
KIP

FOR

POTSDAM INSTITUTE

CLIMATE IMPACT RESEARCH (PIK)

PIK  Report

No. 108No. 108

Till Sterzel

CORRELATION ANALYSIS
OF CLIMATE VARIABLES
AND WHEAT YIELD DATA

ON VARIOUS AGGREGATION LEVELS
IN GERMANY AND THE EU-15

USING GIS AND STATISTICAL METHODS, 
WITH A FOCUS ON HEAT WAVE YEARS



Herausgeber:
Prof. Dr. F.-W. Gerstengarbe

Technische Ausführung:
U. Werner

POTSDAM-INSTITUT
FÜR KLIMAFOLGENFORSCHUNG
Telegrafenberg
Postfach 60 12 03, 14412 Potsdam
GERMANY
Tel.: +49 (331) 288-2500
Fax: +49 (331) 288-2600
E-mail-Adresse:pik@pik-potsdam.de

Diploma thesis submitted to the Department of Geography,
Humboldt University Berlin, in November 2004

Author:
Dipl. Geogr. Till Sterzel
Potsdam Institute for Climate Impact Research
P.O. Box 60 12 03, D-14412 Potsdam, Germany
Phone: +49-331-288-2676
Fax: +49-331-288-2600
E-mail: sterzel@pik-potsdam.de

POTSDAM, JULI 2007ISSN 1436-0179



 3

Abstract and Factsheet 
Crop yields are sensitive to climate variability. They also respond to inter-annual 

weather variability in essentially every phase of the vegetation period. Inter-annual 

dependencies are evident in oscillating wheat yield figures, yet have not been given 

the attention expected. How inter-annual wheat yield variability is affected by weather 

needs clarification, especially in the light of human induced climate change and 

increasingly intense and likely heat waves in Europe. 

 

This study applies geostatistical methods and GIS (geographic information systems) 

to analyze spatial and temporal variability of wheat on three aggregation levels in 

Europe (EU-15, German states level, and county level in one German state). Daily 

homogenized weather data and annual statistical data on wheat yields were 

analyzed for these purposes. 

 

Residuals are separated from long term yield trends with an extensively validated 

method and represent the base values for weather induced, short term inter-annual 

variations. They are correlated with selected climate variables in multiple regression 

models for qualitative and quantitative analyses of yields’ weather sensitivity. 

 

The main focuses are 

 

• to what extent inter-annual wheat yield variability can be explained by weather 

influences, and further, by selected meteorological parameters, and how 

sensitive they are to them. Heat wave years are given particular attention. 

• an extensive analysis of effects of the 2003 heat wave in Europe on wheat 

and winter wheat yields. 

• modeling wheat yields with multiple linear regression using yield anomalies as 

estimates for weather induced yield variations. 

• the analysis of results with GIS and statistical methods, applied also to 

analyze spatial-temporal variability and to address transitional scaling effects 

between the aggregation levels in question. 

 

The study produced the following results. 
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• Estimates of inter-annual yield variability through multiple linear regression of 

monthly climate variables are achieved with moderate to good explanations of 

variance, varying by the scale applied. R2 are comparable to similar studies 

performed in the past. 

• Regions with linear trends in increasing yield figures are distinguished from 

ones with break points in the trend. Possible explanations are discussed. 

• Absolute anomalies show an increasing trend, relative anomalies show a 

decreasing trend. 

• Quantitative and qualitative analysis of wheat yield anomalies provide 

evidence for record yield collapses and identify “winners” and “losers” of the 

2003 heat wave. Results can contribute to outlining future yield patterns in the 

light of a predicted increase of such heat wave events. 

• Geostatistical and spatial analyses showed that marked homogeneous 

negative anomalies corresponded with the core extent of the stationary high 

pressure zone over Germany, France, and Austria. Countries north of the high 

pressure core recorded small negative to record high anomalies. 

• In 8 selected heat wave years impact assessment of weather on crop yields 

showed that such events do not essentially lead to yield loss. This 

necessitates further studies of weather impact with high resolution data. 

• Explorative results from simulating yield anomaly trends with climate scenario 

data indicate steady to markedly declining anomalies into the mid 21st century. 

• Comparative studies of methods evaluating agronomic years illustrate how 

sensitive results are to the reference units selected. 

 

Subsequent studies are recommended to incorporate 

 

• high resolution climate data and phenological information of plant 

development phases into modeling wheat yield variability with inter-annual 

variations as well as applying wheat growth models 

• more complex climate variables such as drought indices in using yield 

anomalies as estimates for weather induced variations to improve estimates 

and shed light on the effects of increasingly intense and likely heat waves. 
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1  Introduction1 
How crop yield variability is related to climate and weather has been a question of 

vital interest to humans for millennia. Its discussion in scientific terms has been 

promoted by meteorologists, climatologists, geographers, and agroeconomists for 

centuries. Statistical methods are often applied for studying such relationships. 

The weather during a crop’s life span influences crop growth and yields, which show 

varying sensitivity to both climatological means and inter-annual weather variability 

(BAUMANN AND WEBER, 1966; BEINHAUER, 1977; CHMIELEWSKI AND POTTS, 1995; 

MEARNS et al., 2002; ASSENG et al., 2004). It directly affects phenology, 

photosynthesis, and other physiological processes. Indirect impacts include nutrient 

availability, weeds, pests and diseases, and machinability (HOOKER, 1922; SWANSON 

1979; SOUTHWORTH, 2002). BAUMANN AND WEBER (1996) concluded from their 

investigations in weather differences between favorable and unfavorable years for 

crop yields that every episode of the vegetation period can more or less influence 

crop yields. 

