
SPRINT-S

S_trictly P_arallelized R_egional I_ntegrated
N_umeric T_ool for S_imulation

Primer for Version 2.11 (May 1999)

Michael Flechsig
Potsdam Institute for Climate Impact Research
Telegrafenberg, D-14473 Potsdam, Germany

Phone: ++49 - 331 - 288 2604
Fax: ++49 - 331 - 288 2600

e-mail: flechsig@pik-potsdam.de

SPRINT-S Version 2.11 Primer 2

Abstract

SPRINT-S (S_trictly P_arallelized R_egional I_ntegrated N_umeric T_ool for
S_imulation) is a parallelization tool at the experiment level for arbitrary simulation
models. Validation, evaluation, and application of simulation models normally result
in running the model independently, but in a coordinated way, several times. The
same problem arises in relation to regional integrated modeling for laterally
decoupled model designs. SPRINT-S supports these tasks by pre-defined
simulation experiments like behavioural, sensitivity, perturbation and stochastic
analysis. The experiments as well as spatial applications of site-related models are
performed in parallel without a parallelization of the model itself. Result processing
allows to navigate within result spaces.

SPRINT-S was developed for IBM’s scalable parallel machine SP2 using IBM’s
proprietary Message Passing Library MPL. It can be adapted to any other parallel
machine that supports the generic Message Passing Interface MPI or a cluster of
networking machines by migrating from MPL to MPI.

SPRINT-S Version 2.11 Primer 3

Contents

1 INTRODUCTION.. 5

2 OVERVIEW ON EXPERIMENT TYPES ... 6

2.1 BEHAVIOURAL ANALYSIS ... 7
2.2 SENSITIVITY ANALYSIS.. 8
2.3 PERTURBATION ANALYSIS ... 10
2.4 STOCHASTIC ANALYSIS ... 12
2.5 SPATIAL ANALYSIS ... 13
2.6 COMPLEX EXPERIMENTS... 13

3 SPRINT-S PARALLEL ARCHITECTURE .. 14

4 SOFTWARE INTERFACES TO THE USER MODEL... 16

4.1 EXPERIMENT PREPARATION INTERFACE - THE SUBROUTINE PREPARE .. 16
4.2 SIMULATION MODEL INTERFACE - THE SUBROUTINE SIMULATION.. 18

5 EXPERIMENT DESCRIPTION FILE EDF .. 19

5.1 EDF RULES .. 19
5.2 EDF BODY LINES FOR NON-COMPLEX EXPERIMENTS... 20
5.3 EDF BODY LINES FOR COMPLEX EXPERIMENTS .. 20

6 EXPERIMENT TYPE DESCRIPTIONS .. 21

6.1 BEHAVIOURAL ANALYSIS ... 21
6.2 SENSITIVITY ANALYSIS.. 23
6.3 PERTURBATION ANALYSIS ... 25
6.4 STOCHASTIC ANALYSIS... 26
6.5 SPATIAL ANALYSIS ... 29
6.6 COMPLEX EXPERIMENTS... 33

7 LINKING A MODEL AND SIMULATION PERFORMANCE ... 38

7.1 LINKING A MODEL TO SPRINT-S... 38
7.2 ENVIRONMENT DEFINITION .. 38
7.3 INTERACTIVE EXPERIMENT SUBMISSION.. 39
7.4 EXPERIMENT SUBMISSION TO LOADLEVELER... 40
7.5 EXPERIMENT PROTOCOL AND OUTPUT REDIRECTION ... 40
7.6 CLEANUP AFTER ABNORMAL EXPERIMENT END.. 40

8 RESULT PROCESSING .. 40

8.1 GENERAL REMARKS ... 40
8.2 BEHAVIOURAL AND SPATIAL ANALYSIS.. 42
8.3 SENSITIVITY ANALYSIS.. 45
8.4 PERTURBATION AND STOCHASTIC ANALYSIS ... 47
8.5 COMPLEX EXPERIMENTS... 49
8.6 EXPERIMENT STORAGE... 50
8.7 BROWSING SIMULATION RESULTS .. 51
8.8 RESULT FILE FILTERS... 51

9 REFERENCES... 51

SPRINT-S Version 2.11 Primer 4

Appendices

A SUBROUTINES AND FUNCTIONS FOR MODEL COUPLING.. 53

B SCRIPTS FOR MODEL HANDLING .. 55

C RESULT OUTPUT FILTERS.. 56

D OPERATING SYSTEM ENVIRONMENT.. 57

E CURRENT SETTINGS, HOME DIRECTORY, AND RESTRICTIONS............................... 58

F EXAMPLES.. 59

G DIFFERENCES FOR MOSES MODELS .. 62

H DERIVED FILES .. 64

I SUBROUTINES, FUNCTIONS, COMMON BLOCKS AND LOGICAL UNIT NUMBERS.. 65

Figures and Tables

FIG. 1 SCANNING OF HIGH-DIMENSIONAL PARAMETER SPACES.. 8
FIG. 2 MODEL PERFORMANCE IN THE PARALLEL SIMULATION ENVIRONMENT ... 15
FIG. 3 FROM EDF TO OUTPUT_DATA FOR NON-COMPLEX EXPERIMENTS.. 31
FIG. 4 FROM EDFS TO OUTPUT_DATA FOR COMPLEX EXPERIMENTS.. 35
FIG. 5 EXPERIMENT STATUS WINDOW .. 39

TAB. 1 PROBABILITY DENSITY FUNCTIONS... 12
TAB. 2 DISTRIBUTION FUNCTIONS AND THEIR PARAMETERS... 25
TAB. 3 RECOVERING ASSOCIATION PROBLEMS UNDER SIMULATION .. 37
TAB. 4 USER SUBROUTINES AND FUNCTIONS... 53
TAB. 5 SUBROUTINES TO BE DEFINED BY THE USER ... 54
TAB. 6 FUNCTION VALUES OF IGET_EXP_TYPE .. 55
TAB. 7 SCRIPTS FOR MODEL HANDLING .. 55
TAB. 8 RESULT OUTPUT FILTERS ... 56
TAB. 9 OPERATING SYSTEM ENVIRONMENT... 57
TAB. 10 CURRENT SETTINGS .. 58
TAB. 11 HOME DIRECTORY STRUCTURE ... 58
TAB. 12 CURRENT LIMITATIONS AND WORKAROUNDS ... 58
TAB. 13 DERIVED FILES DURING AN EXPERIMENT... 64

Document Conventions

• italic marks a SPRINT-S subprogram, function or script
• < ... > is a placeholder for a string
• { ... } braces enclose an optional element
• [... | ... | ...] brackets enclose a list of choices, separated by a vertical bar
• nil stands for the empty string (nothing)
• monospace indicates a programming example

SPRINT-S Version 2.11 Primer 5

1 Introduction

Computer based simulation involves experimenting with a model that is constructed
to map features of a real world system under investigation to a computer. The
process of model validation (adjusting the model behaviour to the real system) as
well as many simulation studies (applying a validated model) often result in the
demand for running a model independently but in a coordinated way several times.
Such experiments are known as multi-run experiments. Examples for applying this
technique are
• scanning the model behaviour dependent on model parameter and / or initial

value settings
• determining model sensitivity from model parameters and / or initial values
• performing a state-deterministic model in a Monte Carlo experiment or a

stochastic analysis

Earth system analysis is forced to experiment with models. Since many models of
this scientific discipline are designed in a geographically explicit manner by
neglecting lateral fluxes, an overall model of a geographic region can be considered
for that case as a sequence of independent submodel runs. Each submodel run is
responsible for determining the states of a certain geographic subspace under its
appropriate site conditions. Agricultural patch models and forest gap models are
typical representatives of this class of models. Even hydrological runoff models can
be performed in this way, if the geographic subspaces under consideration are
defined as river catchments.

Design and performance of multi-run experiments and spatially explicit simulation
can be a very time consuming process: simulation experiment preparation and
processing results by structuring and aggregating simulation results in space and in
time are expensive tasks. The simulation time of the experiment itself can be a
limiting factor with respect to the feasibility of the experiment.

The software tool described in this paper is devoted to support solving the
methodological problems addressed above. First of all, SPRINT-S is a parallelization
tool for any model at the experiment level. A sequence of independent model runs
can be parallelized by using the parallel structure of SPRINT-S in a flexible manner
without parallelizing the model itself. Generally speaking, the term model here
means any algorithm that transforms an input vector to an output vector. It covers
temporal and spatial dynamic models in the usual sense as well as static models
and any algorithm with the transformation described above. Additionally, SPRINT-S
supplies a set of pre-defined multi-run experiment types, ranging from experiments
for model validation and usage to spatially distributed model applications and
combinations of both techniques. So the tool also supports experimenting with
models and algorithms by supplying experiment techniques to the user. SPRINT-S
result processing makes it possible to navigate within result spaces and offers
software interfaces for result transformation.

SPRINT-S Version 2.11 Primer 6

SPRINT-S was developed for IBM’s scalable parallel machine SP2 using IBM’s
proprietary Message Passing Library MPL (IBM, 1994). It can be adapted to any
other massively parallel machine or a cluster of networking machines by migrating
from MPL to the generic Message Passing Interface MPI.

2 Overview on Experiment Types

SPRINT-S supplies a set of pre-defined multi-run experiment types, where each
type addresses a special experiment class for performing a simulation model or any
algorithm with an input - output transition behaviour. In the following, experiment
types will be described for time dynamic simulation models, because this class
forms the majority of SPRINT-S applications. All information can be transformed
easily to any other algorithm.

Based on systems’ theory, each time dynamic model M can be formulated - without
limitation of generality for the time discrete and state deterministic case - as

Z(t) = ST (Z(t-∆t) , ... , Z(t-n*∆t) , X(t) , Z(t0) , P)

with ST state transition description
Z state vector
X input vector
P parameter vector
t time
∆t time increment
t0 initial time step
n time delay

The output vector Y is a function of the state vector Z:

Y(t) = OU (Z(t)).

In the following, z, x, p, and y are components of the vectors Z, X, P, and Y,
respectively.

So model behaviour Z is determined for fixed t0, n and ∆t by state transition
description ST, driving forces X, initial values Z(t0), and parameters P. Manipulating
and exploring model behaviour in any sense means changing these four model
components. While state transition description ST reflects mainly model structure
and is quite complex to change, each component of the driving forces vector X
normally is a time-dependent vector. Initial value and parameter vector components
are determined by single values.

SPRINT-S Version 2.11 Primer 7

Introduction of additional technical parameters Pt can reduce the complexity of
handling a model with respect to the four model components, described above.
Changes in state transition description ST can be pre-determined in the model by
assigning values of a technical parameter to alternative submodel versions, which
are switched on or off by the technical parameters. Each component of the driving
forces vector X can be combined with technical parameters in different ways:

• by selecting special driving forces dependent on the technical parameter value
• by manipulating the driving forces with the parameter value (e.g., as an additive

or multiplicative increment)
• by parametrizing the shape of a driving force

When this is done, the model behaviour finally depends only on the parameters P
and the initial values Z(t0). From the methodical point of view there is no difference
between parameters and initial values, because both they are constant during one
model run. That is why in the following discussion of experiment types a parameter
stands as a placeholder for all the four model components.

2.1 Behavioural Analysis

Behavioural analysis is the inspection of the model’s behaviour in a space that is
spanned up by selected model parameters. Pre-defined values Pi are assigned to
selected components of the vector P. { Z(t) } as the dynamics of Z(t) over all model
runs of the formed run ensemble then depend on the constellation of P.

{ Z(t) } = run_ensemble (ST , (P1, P2, ..., Pk))

This model inspection can be interpreted and used in different ways:

• for scenario analysis:
 to show how model behaviour changes with changes of parameter values
• for numerical validation purposes:
 to determine parameter values in such a way that the output vector matches with

measurement results of the real system
• for deterministic error analysis:
 to analyse how the model error is dependent on parameter errors
• for a simulation-based control design:

to determine parameter values in such a way that a goal function becomes an
extremum

SPRINT-S behavioural analysis is a generalization of the one-dimensional case,
where the model behaviour is scanned in dependence on the deterministic change
of a parameter value. The n-dimensional case with n parameters demands a
strategy for scanning n-dimensional spaces in a flexible manner. On the basis of the
SONCHES simulation environment (Wenzel et al., 1990) subspaces of the n-

SPRINT-S Version 2.11 Primer 8

dimensional investigation space can be scanned on the subspace diagonal
(parallely in a one-dimensional hyperspace) or completely for all dimensions
(combinatorially in a lattice-like approach) and both techniques can be combined.
Besides this regular scanning method an irregular, file-based technique is possible.

