2) :: i

real(4) :: x

end type new type

The structure elements must have the same order and their types have to

be mapped according to Table 1. One important point to note when using

structures and derived types is that the C++ and Fortran compilers usu-

ally extend consecutive data units that together occupy less than 4 bytes

(e.g. the short in the example above) up to the full 4 bytes. That means in

the example that the following structure member x's storage begins 4 bytes

behind the storage of i. Since this is done both in C++ and Fortran it

normally does not cause any problems. Alternatively one can force the com-

pilers to pack the memory in the structure or derived type, respectively, by

compiling the C++ code with a special option (-qalign=packed for the IBM

XL C++ compiler), and in Fortran 90 by using the sequence attribute

in the derived type de�nition (in a single line right after type new type).

Theoretically working with packed memory both in C++ and Fortran 90

should also work without problems, but in fact turned out not to do so in

7



IDL CORBA C++ Byte C++ Fortran

CORBA::

{ { 1 (signed) integer(1)

char

short Short 2 (signed) integer(2)

short2

long Long 4 (signed) integer(4)

int2 =integer4

long long1 LongLong 8 long long3 integer(8)

char Char 1 unsigned logical(1)

char

boolean Boolean 1 unsigned logical(1)

char

octet Octet 1 unsigned logical(1)

char

unsigned Short 2 unsigned logical(2)

short short

unsigned Long 4 unsigned logical(4)

long int =logical4

unsigned LongLong 8 unsigned logical(8)

long long1 long long3

float Float 4 float real(4)=real4

double Double 8 double real(8)

=double prec.4

long double LongDouble 16 long double3 real(16)

Table 1: Mappings for basic IDL, C++, and Fortran data types. Notes:
1 Type is not implemented in ORBacus. 2 In other implementations the IDL

types short and long may be be mapped to the C++ types int and long,

respectively. 3 Type requires special options on the IBM XLC compiler. 4

The default Fortran type sizes can be changed by compiler options.

8



some cases. Thus it is highly recommended not to use the memory packing.

To avoid problems of this type it is moreover safe to work only with 4 or 8

byte data types as long in IDL, int in C++, and integer(4) in Fortran.

Fortran provides a special data type which allows to map a structure

of two 
oating point numbers to one complex, e.g. the IDL type

struct f float re,im; g;

which in C++ is mapped to

struct f CORBA::Float re,im; g;

can be represented in Fortran by

complex(4) or just complex.

Analogously a struct of two IDL double can be mapped to a complex(8)

or double complex and a struct of two IDL long double to a complex(16)

in Fortran.

4 Passing parameters from C++ to Fortran

Besides the pure mappings of the basic data types described in the last section

there are some points to take care of when passing parameters from a C++

wrapper to a Fortran subroutine:

� Fortran subroutines require their parameters to be passed by refer-

ence. That means that a subroutine

subroutine fstep(x)

real(4) :: x

...

end subroutine fstep

is wrapped in C++ as

extern "C" void fstep(CORBA::Float*);

void model impl::step(CORBA::Float& x) f

9



fstep(&x);

g;

and its IDL interface is

interface model f
...

void step(inout float x);

g;

Since passing a C++ array in fact means passing a pointer, the amper-

sand in the call of fstep has to be omitted in this case. The subroutine

subroutine fstep(x,n)

real(4) :: x(n)

integer(4) :: n

...

end subroutine fstep

is wrapped in C++ as

extern "C" void fstep(CORBA::FLoat*,CORBA::Long*);

void model impl::step(FArray x,CORBA::Long n) f
fstep(x,&n);

g;

The introduction of a new type called FArray here for an array of 
oats

is necessary to de�ne the IDL interface in model.idl:

#define N 100

typedef float FArray[N];

interface model f
void step(inout FArray x,in long n);

g;

The IDL to C++ translator generates the C++ type FArray in the

�le model.h. Since IDL does not have a pointer type the �xed ar-

ray dimension is required. For variable-sized arrays the sequence type

(see below) has to be used. Instead of de�ning the dimension with the

10



#define preprocessor directive as above it is also possible to declare n

itself as a constant, namely

const long n=100;

typedef float FArray[n];

But nevertheless in this case it is not possible to declare n as extern

const CORBA::Long and use it for the de�nition of the FArray type

in the C++ wrapper. In the parameter list of the prototype of fstep

in the C++ wrapper FArray can be replaced by CORBA::Float* since

this is what FArray in C++ in fact is.