To what extent crop yields represent a measure of sensitivity to inter-annual 

meteorological variations has not yet been fully discerned. The main objective in this 

study is to shed light on this issue. The hypothesis states that the long-term trend in 

yield series is driven by technical and seed quality advancement, and can be 

approximated by single or bilinear regression fits. In temporal and statistical contrast 

thereof, the short-term inter-annual yield variations can be explained to an extent by 

meteorologically induced factors, or weather variation, to which crops are sensitive. If 

the influence of these factors is quantified and subtracted from the yield series, the 

residuals represent the remaining influence of other factors.  

Qualitative and quantitative model analyses are conducted to determine crop yield 

sensitivity to inter-annual meteorological variations. Statistical, predominantly multiple 

regression analyses, and GIS (Geographic Information System) methods are applied. 

The study hereby focuses on influence of weather on yields through qualitative and 

quantitative model analysis. Explaining the biological implications of crop 

development directly and indirectly influenced by weather, however, is not a goal 

here. 

                                            
1 To a large extent this PIK Report is based on a diploma thesis written at PIK and submitted to the 

Humboldt-University Berlin in November 2004. 
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Results are of interest to vulnerability assessments in climate impact research, 

especially in the light of findings that indicate increased and increasing likelihood of 

extreme weather events like the heat wave summer in 2003 in the course of climate 

change (SENERIVATNE et al., 2002; BENISTON, 2003; SCHÄR, 2004), as well as current 

studies predicting shifts in weather patterns, including increases in mean temperature 

and variability in central Europe throughout the 21st century (IPCC A AND B, 2001; 

SCHÄR, 2004). The response of crop yield anomalies to this particular heat wave 

event in 2003 is analyzed on all selected areas of interest, which include all former 15 

European Union countries (hereafter EU-15), selected German federal states, and all 

counties in the German federal state of Baden-Württemberg. Furthermore, the study 

of winter wheat yields’ sensitivity to selected climate variables in past heat wave 

events in Germany will help to evaluate better how strongly anomalies are driven by 

such events. 

Simulations determining wheat sensitivity to increasing climate variability (MEARNS, 

1992; SOUTHWORTH, 2002; ASSENG, 2004) suggest closing with conclusively 

simulating winter wheat anomaly variability on the grounds of selected data series 

and climate scenario data. This research can contribute to showing how crop yield 

anomalies respond to climate scenario data. 

In an early study done by HOOKER (1922), weekly meteorological parameters 

returned significant correlation coefficients for crops in British counties even into the 

year before harvest. The 8 week time periods for independent variables took into 

account the varying times of sowing, flowering, and harvesting. More complex 

statistical analyses have been conducted since, taking more independent variables 

into the equation and delivering better explanatory qualities for yield figures. 

Statistical modeling of weather impact on inter-annual oat yield variability for a test 

station by means of multiple linear regression analysis showed largely varying 

degrees of correlation, depending on the variables themselves and their temporal 

resolution (BAUMANN & WEBER, 1996). The authors opted for time increments that 

varied depending on the predictor and season for adjusting the variables to shifting 

plant growth and phenological phases. CHMIELEWSKI and POTTS (1995) also selected 

a test station for similar analyses, but focused on the impact of long-term climate 

change on crop yields. The latter 2 studies assert inter-annual and climatic influences 

on yields through multiple regression analysis, a method also used by ALEXANDROV & 

HOOGENBOOM (2001). A combination of quarterlies and months was chosen by SUPIT 
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(1997) for focusing on the climatic seasonal variations and trends. On yet another 

spatial and temporal scale, positive significant correlations were determined between 

the sea surface temperature anomalies induced by climate phenomena El Niño and 

La Niña and wheat yields in the U.S. corn belt (PHILLIPS et al., 1999). Thus, research 

on both long-term climate change and inter-annual weather variability affecting crop 

yields has been conducted on various scales of interest. The core message of these 

findings are variations in studies published so far concerning (1) influencing factors 

on selected crop yields, (2) their temporal resolution for determining to what extent 

yield variability can be explained by other sources, (3) crops, and (4) the 

geographical scale of interest. How these topics are dealt with is established in the 

subsequent paragraphs. 

Analysis of long-term yield changes for wheat, maize and rice in 188 countries over 

the past 40 years have revealed four main trends, with a one showing a prevalence 

of linear growth in Europe (HAFNER, 2003). However, limits to globally observed 

patterns of increasing yields are becoming evident in long-term wheat data series 

(CALDERINI AND SLAFER, 1998).  

The primary factor for linear yield increase is associated with a long-term technical 

advancement trend, which comprises three components: (1) biological and chemical; 

(2) mechanical; and (3) management advancement (SWANSON et al, 1979). Table 1 

illustrates what each component is broken down into. Long-term trend drivers are 

subtracted from actual yields, isolating annual absolute anomalies in order to 

determine their sensitivity to inter-annual weather variability. The trend is factored out 

by subtracting the best linear regression fit line (PHILLIPS et al., 1999; SWANSON et al., 

1979). Annual yield anomalies indicating positive or negative deviations of detrended 

yields from the mean are obtained by subtracting the intercept value. It is important to 

note that the weather influences remain implicitly embedded in detrended crop yield 

values. Monotone trends induced by climate change are factored out. A conceivable 

residual induced by climate change can remain embedded in the form of potential 

yield adjustments through changing El Nino Southern Oscillation (ENSO) and the 

North Atlantic Oscillation (NAO) amplitudes. 
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Table 1. Quantifiable and unquantifiable influences on crop yields. Derived from SWANSON et al. (1979) 

Influence Subtracted from crop yields Remains in crop yields 
  through linear detrending   
Biological and chemical New cultivar sorts Plagues 
  Herbicides Diseases 
  Insecticides Varying nutrient supply 
  Fertilizer Different crop type cultivation 
Mechanical Mechanical advancement   
  Equipment   
Management Field alternation   
  Field treatment   
Atmospheric Climate change  

    Weather variation 
    Extreme weather events 

 

Parasitic infestation, diseases, varying nutrient supply, different cultivar types all have 

direct or indirect influence on crop yields. If these factors were quantifiable as well, 

they could also be systematically ruled out of crop yields. 