The resulting number of single simulation runs for the experiment depends on the
number of parameter adjustments per dimension together with the selected
scanning method. An experiment is described by the names of the involved
parameters, their increments and their combination (scanning method). Result
processing resolves the scanning method again and outputs results as projections
on one- or two-dimensional parameter subspaces.

Fig.1 describes the regular scanning
technique by an example. In the upper left
scheme the two-dimensional parameter
space for the parameters p1 and p2 is
scanned in parallel (in SPRINT-S syntax as
p1,p2) by 1+1+1+1 = 4 model runs, while the
upper right scheme represents a
combinatorial scanning of (p1*p2) with 4*4 =
16 model runs. For the lower scheme the
complex scanning strategy of the 3-
dimensional parameter space is (p1,p2)*p3

with (1+1+1)*3 = 9 model runs. Each filled
dot represents a single model run.

Fig. 1 Scanning of high-dimensional parameter spaces

SPRINT-S Version 2.11 Primer 9

2.2 Sensitivity Analysis

Sensitivity analysis serves to determine sensitivity functions. In classical systems’
theory, model sensitivity of z with respect to p is the partial derivative of z after p. In
the numerical simulation of complex systems, finite sensitivity functions are
preferred, because they can be obtained without model enlargements or re-
formulations. They are linear approximations of the classical model sensitivity.

{ Z(t) } = run_ensemble (ST , P ± ∆P)

Sensitivity functions can be used for localizing modification-relevant model parts as
well as control-sensitive initial values in control problems. On the other hand,
identification of robust parts of a model or even complete robust models makes it
possible to run a model under internal or external disturbances.

Sensitivity analysis in SPRINT-S is based on finite sensitivity functions, which are
defined as follows:

linear LIN =
z(p p) - z(p)

p
± ∆

∆

squared SQR =
(z(p p) - z(p))

p

2± ∆
∆

absolute ABS =
| z(p p) - z(p) |

p
± ∆

∆

relative REL1 =
z(p p) - z(p)

z(p) p
±

∗
∆

∆

relative REL2 =

z(p p) z(p)

z(p) p
p

p

± −
∗

∆
∆

∆

symmetry test SYM =
z(p p) - z(p - p)

p
+ ∆ ∆

∆

So the sensitivity of the model to a parameter is always expressed as the sensitivity
of a state variable z, usually at a selected time step within a surrounding ∆p of a
parameter value p. That is why the conclusions drawn from a sensitivity analysis are
only valid locally with respect to the whole parameter space. Additionally, sensitivity
functions only describe the influence of one parameter p of the whole vector P on
the model’s dynamics.

SPRINT-S Version 2.11 Primer 10

Linear, squared and absolute sensitivity functions allow comparison of the influence
of various parameters on the same state variable. The relative sensitivity functions
are suited to comparing the sensitivity of the same parameter on different state
variables, because of the normalization effect of the nominal state variable z(p) and
the nominal parameter value p for the two relative sensitivity functions. The
symmetry test will return zero if the state variable z shows a symmetrical behaviour
in the surrounding of the nominal value of p.

A sensitivity experiment is described by the names of the parameters p to be
involved and the increments ∆p. The number of runs for the experiment results from
the number of parameters and increments: two runs per parameter for each
increment plus the nominal run. Sensitivity functions are calculated during result
processing.

2.3 Perturbation Analysis

A perturbation analysis in SPRINT-S is a Monte Carlo simulation with pre-run
parameter perturbations.

Theoretically, with a Monte Carlo analysis moments of state variables can be
computed as

M(k){z} = I...I z(p1,...pm)k * pdf(p1,...,pm) dPm

 Pm

with
Pm = (p1,...,pm) parameter subspace for which the Monte Carlo analysis

will be performed
M(k){z} k-th moment of the state variable z

with respect to the probability density function f
z(Pm) state variable z as function of parameters Pm

pdf(Pm) probability density function of parameters Pm

By interpreting the probability density function pdf(p1,...,pm) as the error distribution of
the parameters Pm it is possible to study error propagation in the model. On the other
hand perturbation analysis can be interpreted as a stochastic error analysis, if there
are measurements of the real system for z.

For a numerical simulation it is assumed that the probability density function pdf(Pm)
can be decomposed into independent probability density functions pdfi for all
parameters pi of Pm:

 m
pdf(p1,...pm) = Π pdfi(pi)

 i=1

SPRINT-S Version 2.11 Primer 11

and the m-dimensional integral is approximated by a sequence of simulation runs
where the parameter values of pi are perturbed according to the probability density
function fi.

{ Z(t) } = run_ensemble (ST , pdf(Pm) for disturbing Pm)

On the basis of these assumptions, the following statistical measures are computed
during performance of a perturbation analysis with n simulation runs and realizations
(z1, ..., zn) of the state variable z:

minimum z(min) = min (zi)
 i=1,n

maximum z(max) = max (zi)
 i=1,n

 n
sum z(sum) = Σ zi

 i=1

 n
mean (M(1)) z(1) = Σ zi / n

 i=1

 n
variance (M(2)) z(2) = Σ (zi - z

(1)) 2 / (n - 1)
 i=1

 n
skewness (M(3)) z(3) = Σ (zi - z

(1)) 3 / n
 i=1

confidence boundary co(α) = tα,n

 √ z(2) / n tα,n: significance boundaries
of Student distribution

class frequency cl(class) = number of zi with classmin ≤ zi < classmax

Confidence interval boundaries are z(1) ± co(α) for a level of error α = 1% and 5%,
respectively. The confidence interval is only valid if z is normally distributed. Class
frequencies can be plotted as heuristic probability density function of z.

The following probability density functions for parameters to be perturbed are pre-
defined in SPRINT-S:

SPRINT-S Version 2.11 Primer 12

distribution probability density function distribution parameters
uniform

pdf(x) =
1

b a−
if x ∈ [a,b]

pdf(x) = 0 otherwise

a lower boundary
b upper boundary
a < b
It is: mean = (a+b) / 2

variance = (b-a)2 / 12
normal

pdf(x) =
()1

2
exp

x

2

2

2σ π

µ

σ
−

−

µ mean
σ standard deviation
σ > 0

lognormal

pdf(x) =
()1

x 2
exp

lnx

2

2

2σ π

µ

σ
−

−

 if x > 0

pdf(x) = 0 otherwise

µ mean
σ standard deviation
σ > 0
It is: ln x is normally

distributed with µ and σ

exponential
pdf(x) =

1
exp

x

µ µ
−

 if x > 0

pdf(x) = 0 otherwise

µ mean
µ > 0
It is: variance = µ2

Tab. 1 Probability density functions

The number of runs to be performed during an perturbation analysis has to be
specified. An experiment is described by the parameters involved in the analysis,
their distribution and the appropriate distribution parameters.

2.4 Stochastic analysis

Stochastic analysis is a Monte Carlo analysis with parameter perturbations per time
step. Other than with the perturbation analysis, parameters can be adjusted each
time step according to the selected distribution.

{ Z(t) } = run_ensemble (ST , pdf(Pm) for disturbing Z(t))

This allows stochastic investigation of the model in two ways: If the perturbed
parameter

• is a model parameter, related to a process or a submodel, then the stochastic
analysis maps stochastic influences of the perturbed parameter onto the process
or the submodel

• is used as an additive noise to a rate equation of a time-discrete model, then
intrinsic fluctuations for the total model behaviour can be studied

Pre-defined distributions and statistical measures available during result processing
are the same as for the experiment type perturbation analysis.

SPRINT-S Version 2.11 Primer 13

2.5 Spatial Analysis

Application of a site-related model within a spatial / regional experiment normally
leads to the problem of how to assign site-specific parameters for each site to the
model and how to perform the model with the assigned data in a sequential manner
(King, 1990, Flechsig et al., 1994). This experiment type has a lot in common with a
behavioural analysis. The only difference arises from the structure of the site-
specific data. Normally, they do not follow a regular schema which allows the
inspection of the site parameter space for all sites in a straigthforward manner.
Nevertheless, each site can be addressed by some geographic information, e.g.,
longitude and latitude or an identification number. It is more convenient to control a
spatial application by this identification than by parameter data set of the whole site.

Spatial analysis uses this approach and combines the advantages of behavioural
analysis with the possibility to derive site-related data sets from any spatial
identification. This is the only experiment type where the input parameter set for the
model can be derived from other information (normally the identification) before
running the model itself. Performing this transformation within the model is an
alternative, but limits its application because of the parallel structure of SPRINT-S
(see the chapter on SPRINT-S parallel architecture) and because of the special
layout of complex experiments (see the chapters on complex experiments).

Pre-model run transformation has to be defined in a user subprogram, which is
described in detail in the chapter on software interfaces to the user model. For
experiment performance see experiment type behavioural analysis.

2.6 Complex Experiments

The complex experiment combines the method of applying a site-related model
spatially (the spatial subexperiment) with the possibility to run a behavioural,
sensitivity, perturbation, or stochastic analysis (the non-spatial subexperiment) for all
sites.
In this way, the complex experiment enlarges SPRINT-S applicability tremendously.
So it is possible, e.g.,

• to study complex regional model behaviour for site-related model parameter
adjustments (spatial and behavioural experiment types)

• to estimate regional yields, which are expected under a perturbed regional
climate (spatial and stochastic experiment types)

One important feature of complex experiments is the possibility to include into the
parameter set of the non-spatial subexperiment parameters of the spatial
subexperiment. So called associations between parameters of the spatial and non-

SPRINT-S Version 2.11 Primer 14

spatial subexperiment define new default parameter values for the non-spatial
subexperiment from parameter values of the current site. So it is possible to perform
for all sites of a region a perturbation analysis, where a parameter for the assigned
probability density function is a componente from the site-related data set.

Perturbation and stochastic analyses can be performed in a complex experiment
with local seeds for the random number generator, which are site-related or a global
seed, which is valid for all sites.

3 SPRINT-S Parallel Architecture

SPRINT-S defines for an experiment a communication node, where all input, output,
and preparation of the whole experiment as well as preparation of each single run of
the run ensemble is performed. Beside this node a number of simulation nodes,
which are responsible for performing single simulation runs are available and are
assigned to SPRINT-S before starting it. CPU consumption for running an
experiment scales linearly with the number of assigned simulation nodes.

Coupling a model to SPRINT-S and running a multi-run experiment need some
preparations, which are described in the following:

First of all, the user model should be analysed with respect to model parts, which
are performed independently on the actual model constellation, defined by
parameter values or initial values at model startup. Such model parts always lead to
identical results, which normally do not change when running the model. A typical
example for such a „static pre-model“ is input of information from an external file by
reading the file. Performing this pre-model for each single simulation run of the run
ensemble is redundant and leads to a loss of performance efficiency of the
experiment as well as to multiple concurrent access to external files. This part of the
model should be performed once during experiment preparation on the
communication node. A subroutine prepare serves as an interface, where the pre-
model can be implemented and the results of the pre-model can be broadcast to all
simulation nodes, where they are at disposal for running the model itself.

As a next step the remaining user model has to be „wrapped“ in a software interface
for coupling it to SPRINT-S. The user model itself transforms input data (in
correspondence with the chapter on the overview of experiment types this includes
the model parameters, technical parameters, and initial values) into output data (the
simulation results, which can be organized in any way in which the modeller is
interested). The shell in which the user model has to be implemented, is the
subroutine simulation. Normally the following tasks are performed in this subroutine:

SPRINT-S Version 2.11 Primer 15

• map input data of simulation to user model parameters, technical model
parameters or initial values

• compute the user model
• collect model output result data and assign it to the output data of simulation.

SPRINT-S was written in FORTRAN. Both the user model and the identified pre-
models can be written in FORTRAN or C.