� C++ arrays start with index 0, those in Fortran arrays may have

arbitrary index ranges, by default they start with index 1. Since the

C++ wrappers usually do not access array elements themselves this is

only important to de�ne the array's dimensions properly.

� C++ and Fortran have di�erent ways when internally storing two-

and more-dimensional arrays. In C++ the array elements are stored

sequentially in memory with the last index running fastest, in For-

tran with the �rst index doing so. Hence arrays have to be de�ned in

the C++ wrapper and the IDL interface with the dimensions changed

accordingly. The subroutine

subroutine fstep(x,m,n)

real(4) :: x(m,n)

integer(4) :: m,n

...

end subroutine fstep

is wrapped in C++ as

extern "C" void fstep(FArray,CORBA::Long*,CORBA::Long*);

void model impl::step(FArray x,CORBA::Long n,

CORBA::Long m) f
fstep(x,&m,&n);

g;

Here the FArray type in the parameter list of the prototype of fstep is

necessary if the array dimensions are not explicitly de�ned as constant

11



in the wrapper itself. The IDL interface (with N,M de�ned by prepro-

cessor directives) is

typedef float FArray[N][M];

interface model f
void step(inout FArray x,in long n,in long m);

g;

In the array examples it becomes clear that one has either to de�ne the array

dimensions in the IDL interface suÆciently big or to translate the interface

and compile the generated C++ code every time di�erent dimensions are

needed. A remedy for this unsatisfying situation provides the sequence type

discussed in the last two sections of this paper.

5 Coupling Fortran codes without clear in-

terfaces

Many stand-alone Fortran codes use global variables in common blocks

or Fortran 90 modules to share data between di�erent model parts that

are realized in subroutines. On one hand this results in high eÆciency of

the code and readability of the subroutines' declarations and calls since the

parameter lists remain short. On the other hand the subroutines have no

clear interfaces and it thus is much more diÆcult to split up the software

into components if parts of it shall be coupled with other software.

Nevertheless for both cases (common blocks and module variables) there

is a way to wrap the code and thus provide it with a usable interface. This

technique is described in the current section.

5.1 Fortran 77 common blocks

In the case that a Fortran subroutine uses common blocks to share data

with other subroutines it is possible to map the common blocks to equivalent

C++ structures. The common block globals in

subroutine fstep

common / globals / x,y

real(4) :: x,y

12



...

end subroutine fstep

can be accessed in a C++ wrapper in the following way:

#include <model.h>

globals type globals;

extern "C" void fstep(void);

void model impl::step(globals type& g par) f
globals=g par;

fstep();

g par=globals;

g

The de�nition of globals type is included in the �le model.h generated by

the IDL-to-C++ translator from the IDL interface de�ned in model.idl:

struct globals type ffloat x,y;g;
interface model f

void step(inout globals type g par);

g

The Fortran common block and the C++ structure globals use the same

memory. Since the wrapper needs a parameter to get and pass to other

CORBA components in order to transfer any data the copying from and

into this parameter g par is necessary. A second disadvantage of this easy

coupling technique is that in the common block there may be variables that

are actually not needed in the other components.

5.2 Fortran 90 modules

When Fortran 90 module variables are used they cannot be accessed via a

C++ structure in the same way as a common block. Then a di�erent method

is necessary which moreover avoids the data copying. The subroutine

subroutine fstep

use globals

...

end subroutine fstep

13



uses a global variable declared as an allocatable array in a module:

module globals

real(4), dimension(:,:), allocatable :: x

end module globals

An initialization subroutine allocates memory for x. The variable then can be

accessed by all subroutines that include a use globals statement. Chang-

ing the allocatable attribute to pointer in the module and removing the

memory allocation allows to wrap the subroutine fstep as follows:

subroutine fstep wrapper(y,m,n)

use globals

real(4), target :: y(m,n)

integer(4) :: m,n

x=>y

call fstep

end subroutine fstep wrapper

The pointer assignment statement x=>y allows to access the values in y

also via x and thus fstep now operates in fact on the values passed to

fstep wrapper in the parameter y. The Fortran 90 wrapper itself is

called from C++:

extern "C" void fstep wrapper(FArray,

CORBA::Long*,CORBA::Long*);

void model impl::step(FArray x,

CORBA::Long m,CORBA::Long n) f
fstep wrapper(x,&m,&n);

g

The corresponding IDL interface is given by

typedef float FArray[N][M];

interface model f
void step(inout FArray x,in long n,in long m);

g

Again the array is transposed in C++. Still both methods require re-

de�nition of the IDL interfaces if the array dimensions need to be adjusted

14



due to a change e.g. in the resolution of the simulation's discretization. How

this may be avoided is the topic of the next section.