Yield sensitivity to basic meteorological variables (temperature means, temperature 

sums, and precipitation sums) has been studied extensively through regression 

analyses (HOOKER, 1922; BAUMANN 1966; SWANSON, 1979; CHMIELEWKSI, 1995; 

ALEXANDROV, 2001; SOYA, 2003). But solely focusing on these simple parameters and 

calculations may discount dependencies on other meteorological parameters or 

indices derived from them. For instance, the effect of monthly precipitation sums on 

crops strongly depends on temperature, potential evapotranspiration, and sunshine 

duration.  

In this study, the weather influence on crop yields is modeled with monthly 

meteorological parameters and further indices. These independent variables are 

summarized as monthly climate variables, or predictors, when appropriate. Yield 

anomalies inter alia containing the fraction of yield apportioned to inter-annual 

weather variation represent the dependent variable. Crop yield sensitivity to inter-

annual weather variation is determined in multiple regression analyses. Sensitivity 

analysis is measured with 6 relatively simple monthly climate variables with evident 

connections to crop development. One of this study’s objectives is to test them and 

draw conclusions about applying the methodology to more complex parameters, 

different temporal resolutions of climate variables and control variables. Here, tons 

per hectare [t ha-1] is the standard unit for crop yields and yield anomalies because it 
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is weighted to a unified area and enables comparability among regions of different 

size, as opposed to total production or seed bulk measurements. 

It is useful to briefly summarize pivotal facts on wheat and winter wheat, the crops 

selected for sensitivity and variability analysis. Winter wheat Triticum aestivum L. is a 

cereal crop that is planted in autumn and is cultivated throughout the study areas. 

The highly adaptable crop responds to warmer temperatures with reduced crop and 

grain growth duration (SOUTHWORTH et al., 2002). Lower yields are then expected in 

regions where conditions are otherwise optimal. Tolerated temperatures under which 

wheat is grown range between -40 and +40°C (WITTWER, 1995). Planting season is in 

the fall, germination begins before winter. Snow covers are endured. Quick growth 

sets in prior to summer heat (WITTWER, 1995). In Germany, winter wheat is sowed 

between mid September and the beginning of November, and harvested in August 

(AGRARIAN PUBLISHING UNION, 1982). Crop yields are referred to as yields hereafter, 

unless it is useful to append the reference to crops in general or to a specific crop. 

Studies are performed on different spatial scales for analyzing yield data with 

statistical and GIS methods. The 3 scales are each represented by units on the same 

aggregation level: yield data appended to EU-15 countries (wheat, 1961-2003), the 

federal states of Germany (winter and summer wheat, cereals combined, 1951-

2003), and counties of the federal state Baden-Württemberg (winter wheat, 1970-

2003) was obtained, compiled, and analyzed. A single administrative unit within any 

level is referred to as a unit. Results and the spatial distribution thereof are compared 

within and among the 3 study areas. In the process of aggregation, the amount of 

territorial units and attribute data is continuously reduced by deriving larger objects 

according to higher administrative levels (BARTHELME, 2000; BILL & ZEHNER, 2001). 

Disaggregation is the opposite procedure. 

Table 2 indicates that unit numbers increase with each administrative step 

downward, whereas land area, average area per unit, and information generalization 

decreases (BARTHELME, 2000; BILL, 2001). Geodata and crop data was incorporated 

into the Geographic Information System Software ArcGIS 8.0 for data administration 

and analysis.  
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Table 2. Aggregation and area statistics of the study areas. The sum of units and average area for 
Germany refer to the 8 of total 16 federal states studied. 

Study area Area [km2] Territorial units of Sum of Average  
    interest units area (Area / Sum of units) [km2]

EU-15 3.242.614 Countries 15 216.174
Germany 246.978 Federal states 8 30.872
Baden-Württemberg 35.752 Counties 44 813
 

The purpose of using different aggregation levels is to respectively study the 

correlation of modeled yield anomalies and their sensitivity to inter-annual climate 

data on various scales and to draw conclusions for trend and scaling issues through 

comparing results within and among aggregation levels. Actual yield trends and the 

position of yield indices in the heat wave year of 2003 within them are extensively 

considered. Different impacts of this heat wave and contrasting model quality with 

different data resolution in the same spatial area are assumed. Hence the question 

arises: which aggregation level contains information as accurate as necessary and 

generalized as possible to adequately meet the stated problems? Results could shed 

light on favorable aggregation levels for anomaly modeling, as well as on up- and 

downscaling them to different aggregation levels. Since the study’s spatial scales 

coincide with one separate aggregation level each, they are addressed by the terms 

country, federal state, and county level. 
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2 Area of interest, methodology and data 

2.1 Study area 
Three areas segmented on different hierarchical aggregation levels are selected as 

study areas. The highest aggregation level is represented by EU-15 countries, 

Germany is investigated on the disaggregated level of 8 western German federal 

states (hereafter the federal states refers to the following: Bavaria, Baden-

Württemberg, Hesse, North Rhine-Westphalia, Lower Saxony, Rhineland-Palatinate, 

Saarland, and Schleswig-Holstein, unless noted otherwise). The city-states Berlin, 

Bremen and Hamburg inconsistently produce negligible crop amounts and thus have 

been excluded. The 44 counties composing the federal state of Baden-Württemberg 

in southwestern Germany comprise the lowest aggregation level. Conclusively, the 

different aggregation levels and their chosen spatial extents represent different 

spatial scales. Administrative territorial units serve as mergers of agricultural and 

statistical data. 