Experiments are defined by so-called experiment description files (EDF). EDFs are
structured ASCII files with

• the name of the experiment type
• symbolic (external) names of model parameters or initial values with their default

values and experiment-specific additional values
• general experiment-specific information

As a general rule, the symbolic names of parameters or initial values should be the
same as the internal names in the user model. The corresponding parameter values
and initial values form the input data to the subroutine simulation and are mapped to
the user model parameters, technical parameters and initial values.

Fig. 2 Model performance in the parallel simulation environment

According to Fig. 2, performance of an experiment starts with prepare on all nodes
and within prepare with the performance of the pre-model on the communication
node: This is followed by a loop over all simulation runs on the communication node
dependent on the EDF, where the communication node sends input data to an idle

SPRINT-S Version 2.11 Primer 16

simulation node, which performs simulation and sends output data to the
communication node. All the output data of simulation is gathered from SPRINT-S in
a direct access output file for later result processing.

4 Software Interfaces to the User Model

4.1 Experiment Preparation Interface - the Subroutine prepare

Besides setting model-specific variables, the subroutine prepare has to fulfill one
important purpose:
Often models need external data, independent of their special calibration (e.g., for
sites), which normally do not change when running the model (pre-model). In
prepare the user can supply the model with this information (normally by reading it
from external files) once and forever for all model runs. So he / she can avoid the
situation in which this step is performed indepenently for all model runs, with the risk
of multiple concurrent access to external files and a connected loss of performance.

subroutine prepare (at_comm_node)

with
at_comm_node logical*4, input to prepare

= .true. if the current node is the
communication node

= .false. else

The following rules apply to prepare

• The user always has to declare a subroutine prepare.
• prepare is performed at the beginning of a SPRINT-S experiment once at all

nodes. The argument at_comm_node can be used to perform pre-models only at
the communication node.

• At least the number of output data from simulation length_output_data has to be
fixed within prepare. To do this, the user has to call at all nodes the SPRINT-S

subroutine put_length_output_data (length_output_data)

with
length_output_data integer*4, input to put_length_output_data

determines length of output vector output_data
from subroutine simulation

put_length_output_data can only be called within prepare.

SPRINT-S Version 2.11 Primer 17

• To address the problem discussed above of pre-models and redundant external
data sharing among different model runs, SPRINT-S supplies the subprograms

subroutine broadcast (field_to_broadcast , length_field_to_broadcast)
subroutine synchro

with
field_to_broadcast integer*4 or real*4, input to broadcast

field to broadcast from the subroutine prepare at
the communication node to a field with the same
name in the subroutine simulation or its
subprograms on all simulation nodes

length_field_to_broadcast integer*4, input to broadcast
length of this field

 With broadcast, information read / computed in prepare at the communication
node (at_comm_node = .false.) can be broadcast from the communication node
to all simulation nodes to avoid multiple performance of information access. Note
the following important restrictions:
• The field_to_broadcast must be defined in prepare as well as in the simulation

model simulation or its subprograms. One way to ensure this is to use common
blocks for FORTRAN.

• broadcast and synchro can be used only in prepare.
• After broadcasting all information to the simulation nodes where the simulation

model simulation resides, the user has to ensure that the received information
will be unchanged. This is because the user will normally broadcast only such
information as is unique to all simulation runs.

• The broadcast information is received automatically at the simulation nodes /
the simulation model simulation. Nothing has to be done by the user.

• In prepare a block with broadcasts has to be bounded by synchro calls:

call synchro
call broadcast (...)
...
call broadcast (...)
call synchro

broadcast and synchro have to be performed at all nodes.
• Within prepare the current experiment type can be made available by the

SPRINT-S

integer*4 function iget_exp_type ()

to distinguish between different experiment types and so to design only one
preparation module prepare for different experiment types. For the resulting
function value of iget_exp_type see Appendix A.

SPRINT-S Version 2.11 Primer 18

• For the spatial experiment type the length of the derived target vector
length_derived_data has to be fixed by calling the SPRINT-S subroutine

subroutine put_length_derived_data (length_derived_data)

For more information see the spatial experiment type.

For examples of how to construct prepare see Appendix F.

4.2 Simulation Model Interface - the Subroutine simulation

To handle any simulation model within SPRINT-S the model has at least

• to be extracted from all the parts where - independent of the model run -
information is read in / computed. These parts should be performed within the
subroutine prepare and results should be broadcast to the simulation model. See
also Appendix F.

• to be wrapped into a simulation subroutine with the name simulation for one
model run, where
• the current input data vector input_data which is derived from the EDF is

mapped to the real model parameters / initial values
• the model result data the user wants to postprocess during result processing

are mapped from model variables to an output data vector output_data. For
how to arrange model result data in the output data vector output_data, see
Appendix F.

The appropriate subroutine has the following arguments:

subroutine simulation (input_data , length_input_data ,
 output_data , length_output_data)

with
input_data real*4, input to simulation

target vector, derived from the EDF and
transformed for the spatial experiment type
Analysis by spatial_transform.
To be mapped on real model parameters / initial
values.

length_input_data integer*4, input to simulation
length of input_data
Determined by the EDF or fixed for the experiment
type spatial by calling put_length_derived_data
in prepare
do not change it

SPRINT-S Version 2.11 Primer 19

output_data real*4, output from simulation
output vector of simulation results to be gathered
by SPRINT-S in a direct access file for later result
processing

length_output_data integer*4, input to simulation
length of output_data
Fixed in prepare by subroutine
put_length_output_data
do not change it

Within simulation the current experiment type can be made available by the
SPRINT-S

integer*4 function iget_exp_type ()

to distinguish between different experiment types and so to design only one
simulation module simulation for different experiment types. For the return value of
iget_exp_type see Appendix A.

For examples of how to build simulation see Appendix F.

5 Experiment Description File EDF

An EDF serves for experiment definition. Its general structure is

E: <exp_type_descr>
body_line 1
...
body_line n
E: <terminator1>
E: <terminator2>

5.1 EDF Rules

• EDFs are case-insensitive with the exception of any file names.
• Blank characters (spaces) as well as blank lines are ignored.
• EDF lines starting with a # as the first nonblank character are treated as comment

lines.
• While for non-complex experiments at least one body line must be stated, for

complex experiments EDFs without any body line are also possible.

SPRINT-S Version 2.11 Primer 20

• If <terminator2> is nil, the complete terminator2-line is obsolete.

5.2 EDF Body Lines for Non-complex Experiments

EDF body lines for non-complex experiments serve for definition and numerical
realization of model targets, normally parameters and initial values of the model
under investigation. The general structure of an EDF body line is

<adjustment_type> <target> : <def> { : <exp_spec_infos> }

with
<adjustment_type> [A | M | S]

with
A for additive adjustment
M for multiplicative adjustment
S for value setting
of <exp_spec_infos> to the <def> of <target>

<target> symbolic parameter / variable name
(max. 8 characters, otherwise truncated),
normally corresponding to parameter / initial value
names of the investigated model.

<def> default value of <target>
for the adjustment type M <def> must not be 0.

<exp_spec_infos> information specific to the current experiment type

The sequence of EDF body lines corresponds

• for all but the spatial experiment type
with the sequence of the field elements of input_data of the subroutine simulation

• for the spatial experiment type
with the sequence of the field elements of origin_data of the subroutine
spatial_transform.

5.3 EDF Body Lines for Complex Experiments

EDF body lines for complex experiments assign new default values to the non-
spatial subexperiment. They are based on data derived from the spatial
subexperiment. The general structure of a body line is

assoc <target_of_non_spatial_subexp> : <index_of_derived_data>

with
<target_of_non_ symbolic parameter / variable name
spatial_subexp> (max. 8 characters, otherwise truncated)

SPRINT-S Version 2.11 Primer 21

from the non-spatial subexperiment
<index_of_derived_data> index of the value in derived_data from the

spatial subexperiment, which is to be used as
the new default value of <target_of_non_spatial_
subexp>

For more information on complex experiments and EDF, see the chapters on the
complex experiment type.

6 Experiment Type Descriptions

6.1 Behavioural Analysis

Goal Inspection of model behaviour in parameter, initial value,
driving forces subspaces

exp_type_descr behaviour

exp_spec_infos [<expl._increment_list> | <impl._increment_list> | nil]
with <expl._increment_list> :=
<increment_1> , <increment_2> , ... , <increment_n>
and <impl._increment_list> :=
<begin_value> (<increment_value>) <end_value>

terminator1 comb [default | <combination>]
or
file <file_name>

terminator2 nil

6.1.1 Adjustments

adjustment type S A M
resulting value = <incr> <def> + <incr> <def> * <incr>

6.1.2 EDF Examples

SPRINT-S Version 2.11 Primer 22

E: behaviour
A p1 : 1 : 1,2,3,4,5 resulting in values 2,3,4,5,6 for p1
M p2 : 2 : 1,2,3,4,5 resulting in values 2,4,6,8,10 for p2
S p3 : 3 : 1,2,3 resulting in values 1,2,3 for p3
S p4 : 4 : 1(2)6 resulting in values 1,3,5 for p4
E: comb default

E: behaviour and the appropriate increment data file my.incr: 1 -4
A: p5 : 5 -1 4
M: p6 : 6 4 -1
E: file my.incr -4 1

6.1.3 The Combination

• The terminator1 keyword comb is allowed only for defined increment lists.
Explicate increment lists can be continued on the next EDF line by using the tilde
as the last character on the previous line.

• The combination <combination> defines the way in which the model parameter
/ initial value subspace spanned by the parameters / initial values in the EDF body
lines, will be inspected by SPRINT-S: This is done by applying the operators „*“
and „,“ to all targets of the EDF body lines.

• The operator „,“ combines increments of different targets and so their resulting
values parallely (on the diagonal).

 p1 , p2 of the above example results in combinations (2,2) , (3,4) , (4,6) , (5,8) ,
(6,10) for (p1,p2) and so in 5 runs.

 For the operator „,“ the targets must have the same number of increments.
• The operator „*“ combines increments of different targets and so their resulting

values combinatorially (for all mesh points).
 p3 * p4 of the above example results in combinations (1,1) , (1,3) , (1,5) , (2,1) ,

(2,3) , (2,5) , (3,1) , (3,3) , (3,5) for (p3*p4) and so in 9 runs.
• The operator „,“ has a higher priority than the operator „*“.
 p1 , p2 * p3 , p4 of the above example results in combing combinatorially the 5

parallel combinations of (p1,p2) with the 3 parallel combinations of (p3,p4) and so
in total in 15 runs.

• In the <combination> each target has to be used exactly once.
• By the default combination comb default all targets are combined

combinatorially.
comb default of the above example is equivalent to comb p1 * p2 * p3 * p4.

• The terminator1 keyword file is allowed only for undefined increment lists.
The increments are then read from the ASCII increment data file <file_name>.
All targets are assumed to be combined in parallel. Tabulator, comma and space
are valid value separators in this external file, a sequence of separators is treated
as a single separator. Each record of the data file represents one simulation run.
The sequence of the increments in each record corresponds to the sequence of

SPRINT-S Version 2.11 Primer 23

the EDF body lines. Data file lines starting with a # as the first nonblank character
as well as blank lines are treated as comment lines.
The above example results in combinations (6,-24) , (4,24) , (9,-6) , (1,6) for
(p1,p2) and so in 4 runs. Combination is implicitly as comb: p1,p2.

6.1.4 Experiment Performance

• According to the terminator1 (keyword comb or keyword file) the appropriate runs
are generated.

• The sequence of the runs, as they are performed and stored in the direct access
file sprint.output, corresponds with the sequence of the increments in the ASCII
file sprint.input. sprint.input is generated on the basis of terminator1.

6.2 Sensitivity Analysis

Goal Finite model variable sensitivity analysis to deterministic
parameter, initial value, driving forces changes with
different sensitivity functions

exp_type_descr sensitivity

exp_spec_infos nil

terminator1 incr [<expl._increment_list> | <impl._increment_list>]
with <expl._increment_list> :=
<increment_1> , <increment_2> , ... , <increment_n>
and <impl._increment_list> :=
<begin_value> (<increment_value>) <end_value>

terminator2 nil

6.2.1 Adjustments

adjustment type S A M
resulting value = <def> ± <incr> treated as M <def> * (1 ± <incr>)

Note here that computation of resulting values differs from all other experiment
types.