6 Flexible interfaces using IDL sequences

Arrays whose dimensions are not �xed at compile-time but can be adjusted

according to simulation requirements at run-time can be realized in Fortran

90 by using the allocatable or pointer attribute, in C++ by declaring a

pointer to the corresponding data type. In both languages the actual needed

memory then is allocated by special function or subroutine calls. Since IDL

has no pointers the only way to transmit such arrays without re-parsing the

interfaces and data types is the use of the sequence type. An IDL interface

using the sequence type to pass an array of variable size is the following:

typedef sequence<float> Parameter;

interface model f
void step(inout Parameter p,in long m,in long n);

g;

The type Parameter is a so-called unbounded sequence where the maximal

as well as the current length of the sequence can be controlled by the user.

For bounded sequences where the maximal length is �xed in the IDL interface

the following technique may be applied analogously. To \�ll" the sequence

without data copying a special constructor (provided in the sequence class

template of the ORB implementation) is used in the C++ client that calls

the wrapped Fortran model via CORBA:

x = new CORBA Float[n*m];

Parameter p(n*m,n*m,x);

The sequence is built around the existing array x without data copying. The

�rst two integer parameters passed to the constructor are maximal and actual

length of the (unbounded) sequence. A C++ wrapper may look like this:

extern "C" void fstep(CORBA::Float*,

CORBA::Long*,CORBA::Long*);

void model::step(Parameter& p,CORBA::Long m,CORBA::Long n) f
fstep(p.data(),&m,&n);

15



g;

The data function of the Parameter class is an additional function supplied

by the ORBacus. It returns the pointer to the data array of the sequence

type object p. The Fortran subroutine

subroutine fstep(x,m,n)

real(4) :: x(m,n)

integer(4) :: m,n

...

end subroutine fstep

or the subroutine fstep wrapper de�ned at the end of the last section can

be used here even though they interpret x as the reference to an array of

dimension greater than one. Care has to be taken for the way the one-

dimensional array x is �lled on the client side: The Fortran subroutine

regards the passed x as reference to a (in this case) two-dimensional array of

size m�n which was �lled with the data column-wise.

Note that this method only works for arrays of basic data types and

not for arrays of structures or derived types. In these cases the C++ pointer

returned by p.data() cannot be interpreted correctly by the called Fortran

subroutine. To deal with this case the whole sequence has to be passed to

fstep in the way discussed in the next section.

7 A Fortran mapping for IDL sequences

In the last section the sequence type was used to de�ne an interface that

transfers allocatable arrays of 
oating point numbers. The sequence was

resolved in the C++ wrapper and then the address of the array itself was

passed to Fortran.

A more general and 
exible method is to de�ne a mapping of the IDL

sequence type or its C++ representation. Then the sequence may be passed

unchanged through the C++ wrapper directly to a Fortran wrapper or

subroutine. This may be necessary if a bigger number of arrays have to been

passed to the subroutine and the number and the dimensions of the arrays

should be variable. Then a sequence of sequences may serve as a 
exible

and eÆcient data type for a parameter list. Sequences are also necessary in

cases when arrays of structures shall be transmitted. In this section a more

16



complicated example is presented where a structure contains pointers to an

array of other structures.

To construct a derived type in Fortran 90 that may serve as a repre-

sentation of a sequence it is necessary to know how a sequence is realized in

C++, namely as a class whose attributes are integers for the maximal and

actual length, an optional o�set, a storage release 
ag, and �nally a pointer

to the �rst element of the sequence itself, realized in the class template:

template<class T> class OBVarSeq f
CORBA::Long max ;

CORBA::Long len ;

CORBA::Long off ;

CORBA::Boolean rel ;

T* data ;

...

g

The remaining part contains di�erent constructors, e.g. the one already used

in the last section, and other functions and operators.