 

2.2 Data – spatial allocation, acquisition and condition 

2.2.1 Yield data 

2.2.1.1 EU-15, countries 
Country specific wheat yield data from 1961-2003 (annual values) was extracted from 

the Food and Agricultural Organization of the United Nations (FAO) Database 

FAOSTAT. These yields represent the harvested production per unit of harvested 

area, and in most cases this yield data was obtained by dividing the crop production 

by the area harvested, not sown (FAOSTAT statistical unit). 

The figures were converted into tons per hectare [t ha-1]. The pertinent geodata 

representing the spatial equivalent to the level 0 of the Nomenclature of Units for 

Territorial Statistics (NUTS) was available at PIK. NUTS was developed to unify the 

various administrative unit levels throughout the EU-15 to 3 aggregation levels 

(EUROPEAN COMMISSION, 2003). 

2.2.1.2 Germany, federal states 
Annual yield data from 1951-2003 for spring wheat, winter wheat, wheat combined 

(also including spelt, durum wheat) and cereals combined  were acquired for German 

federal states and for total Germany from the German Federal Statistical Office 
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DESTATIS. The larger portion was only available in print and had to be scanned and 

text recognized. New digitized figures were verified extensively. Only data from the 

former West German States was available for this time frame. The decision to omit 

the 5 eastern German states (comprising the area of former East Germany) from 

trend and multiple regression analysis was forced by their short data series, starting 

in 1990. Although the data was available on county levels in print, it was reluctantly 

turned down due to time restrictions because: (1) the time consuming process of 

digitizing the large number of series; and (2) the counties within this area were 

constitutively regrouped to different boundaries after the reunification in 1990, 

meaning that a database for calculating yields would have been necessary.  

2.2.1.3 Baden-Württemberg, counties 
A dataset provided by the Institute for Agropolitical Market Research IAP (1996) in 

Bonn, Germany contained yield values for winter wheat on a county basis from 1970 

or 1973 to 1999 for 39 out of 44 counties. I chose not to reduce the longer series to a 

start in 1973. This was dismissed as unnecessary because the models of each 

county are not applied to another. Inconsistent yield data for other crops confined the 

crops analyzed on a county level to winter wheat. The study covered all of Baden-

Württemberg, excluding five city counties with inconsistent yield data.  

Each county series was supplemented with yield data up to 2003 through the online 

source of the State Bureau of Statistics, Baden-Württemberg (Aug. 2004), which 

enabled a comprehensive analysis of the heat wave in 2003. Extending the data 

series had no effect on regression modeling since appropriate homogenized climatic 

data was available only up to December 2000. The IAP dataset takes various county 

border reforms in the past decades into consideration. 

2.2.2 Climate data 

2.2.2.1 Temporal resolution of climate data and climate variables 
A database of climate stations that contain homogenized daily values for computing 

the 6 climate variables in question was at my disposal at PIK. The temporal 

resolution of the variables had to be generalized to a scale on which they could be 

used as predictors of yields. A monthly temporal resolution as chosen by 

CHMIELEWSKI (1995) is selected for indices because it sufficiently reflects the general 

course of weather in Germany. Monthly values avoided an excessive number of 

variables and posed a resolution adequate for generalizing climate data without 
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factoring out heat wave events. Multiple regression results pertain to fixed time 

periods instead of phenological phases. Daily and weekly variability was generalized 

to monthly data. This does not filter out weather information and phases critical to 

crop development (FRANKE, 1992). All selected climate stations providing climate 

data for sensitivity and heat wave analyses are listed in the annex (7.1). 

2.2.2.2 Homogenized climate data 
Daily values of data series homogenized at PIK were condensed to monthly values 

for the selected climate stations in the federal states and the counties of interest in 

Baden-Württemberg. In the latter case, precipitation stations were added if no climate 

station within a unit met the criteria. Daily values of meteorological parameters 

besides precipitation had been interpolated beforehand. Homogenizing included 

eliminating apparent measurement errors, and complementing missing values. The 

methodology of homogenizing and updating these climate datasets is explained by 

Österle (2003). Altogether, I exclusively used homogenized series, from 1951-1998 

on the aggregation level of federal states, and from 1970-2000 for counties in Baden-

Württemberg.  

2.2.2.3 Climate scenario data 
Daily scenario weather data from January 1st, 2001– December 31st, 2055 computed 

at PIK is used to model yield anomalies for selected counties in Baden-Württemberg. 

A moderate temperature increase of 1.2-1.4 K had been impressed on to the local 

measurements, and other meteorological parameters were consistently adjusted by a 

specialized statistical downscaling method (WERNER & GERSTENGARBE, 1997; MENZEL 

et al., 2003). 