As an example, the linear sensitivity function (see the chapter on the introduction to
the experiment types) is then as follows:

SPRINT-S Version 2.11 Primer 24

for adjustment S LIN =
z(def incr) z(def)

incr
± −

for adjustment M LIN =
z(def * (1 incr)) z(def)

def * incr
± −

6.2.2 EDF Example

E: sensitivity
S p1 : 0.
M p2 : 2.
E: incr .01, .05

6.2.3 Experiment Performance

• Each target will be adjusted by the same increments as those stated in the EDF
terminator1 line. For implicit increment definition see examples of behavioural
analysis.

• The adjustment A is transformed automatically to M, indicated by a warning
message to the file sprint.protocol.

• For finite sensitivity functions several runs have to be performed:
• A run with the default values of the targets
• Per target and per increment two runs with the default values of all targets

except that one under consideration, where the adjustment is applied
according to the above adjustment rules

• So the number of resulting runs is
2 * number_of_body_lines * number_of_increments + 1

• Results of each model run are stored and sensitivity functions are applied during
result processing.

 The following sensitivity functions can be performed during result processing:
Linear, squared, absolute, relative as well as a symmetry test.

• The sequence of the simulation runs and the sequence of the simulation results in
sprint.output are determined in the following manner:

nominal run
loop over increment sequence

loop over EDF body line sequence
adjustment +
adjustment -

end loop
end loop

SPRINT-S Version 2.11 Primer 25

6.3 Perturbation Analysis

Goal Pre-model run parameter, initial value, driving forces
perturbation analysis (Monte Carlo analysis)

exp_type_descr perturbation

exp_spec_infos <distribution> { (<distr_param_1> , <distr_param_2>) }

terminator1 runs <number_of runs>

terminator2 nil

6.3.1 Adjustments

adjustment type S A M
resulting
distribution
parameter =

<distr_param> <def> +
<distr_param>

<def> *
<distr_param>

6.3.2 Distribution Functions and their Parameters

Distribution
function

<distri-
bution>

resulting
<distr_param_1>

resulting
<distr_param_2>

restriction

uniform U lower boundary upper boundary lower boundary <
upper boundary

normal N mean value standard deviation standard deviation > 0
lognormal L mean value standard deviation standard deviation > 0
exponential E mean value --- mean value >

 0

Tab. 2 Distribution functions and their parameters

For more information on the distribution functions see the chapter on the overview
on experiment types.

6.3.3 EDF Example

E: perturbation

SPRINT-S Version 2.11 Primer 26

S p1 : 1. : N(1., 0.4) so, p1 is a realization of N(1. , 0.4)
M p2 : 2. : U(0.5 , 1.5) so, p2 is a realization of U(1. , 3.)
E: runs 250 250 model runs will be performed

6.3.4 Experiment Performance

• The number of runs must be greater than 10.
• Firstly, a model run with the default values of the targets will be performed which

represents the deterministic case.
• All other runs will be performed with target values which result from a realization

of the selected distribution functions for all targets. They are random numbers
with respect to the selected distribution function and its distribution parameters.
Each random number is fixed for a single model run (= pre-run perturbations).

• During result processing extrema and moments (up to skewness) and confidence
intervals as well as the deterministic case of the simulation output data vector can
be output.

• The sequence of the simulation runs to be performed starts with the nominal run,
followed successively by the perturbation runs. The sequence of the result
records in the direct access result file sprint.output is as follows:

nominal run
minimum over all perturbation runs
maximum over all perturbation runs
mean value over all perturbation runs
variance over all perturbation runs
skewness over all perturbation runs
distance of confidence boundaries from mean value for the 99% significance
level
distance of confidence boundaries from mean value for the 95% significance
level
sequence of perturbation runs

6.4 Stochastic Analysis

Goal Analysis of model parameter, initial value, driving
forces perturbations per time step

exp_type_descr stochastic

exp_spec_infos <distribution> { (<distr_param_1> , <distr_param_2>) }

terminator1 runs <number_of runs>

terminator2 calls <number_of_stochastic_calls_per_model_run>

SPRINT-S Version 2.11 Primer 27

6.4.1 Adjustments

See experiment type Perturbation Analysis

6.4.2 Distribution Functions and their Parameters

See experiment Perturbation Analysis

6.4.3 EDF Example

E: stochastic
S p1 : 1. : N(1., 0.4) so, p1 is a realization of N(1. , 0.4)
M p2 : 2. : U(0.5 , 1.5) so, p2 is a realization of U(1. , 3.)
E: runs 250 250 model runs will be performed
E: calls 23 there are 23 calls of stochastic per model run

6.4.4 Experiment Performance

• The number of runs must be greater than 10.
• Stochastic analysis can be applied to the model for model parameters where the

parameter value is a random number that is changed per time step as well as for
state variables where an additive additional noise term can be applied during
each time step.

 To apply these techniques to the model for this task, the model has to be
changed before running SPRINT-S. SPRINT-S supplies the user with a

real*4 function stochastic (EDF_body_line)

with
EDF_body_line integer*4, input to stochastic

number of the body line, the target is to be
perturbed.

which generates a random number with respect to the distribution function of the
appropriate body line target and its distribution parameters.

• <number_of_stochastic_calls_per_model_run> is the total number of calls of the
function stochastic per model run which has to be determined before running the

SPRINT-S Version 2.11 Primer 28

model to ensure the independence of the random numbers of the distribution
functions for the single model runs.

• Firstly, a model run will be performed representing the deterministic case, where
the function stochastic returns the default value of the target.

 If stochastic is used as an additional noise term, it should return for this case with
0., which corresponds with a default value of 0. in the appropriate EDF body line.

• All other runs will be performed with target values, which result in a realization of
the selected distribution functions for all targets: They are random numbers with
respect to the selected distribution function and its distribution parameters. Each
target realization is computed anew by calling the function stochastic
(perturbations per time step).

• Note that this is the only experiment where input_data of subroutine simulation
cannot be exploited. Information transfer is based only on usage of the stochastic
subroutine.

• During result processing, extrema and moments (up to skewness) and confidence
intervals as well as the deterministic case of the simulation output data vector can
be output.

• For the sequence of the simulation runs to be performed and for the sequence of
the results in the direct access result file sprint.output, see experiment type
Perturbation Analysis.

6.4.5 Example for Using stochastic

A model without stochastic perturbations could appear as follows

...
do itime = 1 , 100

...
state1 = state1 + p1 * rate1
state2 = state2 + p2 * rate2
...

enddo
...

With the EDF

E: stochastic
S p1 : 1. : N(1., 0.4) p1 is a realization of N(1. , 0.4)
A state2 : 0 : U(0.5 , 1.5) state2 is a realization of U(0.5 , 1.5)
E: runs 250 perform 250 model runs
E: calls 200 = 100 time steps * 2 calls of stochastic

the model could be adopted to a stochastic experiment as follows

...
do itime = 1, 100

...
state1 = state1 + stochastic (1) * rate1
state2 = state2 + p2 * rate2 + stochastic (2)

SPRINT-S Version 2.11 Primer 29

...
enddo
...

This results in a stochastic realization of p1 and an additive noise term to the
variable state2.

6.5 Spatial Analysis

Goal Spatial application of site-related models

exp_type_descr spatial

exp_spec_infos [<expl._increment_list> | <impl._increment_list> | nil]
with <expl._increment_list> :=
<increment_1> , <increment_2> , ... , <increment_n>
and <impl._increment_list> :=
<begin_value> (<increment_value>) <end_value>

terminator1 comb [default | <combination>]
or
file <file_name>

terminator2 nil

6.5.1 Adjustments

adjustment type S A M
resulting value = <incr> <def> + <incr> <def> * <incr>

6.5.2 EDF Examples

E: spatial
S lon : 0 : 1 (1) 360
S lat : 0 : 1 (1) 180
E: comb default

E: spatial
S lon : 0
S lat : 0
E: file land_mask.dat

SPRINT-S Version 2.11 Primer 30

6.5.3 The Combination

See experiment type Behavioural Analysis

6.5.4 Transformation of Target Values

When applying a site-related point model to a spatial / regional application without
considering lateral fluxes, the problem of assigning site-specific parameters, initial
values and driving forces for each site and performing the model with these data
sets in a sequential manner normally occurs. From the methodological point of view
this problem has a lot in common with a behavioural analysis. Nevertheless the
situation remains data sets that are normally site-related cannot be formulated in
such a compact manner as data supplied by the syntax calculus of the EDF for
behavioural analysis. On the other hand the modeler is often able to assign to each
site a unique identification, specified e.g. by a (longitude , latitude) pair or by an
identification number. So it is more convenient to control the spatial application of
the site-related point model by this identification rather than by the whole site-related
data set.

When using this approach for spatial applications it remains the necessary to derive
the appropriate site-related data set from the unique identification, or in terms of the
EDF language calculus, to transform the original target values to derived model-
related target values.

For the spatial analysis and for this experiment type in SPRINT-S only, the problem
is solved by enabling the user to define a deviation / transformation subroutine

subroutine spatial_transform (origin_data , length_origin_data ,
derived_data , length_derived_data)

with
origin_data real*4, input to spatial_transform

original targets as defined in the EDF.
Corresponds with the sequence on EDF body lines

length_origin_data integer*4 , input to spatial_transform
length of origin_data
It is determined by the number of EDF body lines
do not update it within spatial_transform

derived_data real*4, output from spatial_transform
This is the result of the transformation in
spatial_transform
It will be used as argument input_data
of subroutine simulation

SPRINT-S Version 2.11 Primer 31

length_derived_data integer*4, input to spatial_transform
length of derived_data
It is determined within prepare by the subroutine
put_length_derived_data
do not update it

The following figure sketches the information flow from the EDF to the vector
output_data for all non-complex experiments.

Fig. 3 From EDF to output_data for non-complex experiments

The following rules apply in connection with spatial_transform

• Adjustments of the increments to the defaults are performed before running the
subroutine spatial_transform , which also is indicated by the spatial_transform
input argument origin_data.

• To determine length_derived_data the user has to perform within subroutine
prepare at all nodes the SPRINT-S

subroutine put_length_derived_data (length_derived_data)

with
length_derived_data integer*4, input to put_length_derived_data

determines length of vector derived_data
from subroutine spatial_transform

put_length_derived_data only can be performed within prepare. If

SPRINT-S Version 2.11 Primer 32

put_length_derived_data is missing within prepare, the simulation experiment will
be aborted.

• spatial_transform is performed on the communication node before sending run-
specific information to a simulation node. So within spatial_transform the user can
access external files without the risk of multiple concurrent access. These
external files should be opened in the subroutine prepare.

• spatial_transform only will be used for the spatial experiment, also in the case that
a user-defined subroutine spatial_transform is available for other experiment
types.

• With an undefined spatial_transform information the experiment will be aborted
(missing subroutine spatial_transform).

• The field derived_data of the subroutine spatial_transform is copied to the field
input_data of the subroutine simulation.

6.5.5 Example for Using spatial_transform

A laterally uncoupled dynamic vegetation model should be performed globally at a
1° x 1° geometry as indicated above by the two EDFs.
Dependent on lon and lat for each land grid cell a parameter and initial value data
set of 20 values has to be read from an external file. A land mask indicator, lon, lat
and these 20 values are then used by the simulation model for one model run at
(lon,lat). isite_data is assumed to be a user defined function.

subroutine spatial_transform (origin_data , length_origin_data ,
 # derived_data , length_derived_data)

integer*4 length_origin_data , length_derived_data
real*4 origin_data (length_origin_data),
real*4 derived_data (length_derived_data)

c as indicated by the two EDFs origin_data (1) = lon
c origin_data (2) = lat
c get now from the external file dependent on lon and lat
c the site-specific data by a user defined function isite_data
c and copy it directly to derived_data (4...).
c Open the external file in prepare.
c ireturn = 0 : record found, all o.k.
c ireturn = 1 : record not found, what means, that (lon,lat)
c corresponds with a grid cell outside the land mask

ireturn = isite_data (‘read’ , origin_data (1) , origin_data (2) ,
 # derived_data (4))
c copy ireturn, lon, lat to the head of derived_data,
c so length_derived_data = 23

derived_data (1) = float (ireturn)
derived_data (2) = origin_data (1)
derived_data (3) = origin_data (2)
return
end

6.5.6 Unfeasible Derived Data

SPRINT-S Version 2.11 Primer 33

If derived_data (1) = 1 the dynamic vegetation model in simulation must not be
performed. While this will occur for the first EDF often because of the 360 * 180 runs
for the total globe, this situation is avoided by the second EDF when the file
land_mask.dat describes only those (lon,lat) constellations, the user is interested in.
Nevertheless also for the case of derived_data = 1 simulation will be performed. The
user has to ensure within simulation that the dynamic vegetation model will not be
performed.