A problem now arises in �nding an appropriate counterpart of the T*

data pointer in this de�nition. The Fortran 90 pointer data type di�ers

from the C++ pointer in the way that it contains not just only the pure ad-

dress (i.e. an integer) of the object the pointer points to (for simplicity called

pointee here). Fortran 90 pointers moreover include information about the

pointee, e.g. its rank, dimensions, stride etc. (for an array). The problem is

that the way how this information is stored is not standardized and usually

not documented by the compiler vendors. Passing a C++ pointer pointing

to a struct as parameter to a Fortran 90 subroutine which tries to inter-

pret it as a pointer to a derived type leads to run-time errors, even if the

Fortran 90 derived type has exactly the same elements in the same order

and with the appropriate types as its C++ counterpart. A way to overcome

these problems is the use of the so-called integer or Cray pointers. They are

not part of the Fortran 77/90/95 standards but nevertheless supported

by most Fortran compilers. The integer pointer is an integer that can be

associated with a pointee by a pointer statement. Since the pointee can be

of any type the same derived type can be used for IDL sequences of arbitrary

type. For convenience it is de�ned in a Fortran 90 module:

module seq mod

17



type seq

private

integer(4) :: max,len,off

logical(4) :: rel

integer(4) :: dat

end type seq

contains

integer(4) function length(s)

type(seq) s

length = s%len

return

end function length

integer(4) function dat(s)

type(seq) s

dat=s%dat

return

end function dat

end module seq mod

The C++ CORBA::Boolean rel can be mapped either to a Fortran

logical(1),(2) or (4) for the reasons already discussed at the end of Sec-

tion 3. In the �rst two cases the attribute sequence must not appear in the

Fortran 90 derived type de�nition, whereas in the last it has no e�ect.

The module does not allow direct access to the types' elements, but it pro-

vides two functions returning the length and the integer pointer to the data

in the sequence, respectively. The second function thus corresponds to the

data member function in the class de�nition of the C++ mapping of the IDL

sequence type. (data is a keyword in Fortran { it can be used as name for

this function but is avoided here.)

The module may now be included anywhere a sequence is passed to a

Fortran subroutine. The following example shows how a C++ structure

originally containing a pointer to an array of other structures is transformed

to a sequence and transmitted to a Fortran subroutine. Based on the C++

type de�nition

struct Parameter ffloat x,y;g;
struct Transfer fint n;float z;Parameter *list;g;

an object of type Transfer containing a list with an arbitrary number of

18



parameters shall be passed to Fortran. In the IDL interface de�ned in

model.idl the pointer is replaced by a sequence object:

struct Parameter ffloat x,y;g;
typedef sequence <Parameter> ParList;

struct Transfer flong n; float z; ParList list;g;
interface model f

void step(inout Transfer pt);

g;

On the server side the following C++ wrapper is used:

extern "C" void fstep(Transfer*);

void model impl::step(Transfer& p) f
fstep(&p);

g

The IDL and the corresponding C++ types are mapped to Fortran 90

derived types in a module which uses the seq mod module:

module transfer mod

use seq mod

type Par

real(4) :: x,y

end type Par

type Transfer

integer (4) :: n

real(4) :: z

type(seq) :: list

end type Transfer

end module transfer mod

The Fortran subroutine receiving a reference to an object of type transfer

accesses the sequence using an integer pointer in the following way:

subroutine fstep(pt)

use transfer mod

type(Transfer) :: pt

type(Par) :: p(pt%n)

19



pointer(ptr,p)

ptr=dat(pt%list)

p(1)%x=...

end subroutine fstep

The pointer statement associates the integer pointer ptr with the pointee

p. Any object of type Par to which ptr will point later on can be referred

to as p. Now ptr can be assigned to any other integer pointer. This is done

here using the dat function supplied by the seq mod module.

Summary

Using the given IDL-to-C++ mapping and taking care of the relations be-

tween C++ and Fortran data types Fortran codes can be coupled via

CORBA and C++ wrappers. This is even true for codes using global vari-

ables for the data transfer and without explicit interfaces. The IDL sequence

type provides a 
exible data type to transfer arrays and structures whose

length is determined only at run-time. Even for complex structures includ-

ing pointers the sequence type can be used by de�ning a special Fortran

90 derived type.