2.2.3 Selected crops 
Crops investigated for long-term trends and heat wave 2003 analysis included spring 

wheat, winter wheat, wheat combined (also including spelt, durum wheat) and 

cereals combined. I chose winter wheat anomalies as the dependent variable for 

multiple regression and sensitivity analysis on the two aggregation levels of Germany 

and Baden-Württemberg for various reasons: (1) winter wheat ranks as the wheat 

crop with the largest harvested area, highest total production and amount of yields at 

the levels the analyses were conducted on; (2) its data consistency was the highest 

among available cereals; (3) it is cultivated throughout all comprised territorial units; 

and (4) the life cycle reaches into the year before harvest, enabling the study of 
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weather impact on yields over a year prior to harvest. This is advantageous for 

determining if statistical connections exist between weather before sowing begins 

and actual yield figures. This notion stresses that the focus here is on statistical 

correlations rather than physiological causes.  

 

2.3 Yields – the measure of choice 
Studies are performed on annual values of actual, expected yields and yield 

anomalies in t ha-1. Relative yield anomalies are expressed in percent [%]. The 

advantage of the yield unit lies in its measurement of production per fixed area size, 

enabling comparisons among all aggregation levels and units. Long-term technically 

induced trends or short-term inter-annual weather variability influence would be 

distorted in other measurement methods. The overall production in tons per 

administrative unit, another commonly used measure, is dependent inter alia on the 

extent of the units’ area and is not a measure for comparing among areas. This also 

applies to the measure of area harvested. In theory, either the area planted or area 

harvested could be implemented as the measure. 

The difference between results and the danger of evident misinterpretation can be 

made clear through crops affected by severe drought periods or areas affected by 

major storms. In such cases, differentiating between sowed areas and the much 

smaller area actually harvested due to crop damage is crucial to comparing the yield 

values. Results would be substantially higher in the latter calculation. 

 

2.4 Heat wave analysis 
Winter wheat anomalies in 2003 were studied on the federal state level and county 

level, wheat was studied on the EU-15 country aggregation level.  

Calculating absolute and relative anomalies, standard deviations, and a measure for 

determining how intense the deviations were allowed extensive analysis of how to 

interpret yields in 2003 in the light of the complete time series. The latter is achieved 

by dividing the absolute anomaly by the standard deviation. Rankings of both 

absolute and relative anomalies in each pertinent administrative unit provide further 

means for evaluating the significance of the extreme weather event. In order to 

address the spatial differences on all aggregation levels, all results are generated 

into maps with GIS. Results emphasize the necessity of taking the issues of yield 
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data generalization and scaling into consideration, as indicated by SCHULZE (2000). 

Replacing Single linear with bilinear fits to long-term crop series on the EU-15 level 

show the importance of adjusting trend fits lines to each country, as results of the two 

fits lead to markedly diverging conclusions. Tables including the calculated statistical 

parameters identify the administrative units on each aggregation scale that were 

affected or benefited most. This helps classifying the units and determine the impact 

on each unit and level. 

Further heat wave years in Germany were derived using a temperature driven criteria 

catalogue of statistical parameters for 5 climate stations. They were selected to 

outline an area encompassing most of Germany and can be viewed in the annex 

(7.1). The climate stations were originally selected and maintained on the grounds of 

their long-term data series spanning the 20th century for verifying studies performed 

by BENISTON (2003) in this time series. The author had analyzed positive temperature 

records in the past century for comparative figures to the heat wave summer of 2003. 

A year was considered a heat wave year if an average 15 or more summer days 

exceeded the 90th percentile of the climate stations’ mean summer maximum 

temperatures in June, July and August. Results were compared to the years with the 

highest average number of days of persistent threshold exceedance, meaning 

consecutive days with temperature maxima over the 90th percentile. The use of 

percentiles in the upper extreme of the probability density function as temperature 

thresholds is relevant for identifying heat waves and assures independence among 

station means. The 90th percentile was defined as the upper extreme of temperature 

by IPCC (2001, A).  

 

2.5 Technical advancement: Long-term linear trend analysis 
Long-term trend drivers were subtracted from actual yields for determining annual 

absolute anomaly sensitivity to inter-annual weather variability. 

2.5.1 Model for linear fit 
According to SWANSON (1979), a single linear fit is sufficient for its accurate 

description, even if no modifications to macroeconomical regulations are taken into 

account. As Badeck (2004) and HAFNER (2003) have found, these can be indicated 

by modeling multilinear fits that further reduce the sum of squared residuals. In both 

cases, technological advancement is assumed to be a constant. My test runs and 
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more accurate fits to eastern European countries showed that linear fit lines also 

suggest distinct response to politically driven reorientation of the agroeconomical 

sector after 1990. The detrending model was applied to all yield series on each 

aggregation level. 

The best linear fit line is calculated through linear regression and represents 

expected annual yields. The technologically induced trend was then removed by a 

method extensively applied and validated (SWANSON & NYANKORI, 1979; PHILLIPS et 

al., 1999; ALEXANDROV & HOOGENBOOM, 2001), according to the following equation: 
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where dY = detrended yield; aY = actual yield; b = slope in tons pre hectare and year [t 

ha-1 y-1] of linear trend; and n = number of year (first year in data range = 1). 

Statistical analyses have indicated that tested nonlinear approximations of yield 

increase do not improve linear trend equations. This remains the case when the 

effect of weather is integrated (SWANSON, 1979). Generally, detrended values were 

obtained by subtracting the product of slope and number of year in the series. 

Subtracting the intercept value from these figures resulted in the series’ anomalies. If 

not noted otherwise, (detrended) absolute anomalies are referred to as anomalies. 