For an additional example of how to use spatial_transform see Appendix F.

6.5.7 Experiment Performance

See experiment type Behavioural Analysis

6.6 Complex Experiments

Goal Perform per patch / site / grid cell of the spatial
experiment type a behavioural, sensitivity, perturbation or
stochastic analysis

exp_type_descr spatial + [behaviour | sensitivity | perturbation | stochastic]

body_line assoc <target_of_non-spatial_subexp> :
 <index_of_derived_data>

(body lines are optional)

terminator1 files <EDF_spatial_subexp> + <EDF_non-spatial_subexp>

terminator2 seed [global | local]
(only for non-spatial subexperiments perturbation and
stochastic analysis)

Complex experiments combine the method of application of a patch- / site- related
model spatially (the spatial subexperiment subexp) with the possibility of running a
behavioural, sensitivity, perturbation, or stochastic analysis (the non-spatial
subexperiment) in such a way that this analysis is performed for all patches / sites.
Complex experiments enlarge SPRINT-S applicability tremendously by enabling
scenario studies of spatially explicit models and supplying techniques in SPRINT-S
result processing for navigating, handling and aggregating complex experiment
output data.

SPRINT-S Version 2.11 Primer 34

For example, it is possible to use a crop model which depends on meteorology, soil,
and management practices within a particular region to study

• the complex regional model behaviour for site-related model parameter
adjustments or

• the expected regional yield (confidence intervals!) by perturbing meteorological
input data and thus running a stochastic analysis for each crop production site.

6.6.1 EDF Syntax and Examples

The approach of combining a spatial analysis with another, non-spatial experiment is
reflected in the EDF syntax: Each complex EDF combines a spatial EDF with a non-
spatial EDF.

With the EDF file spatial.edf for 21 * 21 = 441 runs
E: spatial
S lon : 0 : 13 (0.1) 15
S lat : 0 : 51 (0.1) 53
E: comb default

and the EDF file behav.edf for 5 runs
E: behaviour
M par1 : 1. : 0.9 (0.05) 1.1
A par2 : 2. : 0.1 , 0.25 , 0.2 , 0.05 , 0.15
E: comb par1 , par2

consider the EDF complex1
E: spatial + behaviour
E: files spatial.edf + behav.edf

which defines a complex experiment, where for all 0.1° x 0.1° grid elements a
behavioural analysis will be performed. In total, the number runs of this experiment
is 441 * 5 = 2205. A so-called super-run is related to the performance of a non-
spatial subexperiment for one patch / site / grid cell of the spatial subexperiment.
The experiment has 441 super-runs.

For the spatial subexperiment with the EDF spatial.edf a transformation / deviation
of EDF targets lon and lat to site-specific parameters / initial values is performed by
applying the user-defined subroutine spatial_transform. These site-specific values
can be associated with targets of the non-spatial EDF to define new target default
values, which are then also site-related. The optional body lines in the complex EDF
serve this approach:

Consider the EDF complex2
E: spatial + behaviour

SPRINT-S Version 2.11 Primer 35

assoc par1 : 2
E: files spatial.edf + behav.edf

where the resulting value of index 2 (position 2) of the derived_data vector from
spatial_tranform is used to replace the original default value 1. of par1. Normally the
new default value of par1 will differ between the single grid elements. So it is
possible to consider data which are derived by spatial_transform in the non-spatial
experiment of complex experiments. The default value of par2 will not change in
space.
For more information about data vector structures and about associated targets see
below.

The terminator2 line is only defined for the non-spatial subexperiments Perturbation
and Stochastic Analysis. It addresses different possibilities in handling random
numbers:

• While seed local ensures that for each perturbation / stochastic analysis the
random number seed differs between all patches / sites / grid cells,

• seed global ensures usage of a unique seed for all perturbation / stochastic
subexperiments.

Fig. 4 From EDFs to output_data for complex experiments

6.6.2 Complex Data Vector Structures and Associations

SPRINT-S Version 2.11 Primer 36

The following rules are valid in connection with complex experiments for the
subroutines the user has to define, and for the application of SPRINT-S subroutines
and functions:

• As one subexperiment is from type spatial analysis, subroutine
put_length_derived_data has to be performed in subroutine prepare. The
argument length_derived_data of subroutine put_length_derived_data is related
only to the non-spatial subexperiment. This is consistent with the general purpose
of the subroutine spatial_transform.

• The input data vector of the subroutine simulation is composed from the output
vector derived_data from the subroutine spatial_transform, followed by the
adjusted target values of the non-spatial EDF.

As mentioned above, associations define new site / patch- / grid cell-related default
values for targets from the non-spatial subexperiment. In the body line the
<index_of_derived_data> is the position in the vector derived_data of the subroutine
spatial_transform where the new default value of the associated target of the non-
spatial experiment is located.

6.6.3 Association Example

To illustrate associations, consider complex EDF complex2 described above in
connection with a rather synthetic subroutine spatial_transform as

...
derived_data (1) = origin_data (2) + origin_data (1) = lat + lon
derived_data (2) = origin_data (2) - origin_data (1) = lat - lon
derived_data (3) = origin_data (2) * origin_data (1) = lat * lon
...

So length_derived_data is equal to 3. For the first run with the increments for (lon ,
lat , par1 , par2) = (13 , 51 , 0.9 , 0.1) the following adjustments, transformations
and associations will be performed:

 lon lat
<def> 0 0
<adjustm> S S
<incr> 13 51
= value 13 51
spatial_transform results in
derived_data 51+13 51-13 51*13
= 64 38 663

Because of the defined association par1 : 2 is for

 par1 par2
<old_def> 1 2

SPRINT-S Version 2.11 Primer 37

<new_def> 38 = <old_def>
<adjustm> M A
<incr> 0.9 0.1
= value 34.2 2.1

and finally, for subroutine simulation input_data = (64 , 38 , 663, 34.2 , 2.1).

6.6.4 Recovering Association Problems under Simulation

Because of the computation of new default values for associated targets of the non-
spatial subexperiment it is necessary to determine for unfeasible constellations how
to compute target values from these new default values. This is done automatically
during SPRINT-S performance according to the following rules to ensure
continuation of the experiment. For interactive submission these actions are
protocoled in an additional window. So it is possible to cancel an experiment. For the
submission of an experiment to the LoadLeveler the additional window is
suppressed. In both cases this protocol is appended to sprint.protocol.

experiment type
Warning

or
Error

adjustment type
of

assoc. target
<new_def> recovery

spatial +
behaviour

W M 0 no

spatial +
sensitivity

W A , M 0 no

spatial +
[perturbation |
stochastic]

E M
for
distribution U

0 <new_def> = 1
and
lower boundary <
upper boundary

spatial +
[perturbation |
stochastic]

E M
for
distribution U

sign change <new_def> =
- <new_def>

spatial +
[perturbation |
stochastic]

E A , M
for
distributions N, L

resulting
standard deviation
< 0

standard deviation =
- standard deviation

spatial +
[perturbation |
stochastic]

E A , M
for
distribution E

resulting
mean < 0

mean =
- mean

spatial +
[perturbation |
stochastic]

E A , M
for
distributions N, L

resulting
standard deviation
= 0

standard deviation =
1

spatial +
[perturbation |
stochastic]

E A , M
for
distribution E

resulting
mean = 0

mean =
1

Tab. 3 Recovering association problems under simulation

SPRINT-S Version 2.11 Primer 38

6.6.5 Experiment Performance

Both the experiment performance and the storage of simulation results correspond
with the appropriate strategy of each subexperiment. A sequence of subexperiments
is performed in such a manner that the spatial subexperiment rules the complex
experiment:

loop spatial subexperiment
loop non-spatial subexperiment

appropriate subexperiment sequence
end loop

end loop

7 Linking a Model and Simulation Performance

7.1 Linking a Model to SPRINT-S

simulation, prepare and spatial_transform must be linked to SPRINT-S before
running an experiment. To build the binary sprint.program, on a parallel node link
the object file sprint.o and the SPRINT-S object archive libsprint.a from
$SPRINTHOME together with the user modules for simulation.o, prepare.o,
spatial_transform.o, the model under investigation and user object archives by

mpxlf -o sprint.program $SPRINTHOME/sprint.o $SPRINTHOME/libsprint.a

and append to this link stream the above-mentioned user files. The name of the
resulting binary must always be sprint.program. For SPRINT-S internally used
subroutines, functions and common blocks, see Appendix I.

7.2 Environment Definition

Before starting a simulation experiment define and export the following UNIX
environment on the parallel machine:

DISPLAY
MP_EUILIB
MP_INFO_LEVEL
MP_RMPOOL
SPRINTHOME

SPRINT-S Version 2.11 Primer 39

SPRINTSTATUS

For more information see Appendix D and E.

7.3 Interactive Experiment Submission

Start a simulation experiment directly at the parallel machine from the directory,
where sprint.program resides by

$SPRINTHOME/sprint.experiment <#proc> <edf> { <cmd> }

with
<#proc> number of processors to be used: ≥ 3

maximal number depends on the number
of available processors in parallel pool
$MP_RMPOOL (see Appendix D)

<edf> EDF
<cmd> auxiliary command response file for

performing prepare and followed spatial_transform
in the case of a spatial experiment

The CPU consumption for running an experiment scales linearly with the number of
assigned simulation nodes. For SPRINTSTATUS = YES a pop-up window informs
about the state of experiment performance. After announcing

experiment preparation
in progress

and
experiment performance

in progress

the currently finished run of the complete run sequence is output in the following
way:

Fig. 5 Experiment status window

SPRINT-S Version 2.11 Primer 40

7.4 Experiment Submission to LoadLeveler

Submit a simulation experiment to the LoadLeveler by

$SPRINTHOME/sprint.loadl <#proc> <edf> { <cmd> }

with the same arguments as above. The user who submits the job to the
LoadLeveler will be informed by an e-mail from the LoadLeveler when the job exits.
For this submission type SPRINTSTATUS=NO is assumed.

7.5 Experiment Protocol and Output Redirection

Experiment performance is protocoled in the file sprint.protocol. This includes a
statistics on CPU time for model simulation and node communication.

All information sent from prepare, spatial_transform, simulation or the simulation
model to the terminal / standard output is redirected during a SPRINT-S experiment
to sprint.protocol. Because of the parallel performance of the model, this information
cannot normally be assigned to a special simulation run without a unique identifier.

7.6 Cleanup after Abnormal Experiment End

After an abnormal experiment end triggered by an error during performance of the
simulation model or by cancellation of the experiment, the user should start from the
directory in which the abnormal finished experiment was performed

$SPRINTHOME/sprint.cleanup

to delete all temporary files. For complex experiments this also cancels additional
processes on the node the simulation was started from.

8 Result Processing

8.1 General Remarks

The general aim of result processing of SPRINT-S is to post-process simulation
results and to output them in an experiment-specific manner, which allows further

SPRINT-S Version 2.11 Primer 41

exploitation with additional software packages (e.g., visualization, statistics or
geographic information systems’ software).

One of the main features of SPRINT-S result processing is the possibility to
determine from simulation results (the output data vector output_data or parts of it)
extrema (minimum, maximum), moments (mean value, variance) and sums. This
implies

• temporal aggregations, if parts of the simulation output represent state variables
for different time steps

• class-specific aggregations, if parts of the simulation output represent state
variables at a time step for a subclassification (e.g., biome distribution)

Result processing can be performed on any workstation by starting from the working
directoryin which the simulation experiment was performed

$SPRINTHOME/sprint.resproc

Result processing always generates a plain ASCII output file sprint.res, where result
values are separated from each other by horizontal tabulators. This file can be
manipulated afterwards to serve as an input, e.g. for the above-mentioned
packages.