Acknowledgements

The author would like to thank Arnulf G�unther and Cezar Ionescu from PIK

for their comments on the manuscript and other fruitful discussions.

References

[1] The Object Management Group (OMG) homepage,

http://www.omg.org/gettingstarted/corbafaq.htm.

[2] Object Oriented Concepts (OOC) homepage, http://www.ooc.com.

[3] The Object Management Group, C++ mapping speci�cation,

http://www.omg.org/technology/documents/formal/c++.htm.

[4] S. Henning, M. Vinoski, Advanced CORBA Programming with C++

(Addison-Wesley, Reading, 1999).

20



[5] IBM XL Fortran User's Guide - Passing data between languages, available

online (command info -l xlf).

21



PIK Report-Reference:

No. 1 3. Deutsche Klimatagung, Potsdam 11.-14. April 1994,
Tagungsband der Vorträge und Poster (April 1994)

No. 2 Extremer Nordsommer '92
Meteorologische Ausprägung, Wirkungen auf naturnahe und vom Menschen beeinflußte
Ökosysteme, gesellschaftliche Perzeption und situationsbezogene politisch-administrative
bzw. individuelle Maßnahmen (Vol. 1 - Vol. 4)
H.-J. Schellnhuber, W. Enke, M. Flechsig (Mai 1994)

No. 3 Using Plant Functional Types in a Global Vegetation Model
W. Cramer (September 1994)

No. 4 Interannual variability of Central European climate parameters and their relation to the large-
scale circulation
P. C. Werner (Oktober 1994)

No. 5 Coupling Global Models of Vegetation Structure and Ecosystem Processes - An Example from
Arctic and Boreal Ecosystems
M. Plöchl, W. Cramer (Oktober 1994)

No. 6 The use of a European forest model in North America: A study of ecosystem response to
climate gradients
H. Bugmann, A. Solomon (Mai 1995)

No. 7 A comparison of forest gap models: Model structure and behaviour
H. Bugmann, Y. Xiaodong, M. T. Sykes, Ph. Martin, M. Lindner, P. V. Desanker,
S. G. Cumming (Mai 1995)

No. 8 Simulating forest dynamics in complex topography using gridded climatic data
H. Bugmann, A. Fischlin (Mai 1995)

No. 9 Application of two forest succession models at sites in Northeast Germany
P. Lasch, M. Lindner (Juni 1995)

No. 10 Application of a forest succession model to a continentality gradient through Central Europe
M. Lindner, P. Lasch, W. Cramer (Juni 1995)

No. 11 Possible Impacts of global warming on tundra and boreal forest ecosystems - Comparison of
some biogeochemical models
M. Plöchl, W. Cramer (Juni 1995)

No. 12 Wirkung von Klimaveränderungen auf Waldökosysteme
P. Lasch, M. Lindner (August 1995)

No. 13 MOSES - Modellierung und Simulation ökologischer Systeme - Eine Sprachbeschreibung mit
Anwendungsbeispielen
V. Wenzel, M. Kücken, M. Flechsig (Dezember 1995)

No. 14 TOYS - Materials to the Brandenburg biosphere model / GAIA
Part 1 - Simple models of the "Climate + Biosphere" system
Yu. Svirezhev (ed.), A. Block, W. v. Bloh, V. Brovkin, A. Ganopolski, V. Petoukhov,
V. Razzhevaikin (Januar 1996)

No. 15 Änderung von Hochwassercharakteristiken im Zusammenhang mit Klimaänderungen - Stand
der Forschung
A. Bronstert (April 1996)

No. 16 Entwicklung eines Instruments zur Unterstützung der klimapolitischen Entscheidungsfindung
M. Leimbach (Mai 1996)

No. 17 Hochwasser in Deutschland unter Aspekten globaler Veränderungen - Bericht über das DFG-
Rundgespräch am 9. Oktober 1995 in Potsdam
A. Bronstert (ed.) (Juni 1996)

No. 18 Integrated modelling of hydrology and water quality in mesoscale watersheds
V. Krysanova, D.-I. Müller-Wohlfeil, A. Becker (Juli 1996)

No. 19 Identification of vulnerable subregions in the Elbe drainage basin under global change impact
V. Krysanova, D.-I. Müller-Wohlfeil, W. Cramer, A. Becker (Juli 1996)