Expected yields are yields indicated by the linear fit lines. Relative anomalies are 

obtained by calculating the percent of deviation from actual to expected yields. 

2.5.2 Bilinear Trends 
In a study on changes in yields and yield residuals in wheat during the 21st century, 

CALDERINI AND SLAFER (1998) observed breaking points in steady and sloped yield 

gains in some European countries within the past 10-20 years. Yields stagnated or 

even decreased after these points. The question arises if these findings can be 

verified in this study or even expanded to other countries.  

2.5.3 Model for bilinear fit 
A model was developed for minimizing the yield residuals (differences of annual and 

expected yields) by applying a bilinear regression model to each dataset to determine 

if the bilinear trend reduced single linear fit residuals. The fit which produced the 

lowest residuals was selected. Coefficients of determination and residual analyses of 

squared deviation sums served as criterions for considering an improved model. The 
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model determined the best fit for the year of a breaking point and a successive 

second linear fit to the yield series. The slope and intercept of the original single 

linear fit were adjusted accordingly. If (1) the coefficient of determination undercut 

that of the monolinear fit, thus decreasing the squared sum of residuals and (2) the 

supplementary trend contained a statistically maintainable series of years, the 

bilinear model was accepted. Two slope values, the intercept and the year in which 

the two linear fits converge were established iteratively by the model. The linear 

regression equation with one slope was applied to years preceding the modeled 

breaking point year. Otherwise, the sum of both equations was calculated (or 

difference, depending on the second slope). 

 

2.6 Anomalies 
Deviations from expected yields are calculated through 2 methods. In both cases, the 

linear fit, i.e. expected yield values, represent the null value. However, while the 

absolute values deviate from 0 t ha-1 of detrended yields, the relative anomalies are 

calculated in relation to expected yields. A standardized anomaly index became 

necessary to estimate the deviation of yields in heat wave years from the unit specific 

standard deviation in the time series. Hereafter, the term yield indices is applied 

when useful to refer to all 3 anomaly modes. Figures that pertain to modulated 

anomalies are explicitly indicated as such and must not be confused with absolute 

anomalies, which are discussed in the following. 

2.6.1 Absolute anomalies 
In order to determine the tendency and intensity of annual yield anomalies, the 

intercept of the regression equation is subtracted from each detrended yield series, 

thus rendering the deviating value from the expected yields without the long-term 

technical trend influence. Thus, the x-axis then represents the linear trend line. 

Resulting annual residuals of actual yields signify the dependent variables in multiple 

regression analysis for determining the influence of inter-annual weather variation. If 

not indicated otherwise, anomalies refer to (detrended) absolute anomalies [t ha-1]. 

The focus is on absolute anomalies as yield indices, so in addition, detrended figures 

refer to them if not indicated otherwise. They are calculated from detrended values: 
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where aA = (absolute) anomaly; dY = detrended value; and c = intercept of linear 

regression fit. 

2.6.2 Relative anomalies 
Comparing yield anomalies among different plants and areas with diverging climatic 

conditions made a relative measure necessary. Relative anomaly values are 

supplemented by calculating the percentage the actual yields deviate from the 

expected values. The expected values represent points on the linear trend line. 

Therefore, subtracting them from actual yields also leads to detrended values. 

Relative anomalies [%] are calculated according to the following equation: 
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where rA = relative anomaly; aY = actual yield; and eY = expected yield on the linear fit 

line. Subtracting expected yields from actual yields leads to relative anomalies. 

2.6.3 Standardized anomaly index 
Standardized anomalies are predominantly applied for comparative reasons among 

large units. A unit’s absolute anomaly (A) in 2003 is divided by the standard deviation 

(S) of the anomaly series. This takes spatial differences among units into 

consideration that result in widely contrasting direct and indirect impacts on 

cultivating conditions. This is particularly important for analyses on the EU-15 level. 

Values standardized in this manner (hereafter simplified as AS [A S-1]) measure if 

and in how far annual figures are affected by an extreme weather event relative to 

the standard deviation of the time series. Those from +1.00 to -1.00 range within the 

standard deviation, those beyond are increasingly unlikely. 

2.6.4 Trend detection for anomaly modes 
It was assumed that the increasing yields evident in all units cause absolute 

anomalies to inflate over time, distorting the interpretation of seemingly more intense 

anomalies. Increasing relative anomalies can indicate changes in climate variability 

and mean values. To verify this, federal states datasets for 5 crops were analyzed. 

Different crops were used as opposed to one crop in various federal states to detect 

crop specific changes and to compare results. In order to detect trends in series, 



 28

linear trends were applied and plotted together with yield indices. The modulated 

values of both absolute and relative anomalies were calculated in order to determine 

if the assumed linear trends in time series exist. 

 

2.7 Inter-annual weather variability and yield sensitivity analysis  
Multiple linear regression models for yield anomalies and monthly climate variables 

were calculated from daily values for each unit composing the lower two aggregation 

levels Germany and Baden-Württemberg. The time series for the former ranged from 

1951-1998, and 1951-2000 for the latter. Programming was implemented in 

FORTRAN. 1 climate station per unit supplied the representative climate data. 1 

climate station was selected for each administrative unit to provide a representative 

dataset. Therefore, the climatological generalization on both levels varies and this 

was expected to be portrayed in the statistical results. 

2.7.1 Climate variables selected as predictors 
The objective was to apply spatially applicable, relatively simple monthly climate 

variables with consistent spatial and temporal data availability for studying yield 

sensitivity. The variables, a brief description, and the purpose for incorporating them 

are introduced in the following. Table 3 gives an overview of all variables considered. 