During result processing the simulation experiment output file sprint.output is
exploited. sprint.output

• is a direct access file of real*4 results
• where the sequence of records is explained for the different experiment types in

the appropriate chapters under „Experiment performance“
• and the sequence of results for each record corresponds with the output vector

output_data (1) ... output_data (length_output_data) of the subroutine simulation.

Output processing always starts for length_output_data > 1 with the determination of
that part of the output vector from which results will be derived:

enter first and last position (max: <length_output_data>) in output data
 for result processing (def: 1 <length_output_data>):

A singular interval (first position = last position) is possible. Because only one
interval can be specified, this has to be kept in mind for the determination of the
sequence of simulation results in simulation to enable the deviation of extrema and
moments over connected intervals. Specification of aggregations over this interval is
the next step:

enter aggregation se/mi/ma/me/va/su (def: se , * for all other):

with

SPRINT-S Version 2.11 Primer 42

se series process each position
mi minimum determine minimum
ma maximum determine maximum
me mean determine mean value
va variance determine variance
su sum determine sum

at the selected interval. For singular intervals, se is active without any selection. In
the following, selections for the current experiment type (see below) are performed.

The result output file sprint.res is headed with information on the processed
experiment and on the result processing strategy. Result values are separated by a
tabulator.

For lists of choices without a marked default value (def) the first list element always
represents the default value in the following dialogues.

8.2 Behavioural and Spatial Analysis

Result processing can be performed on the basis of the specified combination or of
the plain (independent of the combination in the EDF) simulation output file
sprint.output:

result processing based on comb-line? (y/n):

For the latter case all runs are output sequentially for the determined aggregation at
the selected interval, labeled by the appropriate run number. Result processing
based on the combination within the experiment demands
• selection of target variables from the EDF body lines for which the results are to

be presented and
• to fix all the other target variables, the selected target variable is combined with

combinatorially.

The so-called level of freedom reflects this selection: It is one for aggregation se and
two for aggregations unlike se and singular intervals:

fix target by increment position (def: 1) or select it to output by * for <target_list>
enter:

or
fix target by increment position (def: 1) for <target_list>
enter:

Implicit increment lists have to be resolved for position determination. Within such a
dialogue sequence only a certain number of * can be entered, equal to the level of

SPRINT-S Version 2.11 Primer 43

freedom. The dialogue is not performed if the level of freedom corresponds with the
EDF combination in such a way that the level of freedom is fulfilled automatically.

If the selected <target_list> is a real list with targets combined in parallel, one target
out of the <target_list> has to be selected by

select by its name the heading target (def: 1st target) from <target_list>
enter:

for labeling results. If the resulting values of the heading target are unsorted, they
will be sorted in an ascending manner and the output will be organized in this way.

Example

With an EDF

E: behaviour
S p1 : 0 : 1 , 11 , 111
S p2 : 0 : 2 , 22 , 222
S p3 : 0 : 3 , 33 , 333
S p4 : 0 : 4 , 44 , 444
S p5 : 0 : 5 , -55 , 555
S p6 : 0 : 6 , 66 , 666
E: comb p4,p1 * p5,p2 * p6,p3

result processing would be performed as follows

enter first and last position (max: 6) in output_data
 for result processing (def: 1 6):
enter aggregation se/mi/ma/me/va/su (def: se , * for all other):
result processing based on comb-line? (y/n):
fix target by increment position (def: 1) or select it to output by * for p4,p1
enter:
fix target by increment position (def: 1) or select it to output by * for p5,p2
enter: *
select by its name the heading target (def: 1st entry) from p5,p2
enter: p5
fix target by increment position (def: 1) for p6,p3
enter:

and result file sprint.res is for the model file example.f from
$SPRINTHOME/example (see Appendix F) as

SPRINT-S Vers. 2.1 Experiment: behaviour
output_data between 1 and 6
rows: output_data
columns: p5
fixed target: p4 = 4
fixed target: p6 = 6

SPRINT-S Version 2.11 Primer 44

se -55 5 555
1 1 1 1
2 22 2 222
3 3 3 3
4 4 4 4
5 -55 5 555
6 6 6 6

Result processing dialogue as

enter first and last position (max: 6) in output_data
 for result processing (def: 1 6):
enter aggregation se/mi/ma/me/va/su (def: se , * for all other): *
result processing based on comb-line? (y/n):
fix target by increment position (def: 1) or select it to output by * for p4,p1
enter:
fix target by increment position (def: 1) or select it to output by * for p5,p2
enter: *
select by its name the heading target (def: 1st entry) from p5,p2
enter: p5
fix target by increment position (def: 1) or select it to output by * for p6,p3
enter: *
select by its name the heading target (def: 1st entry) from p6,p3
enter: p6

leads to the result file sprint.res as

SPRINT-S Vers. 2.1 Experiment: behaviour
aggregation between output_data 1 and 6
rows: p6
columns: p5
fixed target: p4 = 4

mi -55 5 555
6 -55 1 1

66 -55 1 1
666 -55 1 1
ma -55 5 555

6 22 6 555
66 66 66 555

666 666 666 666
me -55 5 555

6 -3.1667 3.5 131.8333
66 11.8333 18.5 146.8333

666 161.8333 168.5 296.8333
va -55 5 555
6 702.1666 3.5 50618.1641

66 1626.1666 687.5 46682.1641
666 80166.1641 76827.5 76622.1641

su -55 5 555
6 -19 21 791

66 71 111 881
666 971 1011 1781

SPRINT-S Version 2.11 Primer 45

8.3 Sensitivity Analysis

During a sensitivity experiment a nominal run and runs with positive and negative
adjustments of the targets as defined in the EDF body lines are performed. During
result processing sensitivity and symmetry functions for each selected position of
output_data, each target and each increment will be derived from the outputs of the
simulation runs. If a relative sensitivity function is undefined because a denominator
is zero, then instead of the sensitivity function value the string „undef“ will be output.
If aggregations (extrema, moments, and sum) over the selected interval of
output_data are to be output, they are derived from the calculated sensitivity
function for all positions within this interval. For an aggregation of a relative
sensitivity function with at least one undefined function value the whole aggregation
will be undefined.

To navigate between targets and to select targets, increments and functions the
following dialogue will be performed:

enter sensitivity function lin/squ/abs/rel1/rel2/sym (def: lin , * for all):

with sensitivity function <sens_function> and symmetry function

lin linear sensitivity function
squ squared sensitivity function
abs absolute sensitivity function
rel1, rel2 relative sensitivity functions
sym symmetry test

and two function values for positive and negative adjustments for all sensitivity
functions.

To select the targets, the sensitivity and / or symmetry functions from which are to
be output, the appropriate body line number has to be specified, followed by the
increment position in the EDF terminator1-line for increment selection:

enter target position (def: * for all) :
enter increment position (def: * for all) :

Implicit increment lists have to be resolved for position determination.
In the case of multiple combinations the output sequence is determined by

enter output sequence for s_ensitivity functions,
t_argets and
i_ncrements (def: sti) :

SPRINT-S Version 2.11 Primer 46

In the output file sprint.res sensitivity and symmetry functions are named as follows:

±<sens_function>_<target>(adjustment_type>:<incr>)
and / or
sym_<target>(adjustment_type>:<incr>)

Example

With an EDF

E: sensitivity
S: p1 : 0.5
S: p2 : 0
E: incr 0.01 , 0.05

result processing would be performed as follows

enter first and last position (max: 2) in output_data
 for result processing (def: 1 2):
enter aggregation se/mi/ma/me/va/su (def: se , * for all other):
enter sensitivity function lin/squ/abs/rel/sym (def: lin , * for all) : *
enter variable position (def: * for all) :
enter increment position (def: * for all) :
enter output sequence for s_ensitivity functions,

t_argets and
i_ncrements (def: sti) : tsi

and result file sprint.res is for the model file example.f from
$SPRINTHOME/example (see Appendix F) as follows

SPRINT-S Vers. 2.1 Experiment: sensitivity
output_data between 1 and 2

* 1 2
+lin_par1(s:0.01) -0.5 0 +lin_par2(s:0.01) 0 -1
-lin_par1(s:0.01) 0.5 0 -lin_par2(s:0.01) 0 1
+lin_par1(s:0.05) -0.5 0 +lin_par2(s:0.05) 0 -1
-lin_par1(s:0.05) 0.5 0 -lin_par2(s:0.05) 0 1
+squ_par1(s:0.01) 0.0025 0 +squ_par2(s:0.01) 0 0.01
-squ_par1(s:0.01) 0.0025 0 -squ_par2(s:0.01) 0 0.01
+squ_par1(s:0.05) 0.0125 0 +squ_par2(s:0.05) 0 0.05
-squ_par1(s:0.05) 0.0125 0 -squ_par2(s:0.05) 0 0.05
+abs_par1(s:0.01) 0.5 0 +abs_par2(s:0.01) 0 1
-abs_par1(s:0.01) 0.5 0 -abs_par2(s:0.01) 0 1
+abs_par1(s:0.05) 0.5 0 +abs_par2(s:0.05) 0 1
-abs_par1(s:0.05) 0.5 0 -abs_par2(s:0.05) 0 1
+rel1_par1(s:0.01) -1 undef +rel1_par2(s:0.01) 0 undef
-rel1_par1(s:0.01) 1 undef -rel1_par2(s:0.01) 0 undef
+rel1_par1(s:0.05) -1 undef +rel1_par2(s:0.05) 0 undef
-rel1_par1(s:0.05) 1 undef -rel1_par2(s:0.05) 0 undef
+rel2_par1(s:0.01) -0.5 undef +rel2_par2(s:0.01) 0 undef

SPRINT-S Version 2.11 Primer 47

-rel2_par1(s:0.01) 0.5 undef -rel2_par2(s:0.01) 0 undef
+rel2_par1(s:0.05) -0.5 undef +rel2_par2(s:0.05) 0 undef
-rel2_par1(s:0.05) 0.5 undef -rel2_par2(s:0.05) 0 undef
sym_par1(s:0.01) 1 0 sym_par2(s:0.01) 0 2
sym_par1(s:0.05) 1 0 sym_par2(s:0.05) 0 2

8.4 Perturbation and Stochastic Analysis

During a perturbation or stochastic experiment, the ensemble of runs with perturbed
targets is performed as well as a nominal run. Result processing addresses the task
of information aggregation by presenting extrema, moments and boundaries of
confidence intervals as well as heuristic distribution functions over the whole run
ensemble. Experiment-specific dialogue is only performed for interval aggregation
se and starts with

enter for heuristic distribution function number of classes (max: <nr_classes>)
 or 0 for no functions:

where <nr_classes> = (<nr_runs> - 1) / 4 is the number of equidistant, right opened
intervals to be used as classes for heuristic distribution functions. Boundary classes
are not treated specially. This dialogue is followed for non-zero inputs by
determination of class boundaries for each item of the selected output_data interval
or by determination of common boundaries for the complete interval:

determine class boundaries p_er item or (def.)
 or for the complete interval? (p/c):

Based on this class definition, heuristic distribution function can be plotted for the
temporal aggregation se:

heuristic distribution to plot? (n/y):

Extrema, moments, confidence intervals and class frequencies over the whole run
ensemble are named as follows:

dc deterministic case
mi minimum
ma maximum
me mean value
va variance
sk skewness
co1 distance from mean value for 99% confidence interval
co5 distance from mean value for 95% confidence interval
cl_1 class frequency in class number 1

(this is the class with the minimum value)
...
cl_<nr_classes> class frequency in class number <nr_classes>

SPRINT-S Version 2.11 Primer 48

(this is the class with the maximum value)

Interval-related aggregations are derived from the outputs of run ensemble related
aggregations.