No. 20 Simulation of soil moisture patterns using a topography-based model at different scales
D.-I. Müller-Wohlfeil, W. Lahmer, W. Cramer, V. Krysanova (Juli 1996)

No. 21 International relations and global climate change
D. Sprinz, U. Luterbacher (1st ed. July, 2n ed. December 1996)

No. 22 Modelling the possible impact of climate change on broad-scale vegetation structure -
examples from Northern Europe
W. Cramer (August 1996)



No. 23 A methode to estimate the statistical security for cluster separation
F.-W. Gerstengarbe, P.C. Werner (Oktober 1996)

No. 24 Improving the behaviour of forest gap models along drought gradients
H. Bugmann, W. Cramer (Januar 1997)

No. 25 The development of climate scenarios
P.C. Werner, F.-W. Gerstengarbe (Januar 1997)

No. 26 On the Influence of Southern Hemisphere Winds on North Atlantic Deep Water Flow
S. Rahmstorf, M. H. England (Januar 1977)

No. 27 Integrated systems analysis at PIK: A brief epistemology
A. Bronstert, V. Brovkin, M. Krol, M. Lüdeke, G. Petschel-Held, Yu. Svirezhev, V. Wenzel
(März 1997)

No. 28 Implementing carbon mitigation measures in the forestry sector - A review
M. Lindner (Mai 1997)

No. 29 Implementation of a Parallel Version of a Regional Climate Model
M. Kücken, U. Schättler (Oktober 1997)

No. 30 Comparing global models of terrestrial net primary productivity (NPP): Overview and key
results
W. Cramer, D. W. Kicklighter, A. Bondeau, B. Moore III, G. Churkina, A. Ruimy, A. Schloss,
participants of "Potsdam '95" (Oktober 1997)

No. 31 Comparing global models of terrestrial net primary productivity (NPP): Analysis of the seasonal
behaviour of NPP, LAI, FPAR along climatic gradients across ecotones
A. Bondeau, J. Kaduk, D. W. Kicklighter, participants of "Potsdam '95" (Oktober 1997)

No. 32 Evaluation of the physiologically-based forest growth model FORSANA
R. Grote, M. Erhard, F. Suckow (November 1997)

No. 33 Modelling the Global Carbon Cycle for the Past and Future Evolution of the Earth System
S. Franck, K. Kossacki, Ch. Bounama (Dezember 1997)

No. 34 Simulation of the global bio-geophysical interactions during the Last Glacial Maximum
C. Kubatzki, M. Claussen (Januar 1998)

No. 35 CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and
performance for present climate
V. Petoukhov, A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, S. Rahmstorf
(Februar 1998)

No. 36 Geocybernetics: Controlling a rather complex dynamical system under uncertainty
H.-J. Schellnhuber, J. Kropp (Februar 1998)

No. 37 Untersuchung der Auswirkungen erhöhter atmosphärischer CO -Konzentrationen auf Weizen-2

bestände des Free-Air Carbondioxid Enrichment (FACE) - Experimentes Maricopa (USA)
Th. Kartschall, S. Grossman, P. Michaelis, F. Wechsung, J. Gräfe, K. Waloszczyk,
G. Wechsung, E. Blum, M. Blum (Februar 1998)

No. 38 Die Berücksichtigung natürlicher Störungen in der Vegetationsdynamik verschiedener
Klimagebiete
K. Thonicke (Februar 1998)

No. 39 Decadal Variability of the Thermohaline Ocean Circulation
S. Rahmstorf (März 1998)

No. 40 SANA-Project results and PIK contributions
K. Bellmann, M. Erhard, M. Flechsig, R. Grote, F. Suckow (März 1998)

No. 41 Umwelt und Sicherheit: Die Rolle von Umweltschwellenwerten in der empirisch-quantitativen
Modellierung
D. F. Sprinz (März 1998)

No. 42 Reversing Course: Germany's Response to the Challenge of Transboundary Air Pollution
D. F. Sprinz, A. Wahl (März 1998)

No. 43 Modellierung des Wasser- und Stofftransportes in großen Einzugsgebieten. Zusammen-
stellung der Beiträge des Workshops am 15. Dezember 1997 in Potsdam
A. Bronstert, V. Krysanova, A. Schröder, A. Becker, H.-R. Bork (eds.) (April 1998)

No. 44 Capabilities and Limitations of Physically Based Hydrological Modelling on the Hillslope Scale
A. Bronstert (April 1998)