It is important to distinguish between the number of independent variables that are 

tested through criteria, selection methods, and thresholds (a total of 102 per model) 

and the number of independent variables a model is actually fit with (i.e. the number 

of variables actually accepted to a model, a maximum of 13 in this study). 

 
Table 3. Data series, temporal resolution and climate variables used as predictors for multiple 
regression analyses 

Aggregation Predictor Time Months Sum of monthly
Level   series   Variables 

Germany,  Temperature average       
federal states Precipitation sum 1951-1998 Jan.-Oct.,   
  deMartonne aridity index   harvest year 102 
Baden-Württemberg, Potential evapotranspiration   June-Dec.,   
counties Climatic water balance 1951-2000 sowing year   
  Temperature sum >= 5°C       
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2.7.1.1 Average temperature and monthly precipitation sum 
The purpose of studying yield sensitivity to temperature means or temperature sums 

(hereafter TS) and precipitation sums  (hereafter PS) as independent variables has 

been discussed in the introduction. 

2.7.1.2 5°C temperature sum 
Temperature sums above thresholds (hereafter WS) often give a better account of 

temperature conditions necessary for plant growth than averages do. The 5°C 

threshold was chosen because of the suppressed plant growth below this value 

(LESER, 1997). All daily temperatures >=5°C are added up to monthly sums. 

2.7.1.3 Potential evapotranspiration 
Evapotranspiration is the process of energy dissipation from radiation or heat. 

Potential evapotranspiration (hereafter PET) refers to the maximum amount possible 

under the given conditions and is always higher than or equals the actual 

evapotranspiration (DVWK, 1996; HÄCKEL, 1999). Calculating the actual 

evapotranspiration parameter poses major difficulties due to frequent lack of required 

data on soil, coverage, water content and high spatial and temporal variations in 

transpiration conditions (MÜLLER-WESTERMEIER, 2000; WEISCHET, 1997). PET was 

selected because: (1) as a hydrometeorological parameter comprising evaporation 

and transpiration, PET is of large importance in quantifying interactions between 

weather and cultivars; (2) it plays an important role in both water and energy balance 

models (DVWK, 1996; WEISCHET, 1997); and (3) it helps express wetness conditions 

and water stress to which cultivars are sensitive. Both directly affect yields as agro-

climatic constraints (GAEZ, 2004).  

I chose to implement the formula following Turc/Ivanov for calculating monthly PET 

values from numerous empirically developed methods. It takes global radiation, 

temperature, and relative humidity for dry areas into account, integrating 

meteorological parameters beyond temperature and precipitation.  

All necessary measurements for calculating monthly climate variables were available 

for the selected climate stations on a daily basis. This criterion was not met by the 

more comprehensive and accurate formula after Penman, which also includes wind 

parameters (HÖLTING, 1996; DVWK, 1996). Turc/Ivanovs’ approximation to its 

accuracy make the PET calculation selected a sufficient choice, although it produces 

results slightly lower than optimal in Germany. 
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2.7.1.4 Climatic water balance 
The climatic water balance (hereafter CWB) indicates the difference of precipitation 

and potential evapotranspiration in mm. A positive result is interpreted as the water 

amount that precipitation exceeds PET by and consequently can run off into adjacent 

areas or fill up soilwater storage. A negative result indicates the amount PET 

surpasses precipitation by and must be contributed to this location in order to 

equalize the water balance (MÜLLER-WESTERMEIER, 2000; HÄCKEL, 1999). Both C3 

and C4 crops react to water stress on plants, which is indicated by CWB. The annual 

cycle of CWB is conditioned by PET to a varying degree.  

2.7.1.5 De Martonne aridity index 
Precipitation must be coupled with other parameters to accurately address its effect 

on crops. This can be done with the empirically developed aridity index following de 

Martonne (hereafter DMI) in 1927. It provides a quantitative measure for the degree 

of aridity (MÜLLER-WESTERMEIER, 2000), and is defined as 
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where DMI = de Martonne Index ; PS = precipitation sum [mm]; and T = mean 

temperature of time of interest. Results not only depend on the given parameters but 

also on the time range applied for precipitation sums and temperature means. The 

aridity threshold is defined as i=20.  

The simple equation has its flaws: (1) the DMI assumes that the temperature alone 

sums up all the factors which evapotranspiration can be dependent on; (2) equating 

monthly with annual values does not lead to comparable results (WEISCHET, 1997). 

However, this simple aridity index shows scientifically applicable results when used in 

Germany and Baden-Württemberg (MÜLLER-WESTERMAYER, 2000). More importantly, 

it fits the approach of testing relations between a simple aridity index and yields, a 

purpose particularly evident in the light of the 2003 heat wave analysis.  

Annual courses of CWB and DMI as described by Müller-Westermeyer (2000) 

correspond to a large extent in Germany. High DMI values from November through 

March are matched by exclusively positive CWB values. Lower DMI values dominate 

during the rest of the year besides in the German Alps, where low to negative values 

are measured for CWB, respectively. 
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2.7.2 Sum and time range of predictors 
Climate variables were calculated for months from June of the sowing year to 

October in the year of harvest. This range corresponds with the average winter wheat 

life span, the crop of interest for multiple regression analysis in Germany (AGRIAN 

PUBLISHING UNION, 1982). Various factors influence crop physiology and growth at 

each development stage. November and December of the harvest year were 

excluded. Altogether, 102 monthly variables were tested for inclusion to each multiple 

regression model (6 climate variables* [ 7 months of previous year + 10 months of 

current year ] ).  