Example

With an EDF

E: perturbation
S par1 : 10 : u(0,2)
S par2 : 20 : n(0,2)
S par3 : 30 : l(0,2)
S par4 : 40 : e(1)
E: runs 500

result processing would be performed as follows:

enter first and last position (max: 4) in output_data
 for result processing (def: 1 4):
enter aggregation se/mi/ma/me/va/su (def: se , * for all other):
enter for heuristic distribution functions number of classes (max: 124)
 or 0 for no functions: 15
determine class boundaries p_er item (def) or for the c_omplete interval? (p/c):
heuristic distributions to plot? (n/y): y

and result file sprint.res is for the model file example.f from
$SPRINTHOME/example (see Appendix F) as follows

SPRINT-S Vers. 2.1 Experiment: perturbation
output_data between 1 and 4
499 runs, local heuristic variable distribution

output_data(1) minimum: 0.9826660156E-02 width: 0.1324911714 max. frequ.: 41
 1 xx
 2 xxx
 3 xx
 4 xx
 5 xx
 6 xxx
 7 xx
 8 xxx
 9 xx
10 xx
11 xxx
12 xxx
13 xxx
14 xxx
15 xx

output_data(2) minimum: -4.744464397 width: 0.7003035545 max. frequ.: 70

SPRINT-S Version 2.11 Primer 49

 1 xxxxx
 2 xxxxxxxxxxx
 3 xxxxxxxxxxxxxxxxxxxxx
 4 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 5 xxx
 6 xx
 7 xxx
 8 xxx
 9 xxx
10 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
11 xxxxxxxxxxxxxxxxxxxxxxxxxx
12 xxxxxxxxxxxxxxxxxxxxxxx
13 xxxxxxxxxx
14 xxxxxxxx
15 x

(a.s.o.)

* 1 2 3 4
dc 1 0 0 4
mi 0.0098 -4.7445 0.0033 0.8854E-3

ma 1.9972 5.7601 275.9586 6.1777
me 1.0157 0.0929 5.4242 1.0067
va 0.3389 3.8317 417.8585 0.9645
sk 696.2999 179.9835 0.1296E7 998.0846

co1 0.0674 0.2266 2.3665 0.1137
co5 0.0512 0.1722 1.7982 0.0864
cl_1 34 6 474 169
cl_2 27 11 12 117
cl_3 38 22 4 72
cl_4 34 35 3 36
cl_5 29 57 2 36
cl_6 41 67 1 21
cl_7 29 70 0 20
cl_8 31 62 0 14
cl_9 33 57 1 6

cl_10 29 39 0 3
cl_11 31 28 0 0
cl_12 40 25 0 2
cl_13 27 10 0 1
cl_14 39 8 1 0
cl_15 37 2 1 2

8.5 Complex Experiments

A special result processing approach for complex experiments is the selection of a
special super-run out of the spatial subexperiment:

fix a single super-run from the spatial subexperiment:
fix target by increment position (def: 1) for <target_list>
enter:

SPRINT-S Version 2.11 Primer 50

...
perform now result processing for the non-spatial subexperiment:

Example

For the EDF complex2
E: spatial + behaviour
assoc par1 : 2
E: files spatial.edf + behav.edf

with spatial.edf and behav.edf from the chapter on complex experiments

result processing would be performed as follows:

enter first and last position (max: 23) in output_data
 for result processing (def: 1 23):
enter aggregation se/mi/ma/me/va/su (def: se , * for all other):
fix a single super-run from the spatial subexperiment:
fix target by increment position (def: 1) for lon: 6
fix target by increment position (def: 1) for lat: 1
perform now result processing for the non-spatial subexperiment:
... (dialogue for the non-spatial subexperiment)

and result file sprint.res is as follows

SPRINT-S Vers. 2.1 Experiment: spatial + behaviour
output_data between 1 and 23
fixed spatial super-run:
fixed target: lon = 13.5
fixed target: lat = 53
... (output for the non-spatial subexperiment)

8.6 Experiment Storage

To save simulation results of an experiment for later result postprocessing, rename
or restore

• sprint.output
• sprint.scenario
• sprint.protocol
• sprint.input (only for behavioural and spatial experiments)
• sprint.input_c (only for complex experiments)
• sprint.scenario_c (only for complex experiments)

and assign the original names before starting result processing from the directory, in
which these files are located.

SPRINT-S Version 2.11 Primer 51

8.7 Browsing Simulation Results

It may sometimes be useful to browse simulation results stored in sprint.res without
taking into account experiment-specific-result performance, as coded in the control
files sprint.scenario and sprint.scenario_c (the latter only for complex experiments).
For this purpose SPRINT-S supplies the user with

$SPRINTHOME/sprint.browse

where the user has to enter on request

• the length length_output_data of the output data vector output_data from
subroutine simulation

• first and last position in output data vector output_data for browsing
• first and last record of sprint.output for browsing
• for complex experiments the number of records per super-run
• for complex experiments the run numbers to output per super-run

Keep in mind that for perturbation and stochastic analysis the number of stored
records is equal to the number of runs to be performed plus 8. Especially for
complex experiments the selection of run numbers to be output per super-run is a
valuable approach for result interpretation.

$SPRINTHOME/sprint.browse has to be started from the directory from which the
SPRINT-S experiment was performed. It always generates a plain ASCII output file
sprint.brw, where values are separated by horizontal tabulators.

8.8 Result File Filters

Result filters usually can be applied to plain ASCII result output files sprint.res and
sprint.brw or derived files to transform results to be used as input to other packages.
The directory $SPRINTHOME/filters is a repository for such filters. For the available
filters see Appendix C.

9 References

Flechsig, M., Wenzel, V., Erhard, M. (1994) Simulation based regional models - concept, desgin and
application. Ecol. Mod. 75/76, 601-608

IBM (1994) AIX parallel environment - parallel programming subroutine reference. IBM Document No.
SH26-7228-01

SPRINT-S Version 2.11 Primer 52

King, A.W. (1990) Translating models across scales in the landscape. In: Turner, M.G. & Gardner,
R.H. (eds): Quantitative methods in landscape ecology. Ecological Studies Vol. 82, Springer, New
York, pp. 479-517

Wenzel, V., Kücken, M., Flechsig, M. (1995) MOSES - Modellierung und Simulation ökologischer
Systeme. PIK-Report No. 13, PIK Potsdam

Wenzel, V., Matthäus, E., Flechsig, M. (1990) One decade of SONCHES. Syst. Anal. Mod. and Sim.
7, 411-428

SPRINT-S Version 2.11 Primer 53

Appendix A
Subroutines and Functions for Model Coupling

The user can / must use the following SPRINT-S subroutines and functions for
coupling his / her model to SPRINT-S:

name
and

explanation

arguments
or

function value

input /
output

and type
meaning

to be used in
or

usable in
see

subroutine
broadcast

broadcast
information to
simulation model

field_to broadcast

length_field_to_
broadcast

input
integer*4
or real*4

input
real*4

field to broadcast from
prepare to simulation or
the simulation model

length of
field_to_broadcast

usable in:
prepare

4.1

function
iget_exp_type

get experiment
type

iget_exp_type output
real*4

usable in:
prepare
and
simulation

4.1

subroutine
put_length_
derived_data

put length of
output vector for
spatial_transform

length_derived_
target

input
integer*4

length of output vector
derived_data from
spatial_transform

to be used in:
prepare
for
spatial
analysis

4.1

subroutine
put_length_
output_data

put length of
output vector for
simulation

length_output_
data

input
integer*4

length of output vector
output_data from
simulation

to be used in:
prepare

4.1,
6.5

function
stochastic

generate a
random number

stochastic output
real*4

usable in:
simulation
for
stochastic
analysis

6.4

subroutine
synchro

synchronize
broadcast

usable in:
prepare

4.1

Tab. 4 User subroutines and functions

SPRINT-S Version 2.11 Primer 54

The user has to define the following subroutines in order to couple a model to
SPRINT-S:

name
and

explanation
arguments

input /
output

and type
meaning see

subroutine
prepare

prepare experim.

at_comm_node input
logical*4

.true. if node is the communication
node

.false. else

4.1

subroutine
simulation

wrap simulation
model and
perform it for a
single run

input_data

length_input_data

output_data

length_output_data

input
real*4

input
integer*4

output
real*4

input
integer*4

target vector, derived from the EDF
and transformed for spatial experi-
ments by subr. spatial_transform

length of input_data. Determined by
the EDF or for spatial experiments in
prepare by subroutine
put_length_derived_data

output vector of simulation results

length of output_data. Fixed in
prepare by subroutine
put_length_output_data

4.2

subroutine
spatial_transform

transform target
vector for spatial
experiments

origin_data

length_origin_data

derived_data

length_derived_data

input
real*4

input
integer*4

output
real*4

input
integer*4

original targets as defined in the
EDF. Corresponds with sequence of
EDF body lines

length of origin_data.
It is determined by the number of
EDF body lines

result of tranformation in
spatial_transform.
It will be used as argument
input_data in subroutine simulation

length of derived_data. It is
determined within prepare by the
subroutine put_length_derived_data

6.5

Tab. 5 Subroutines to be defined by the user

SPRINT-S Version 2.11 Primer 55

SPRINT-S function iget_exp_type returns the following values for experiments:

experiment type integer*4 iget_exp_type ()
spatial 1
behaviour 2
sensitivity 3
perturbation 4
stochastic 5
spatial + behaviour 12
spatial + sensitivity 13
spatial + perturbation 14
spatial + stochastic 15

Tab. 6 Function values of iget_exp_type

Appendix B
Scripts for Model Handling

The following SPRINT-S scripts are available from $SPRINTHOME at the operating
system prompt:

script explanation
on (sp)

or
on (ws)

arguments

sprint.experiment submit an experiment
interactively

sp #proc number of processors
edf EDF
cmd optional command file

sprint.loadl submit an experiment to the
LoadLeveler

sp #proc number of processors
edf EDF
cmd optional command file

sprint.moses perform an experiment with
a MOSES model inter-
actively

sp #proc number of processors
edf EDF
model MOSES model name
ext MOSES model extension
cmd optional command file

sprint.resproc result processing ws ---

sprint.browse browse result file
sprint.output

ws ---

sprint.cleanup clean current directory after
abnormal experiment end

ws ---

sp stands for: run this script only on sp
ws stands for: run this script on any workstation

Tab. 7 Scripts for model handling

SPRINT-S Version 2.11 Primer 56

Usage of a script with arguments can be acquired by entering the script name
without arguments, e.g., sprint.experiment.

Appendix C
Result Output Filters

The following filters for transforming result output files sprint.res, sprint.brw or
derived files are currently available from $SPRINTHOME/filters.

The first argument has to be always the input file to be transformed, additional
arguments are listed below. All filters output to standard output. All filters can be run
on any workstation. For more filters check $SPRINTHOME/filters/README.

filter application additional arguments
2transpose transpose result output files

heading records up to first line with a
tabulator:
 string „row“ ----> string „column“
 string „column“ ----> string „row“
up from first line with a tabulator:
 transpose items, separated by
 tabulators

2arcinfo transforms to ARC/INFO INFO import
format:
tab ----> newline
newline ----> blank line

2excel transforms to EXCEL import format:
point ----> comma

Tab. 8 Result output filters

SPRINT-S Version 2.11 Primer 57

Appendix D
Operating System Environment

The following UNIX environment variables have to be set and exported before
running SPRINT-S:

environment value description
for all parts of SPRINT-S:

SPRINTHOME the SPRINT-S home directory:
see Appendix E

for experiment performance
SPRINTSTATUS

YES

NO

experiment status in an extra window
useful only for CPU-intensive experiments with CPU-time > 3 sec
per simulation run and interactive submission
otherwise

DISPLAY output terminal / only for SPRINTSTATUS=YES
MP_INFOLEVEL

0
1
2
3
4

message reporting to sprint.protocol
set MP_INFOLEVEL > 1: if the error occurs:
ERROR 0031-214 pmd chd <working dir.>
(parallel operating system environment bug)
set MP_INFOLEVEL = 1: otherwise
errors
0 and warnings (default)
1 and informational warnings
2 and high level diagnostic messages
3 and low level diagnostic messages

MP_RMPOOL number of the parallel system pool, from which the experiment is to
be performed (see Appendix E)

MP_EUILIB
ip
us

CSS library implementation to use
Internet protocol for communication among processors
drive high performance switch directly from the parallel tasks.
Fastest communication among nodes, but only one parallel job can
run in this mode.

set automatically by SPRINT-S for experiment performance
MP_PROCS

<#proc>
number of nodes to be used
from experiment command line

MP_EUIDEVICE
css0

adapter set to be used for MP_EUILIB=ip

MP_RESD
YES

whether or not to use parallel system resource manager

MP_HOSTFILE
NULL

host list file name

SPRINTSTATUS
NO

experiment status in an extra window
for experiment submission to LoadLeveler

Tab. 9 Operating system environment

For detailed information on the parallel environment see IBM’s AIX Parallel
Environment documentation.