No. 45 Sensitivity Analysis of a Forest Gap Model Concerning Current and Future Climate Variability
P. Lasch, F. Suckow, G. Bürger, M. Lindner (Juli 1998)

No. 46 Wirkung von Klimaveränderungen in mitteleuropäischen Wirtschaftswäldern
M. Lindner (Juli 1998)

No. 47 SPRINT-S: A Parallelization Tool for Experiments with Simulation Models
M. Flechsig (Juli 1998)



No. 48 The Odra/Oder Flood in Summer 1997: Proceedings of the European Expert Meeting in
Potsdam, 18 May 1998
A. Bronstert, A. Ghazi, J. Hladny, Z. Kundzewicz, L. Menzel (eds.) (September 1998)

No. 49 Struktur, Aufbau und statistische Programmbibliothek der meteorologischen Datenbank am
Potsdam-Institut für Klimafolgenforschung
H. Österle, J. Glauer, M. Denhard (Januar 1999)

No. 50 The complete non-hierarchical cluster analysis
F.-W. Gerstengarbe, P. C. Werner (Januar 1999)

No. 51 Struktur der Amplitudengleichung des Klimas
A. Hauschild (April 1999)

No. 52 Measuring the Effectiveness of International Environmental Regimes
C. Helm, D. F. Sprinz (Mai 1999)

No. 53 Untersuchung der Auswirkungen erhöhter atmosphärischer CO -Konzentrationen innerhalb2

des Free-Air Carbon Dioxide Enrichment-Experimentes: Ableitung allgemeiner Modellösungen
Th. Kartschall, J. Gräfe, P. Michaelis, K. Waloszczyk, S. Grossman-Clarke (Juni 1999)

No. 54 Flächenhafte Modellierung der Evapotranspiration mit TRAIN
L. Menzel (August 1999)

No. 55 Dry atmosphere asymptotics
N. Botta, R. Klein, A. Almgren (September 1999)

No. 56 Wachstum von Kiefern-Ökosystemen in Abhängigkeit von Klima und Stoffeintrag - Eine
regionale Fallstudie auf Landschaftsebene
M. Erhard (Dezember 1999)

No. 57 Response of a River Catchment to Climatic Change: Application of Expanded Downscaling to
Northern Germany
D.-I. Müller-Wohlfeil, G. Bürger, W. Lahmer (Januar 2000)

No. 58 Der "Index of Sustainable Economic Welfare" und die Neuen Bundesländer in der Übergangs-
phase
V. Wenzel, N. Herrmann (Februar 2000)

No. 59 Weather Impacts on Natural, Social and Economic Systems (WISE, ENV4-CT97-0448)
German report
M. Flechsig, K. Gerlinger, N. Herrmann, R. J. T. Klein, M. Schneider, H. Sterr,
H.-J. Schellnhuber (Mai 2000)

No. 60 The Need for De-Aliasing in a Chebyshev Pseudo-Spectral Method
M. Uhlmann (Juni 2000)

No. 61 National and Regional Climate Change Impact Assessments in the Forestry Sector
- Workshop Summary and Abstracts of Oral and Poster Presentations
M. Lindner (ed.) (Juli 2000)

No. 62 Bewertung ausgewählter Waldfunktionen unter Klimaänderung in Brandenburg
A. Wenzel (August 2000)

No. 63 Eine Methode zur Validierung von Klimamodellen für die Klimawirkungsforschung hinsichtlich
der Wiedergabe extremer Ereignisse
U. Böhm (September 2000)

No. 64 Die Wirkung von erhöhten atmosphärischen CO -Konzentrationen auf die Transpiration eines2

Weizenbestandes unter Berücksichtigung von Wasser- und Stickstofflimitierung
S. Grossman-Clarke (September 2000)

No. 65 European Conference on Advances in Flood Research, Proceedings, (Vol. 1 - Vol. 2)
A. Bronstert, Ch. Bismuth, L. Menzel (eds.) (November 2000)

No. 66 The Rising Tide of Green Unilateralism in World Trade Law - Options for Reconciling the
Emerging North-South Conflict
F. Biermann (Dezember 2000)

No. 67 Coupling Distributed Fortran Applications Using C++ Wrappers and the CORBA Sequence
Type
Th. Slawig (Dezember 2000)