SPRINT-S Version 2.11 Primer 58

Appendix E
Current Settings, Home Directory, and Restrictions

E.1 Current settings

environmental variable current setting
SPRINTHOME /usr/local/sprint-s

MP_RMPOOL should be set equal to 2
parallel pool 2 has 46 nodes

Tab. 10Current settings

E.2 Home Directory

The SPRINT-S home directory $SPRINTHOME has the following structure:

directory contents
$SPRINTHOME binaries and scripts

$SPRINHOME/filters result output files filters
(binaries and scripts)

$SPRINTHOME/example example model example.f and
EDF examples

$SPRINTHOME/doc documentation

Tab. 11Home directory structure

E.3 Current Restrictions and Workarounds

task and experiment types limitation workaround
experiment performance:
all experiment types

number of EDF body lines is
limited to 100

result processing:
complex experiments

result processing only available
when fixing a super-run

use sprint.browse

Tab. 12Current limitations and workarounds

SPRINT-S Version 2.11 Primer 59

Appendix F
Examples

To clarify the interplay between SPRINT-S, simulation, prepare, spatial_transform,
the simulation model and the EDF the following problem definition is considered:

F.1 Problem Definition

Problem 1
A behavioural analysis is to be performed for a model veg_dyn of vegetation
dynamics at geographic coordinates longitude lon = 13° and latitude lat = 52° for
two model parameters.

Problem 2
A regional application of the laterally uncoupled model veg_dyn within a box
bounded by (12° , 51.5°) and (14° , 53.5°) with a regular stepwidth of 0.05° is to
be performed.

It is assumed that the model veg_dyn

• maps dynamics for one patch / grid element
• should be performed under common meteorological driving forces over the whole

region
• is dependent on 22 patch- / grid element-specific values (longitude, latitude and

parameters and / or initial values, e.g., soil, vegetation types, vegetation
distribution, ...), that are stored in an external data base / data file with an
identificator (lon,lat) for each patch / grid element

• has 100 result values per model run

The example describes an approach where the user subroutines prepare and
simulation are defined for all of the above problems, using the SPRINT-S function
iget_exp_type for distinction. The used subroutines meteo_data and site_data are
user-defined subprograms.

F.2 EDF Definition

Define an EDF behav.patch for Problem 1
E: behaviour
M vegdynp3 : 3 : 0.9 (0.02) 1.1
M vegdynp6 : 6 : 0.9 (0.05) 1.1
E: comb default

resulting in 11 * 5 = 55 runs to inspect the parameter subspace
(vegdynp3 , vegdynp6) of veg_dyn.

SPRINT-S Version 2.11 Primer 60

Define an EDF spatial.region for Problem 2
E: spatial
S lon : 0 : 12(.05)14
S lat : 0 : 51.5 (.05) 53.5
E: comb default

resulting in 41 * 41 = 1681 runs for model performances on a regular 0.05° x 0.05°
geometry.

F.3 Definition of Subroutine prepare

 subroutine prepare (at_comm_node)
 logical*4 at_comm_node
 common /veg_dyn_meteo/ prec (3650) , temp (3650)
 real*4 prec , temp
 common /veg_dyn_params/ veg_dyn_lon , veg_dyn_lat , veg_dyn_param (20)
 real*4 veg_dyn_lon, veg_dyn_lat, veg_dyn_param

 c set length_output_data:
 call put_length_output_data (100)
 c for spatial experiments (Problem 2)
 c set length_derived_data = length_input_data,
 c for all other experiments length_input_data is determined
 c automatically by exploiting the EDF
 if (iget_exp_type () .eq. 1) call put_length_derived_data (22)
 c read daily meteorological data at the communication node
 c for 10 years, valid for all patches/grid elements
 c to veg_dyn common /veg_dyn_meteo/
 c avoiding the data to be read each time in veg_dyn:
 if (at_comm_node) then
 call meteo_data (‘open’)
 call meteo_data (‘read’ , prec)
 call meteo_data (‘read’ , temp)
 call meteo_data (‘close’)
 endif
 c broadcast commons parallely to all simulation nodes, using broadcast
 c imbed broadcasts within synchro :
 call synchro
 call broadcast (prec , 3650)
 call broadcast (temp , 3650)
 call synchro
 c connect to the external site-specific database at the communication
 c node:
 if (at_comm_node) call site_data (‘open’)
 c only for the behavioural analysis (Problem 1) read site-specific
 c information for (13°,52°) at the communication node,

c broadcast it to all simulation nodes
 c and close external site-specific database:
 if (at_comm_node) then
 if (iget_exp_type () .eq. 2) then
 veg_dyn_lon = 13.

SPRINT-S Version 2.11 Primer 61

 veg_dyn_lat = 52.
call site_data(‘read’ , veg_dyn_lon , veg_dyn_lat ,

 # veg_dyn_param , 20)
 call synchro
 call broadcast (veg_dyn_lon , 22)
 call synchro
 call site_data (‘close’)
 endif
 endif
 return
 end

F.4 Definition of Subroutine spatial_transform

subroutine spatial_transform (origin_data , length_origin_data ,
 # derived_data , length_derived_data)
c spatial_transform is only supplied for the spatial experiment
c (Problem 2)

integer*4 length_origin_data , length_derived_data
real*4 origin_data (length_origin_data)
real*4 derived_data (length_derived_data)

c as indicated by the two EDFs origin_data (1) = lon
c origin_data (2) = lat
c get now from the external site-related data base dependent on
c lon and lat the site-specific 20 data and copy it directly
c to derived_data

call site_data (‘read’ , origin_data (1) , origin_data (2) ,
 derived_data (3) , 20)

c copy lon and lat to the head of the derived_data
derived_data (1) = origin_data (1)
derived_data (2) = origin_data (2)

c so, length_derived_data = 22, as set within prepare
return
end

F.5 Definition of Subroutine simulation

subroutine simulation (input_data , length_input_data ,
 # output_data , length_output_data)

integer*4 length_input_data , length_output_data
real*4 input_data (length_input_data)
real*4 output_data (length_output_data)

c veg_dyn common of internal parameters
 common /veg_dyn_params/ veg_dyn_lon , veg_dyn_lat , veg_dyn_param (20)
 c veg_dyn_common of internal model results
 common /veg_dyn_outputs/ veg_dyn_output (200)

c for the spatial experiment (Problem 2):
c map input_data (1 ... 22)
c on the appropriate parameters and initial values of veg_dyn:

if (iget_exp_type () .eq. 1) then
veg_dyn_lon = input_data (1)
veg_dyn_lat = input_data (2)
do i = 3 , length_input_data

veg_dyn_param (i) = input_data (2+i)
enddo

SPRINT-S Version 2.11 Primer 62

else
c for experiment type Behavioural Analysis (Problem 1):
c map input_data (1 ... 2) on veg_dyn parameters 3 and 6

veg_dyn_param (3) = input_data (1)
veg_dyn_param (6) = input_data (2)

endif
 c run veg_dyn; within veg_dyn there exists the common
 c common /veg_dyn_meteo/ prec (3650) , temp (3650)
 c where meteorological data are used without changing it.

call veg_dyn
c store simulation results to output_data:

do i = 1 , length_output_data
output_data (i) = veg_dyn_output (i)

enddo
return
end

F.6 $SPRINTHOME/example

To address once again SPRINT-S management of data in connection with prepare,
simulation and spatial_transform, the directory $SPRINTHOME/example contains
another example for coupling a model to SPRINT-S. This example with the source
file example.f, generally speaking copies input data to output data, without
performing any user model. Additionally, appropriate EDFs are stored as
edf*.<experiment_type>. For more information see example.f. To run SPRINT-S with
this model, copy at least sprint.program to a directory with write access.

Appendix G
Differences for MOSES Models

For MOSES models (Wenzel et al., 1995) the following differences exist with respect
to all other models:

• prepare and simulation are provided by SPRINT-S for each model.

• In the absence of sprint.program the linker is performed automatically before

starting an experiment.

• EDF body line
<target_type> <adjustment_type> <target> { : <exp_spec_infos> }

with
<target_type> [P | S | T]

where
P for parameter
S for initial value

SPRINT-S Version 2.11 Primer 63

T for table

For <target_type> = T independently on the value of <adjustment_type>
<adjustment_type> = S is active. Then increments are table names.
The <target> item is case sensitive.

• To perform an experiment interactively, start

$SPRINTHOME/sprint.moses <#proc> <model> <ext> <edf> {<cmd>}

with
<#proc> number of processors to be used: ≥ 3

maximal number depends on the number
of available processors in parallel pool
$MP_RMPOOL (see Appendix D)

<edf> EDF with file extension <model>
<model> model name
<ext> model extension
<cmd> optional command file

• The following non-public subroutines and functions are additionally (see Appendix
I) used for that part of SPRINT-S which is to be linked to the MOSES model to be
performed:

iadr , iadsb3 , infno , ipos , istart , length_res_run , numb

• The following named common blocks are additionally (see Appendix I) used in
SPRINT-S for that part of SPRINT-S which is to be linked to the MOSES
simulation model to be performed:

ab , lun , no1

SPRINT-S Version 2.11 Primer 64

Appendix H
Derived Files

The following files are generated by SPRINT-S in the working directory from which
the simulation was started:

file name contents
sprint.program parallel simulation binary

to be linked by the user
sprint.scenario control file, derived from the EDF

For complex experiments this is the control file of the non-spatial
subexperiment

sprint.scenario_c only for complex experiments:
control file of the spatial subexperiment

sprint.input ASCII increment file for Behavioural and Spatial Analysis.
For the complex experiments this is the input file of the non-spatial
subexperiment

sprint.input_c only for complex experiments:
ASCII increment file of the spatial subexperiment

sprint.output direct access binary file of simulation results.
Each record contains the results of one simulation run

sprint.protocol preparation and simulation ASCII protocol file
of the experiment

sprint.loadl_* additional protocol files from the LoadLeveler for experiment submission to
the LoadLeveler

sprint.res ASCII output file after result processing
with $SPRINTHOME/sprint.resproc

sprint.brw ASCII output file after result browsing
with $SPRINTHOME/sprint.browse

sprint.tmp* auxiliary files,
only for $SPRINTSTATUS=YES

Tab. 13Derived files during an experiment

SPRINT-S Version 2.11 Primer 65

Appendix I
Subroutines, Functions, Common Blocks and Logical Unit
Numbers

I.1 Subroutines and Functions Used

The following SPRINT-S subroutines and functions are available to users (see
Appendix A):

broadcast , iget_exp_type , put_length_derived_data , put_length_output_data ,
stochastic , synchro

The following non-public subroutines and functions are used for that part of SPRINT-
S which is to be linked to the simulation model to be performed:

acc , allocate , b_blank , b_copy , b_zero , c_copy , check , complex_exp , c_opt ,
char1 , cumul , deallocate , default_value , distr_* , filesize , icomp, i_copy ,
i_deco , i_enco , iget_ele , igetarg , iget_inp_data , incr_adjust_* , incr_field , i_opt
, iput_res_data , i_read , i_zero , kill_blank , lencha , low_case , mp_* ,
random_init , random_number , readreal , r_copy , r_deco , r_enco , r_opt ,
r_read , r_zero , scen_simu , scenario , send_input , sleep , sprint_work , sprint
(main program) , status , t , task_simu_* , spatial_transform (dummy module) ,
veri

I.2 Common Blocks Used

The following named common blocks are used in SPRINT-S for that part of SPRINT-
S which is to be linked to the simulation model to be performed:

decoenco , ein , equiv , exp_descr1 , exp_descr2 , pointers , sprint1 , sprint2 , ... ,
sprint9 , sprint10

I.3 Logical Unit Numbers Used

The logical unit numbers (LUNS) 100 to 105 are used for file input and output for
that part of SPRINT-S which is to be linked to the simulation model to be performed.