2.7.3 Climate station selection 
Representative climate stations from the German National Meteorological Service 

(Ger. Deutscher Wetterdienst, hereafter DWD) were selected for the administrative 

unit the yield series referred to. GIS methods, statistical methods and a criteria 

catalog were combined in an approach to distill one climate station for each German 

federal state and each county in Baden-Württemberg from over 600 available climate 

stations. 

Criteria for extracting a preselection from the PIK database DWD climate stations 

were chosen to guarantee only consistent, homogenized daily data series. First, 

climate stations were extracted from the database that contained (1) homogenized 

daily datasets of all climatic parameters required for calculating the monthly climate 

variables; and (2) consistent series starting before the available yield data series 

began. Precise maps of wheat production areas were not available, so alternatively 

only climate stations either within CORINE Landcover 1990 (CRC) class of non-

irrigated farmland or within 1 km buffers with a class coverage of at least 50% and 

below 800 m sustained exclusion. 

The final selection step was to separately correlate winter wheat yield series of 

counties containing the remaining climate stations with the yield series of the federal 

state they are located in. The climate station in the highest correlating county series 

was selected. This method was favored over an analysis of annual average yield 

deviations or long-term means for the following reasons: (1) correlating annual county 

and federal state yields does not consider the actual value proximity of the yields, but 

instead weight the tendency and annual differences of the respective crop; (2) the 

objective was to determine similarity to the inter-annual variations of the federal state 

series, regardless of the absolute levels of values, and not to absolute crop values. 
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Average deviations from annual value averages would not take this point into 

consideration, which is crucial for an expressive degree of representability. A ranking 

method was preferred to a correlation threshold in order to guarantee that all states 

were represented by 1 climate station. The implicit fragment of autocorrelation 

between a county and a federal state yield series was considered negligible and not 

excluded. 

Only precipitation stations with interpolated further climate data for calculating the 

selected variables passed the selection criteria for Saarland. The length of time 

series applied for correlation analyses differed between federal states, but was 

consistent between the federal state and counties. Correlation coefficients ranged 

from 0.96-0.99. 

This statistical selection procedure did not apply to climate station selection in 

counties in Baden-Württemberg (for county specific models), because the yield data 

on the further disaggregated level (Gemeinden, Ger. townships) was not available. 

Instead, the climate stations in the few counties containing more than one that 

matched the preceding criteria were compared. The climate station with the lowest 

altitude and the largest surrounding farm land coverage was accepted. Climate 

stations representing federal states and counties are listed in the annex (7.1). 

2.7.4 Programming 
The computation of monthly climate variables from daily values was programmed 

with FORTRAN 90, which enabled easy future use at PIK. Test runs and verification 

of script outputs were performed.  

2.7.5 Data preparation for sensitivity analysis 
The last step before modeling consisted in combining the dependent and 

independent variables into a format that enabled the highest compatibility and 

flexibility with the software chosen for statistical modeling (SPSS). Tables containing 

the associated statistical units’ yield anomalies (absolute and relative) and the 

meteorological predictors were produced for each unit in question. 

2.7.6 Multiple linear regression analysis 
How do winter wheat yield anomalies detracted from technical advancement trends 

cohere with monthly climate variables? I chose multiple linear regression modeling 

with SPSS as the constitutive method for studying this and yield sensitivity to inter-

annual meteorological variability because: (1) multiple regression analysis has 
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prevailed in studies of similar nature in statistically showing relationships between 

crop yields and weather (HOOKER, 1922; BAUMANN, 1966; CHMIELEWSKI, 1995; 

ALEXANDROV, 2001); (2) such models often form the basis estimating agricultural 

production under specific climatic circumstances (ALEXANDROV & HOOGENBOOM, 

2001); and (3) determining intensity of statistical connections between yield anomaly 

variability and weather parameters was prioritized over the causal explanation of 

annual yield anomalies. 

Models were conducted for federal states and for counties of Baden-Württemberg. 

The applicability of the chosen methodology was tested on two aggregation levels. 

Winter wheat represented the dependent variable. EU-15 countries were excluded 

from analysis on grounds of time constraints. 

Both the coefficient of determination R2 and the adjusted R2 were calculated for each 

model. I chose R2 values for further analysis for the following reasons: (1) the size of 

samples for each yield series was identical on a federal state level (55), and 

amounted to 34 or 31 on the county level, which was considered a negligible 

difference (6%); (2) the numbers of observations were high enough to dismiss the 

argument of suspect results; (3) model results were used exclusively for the 

aggregation unit they were devised for, with the exception of the Baden-Württemberg 

federal state model. 

2.7.6.1 Method for selecting predictors 
I chose forward selection, a stepwise variable selection procedure in SPSS, to 

sequentially enter the monthly climate variables into the model. This means that the 

model equation was blank to start with. All parameters entered had to meet the entry 

criterion of F=0.05 probability level (5% error level), and could not force an already 

entered parameter above the criterion. The parameter with the highest positive or 

negative coefficient was entered first, followed stepwise by the parameter with the 

highest partial correlation, until none more could pass the entry criterion (SPSS, 

2003). This iterative approach barred variables only negligibly contributing to the 

prediction of winter wheat anomalies, and was efficient when dealing with such a 

large number of predictors. It substantially narrowed down the number of accepted 

variables to a maximum of 9 on the federal state level (number of yield observations: 

54, 1950-2003) and 13 on the county level (number of yield observations: 34 or 31, 

1970-2003 and 1973-2003). 
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2.7.6.2 Model validation and sensitivity analysis through statistical parameters 
Resulting multiple regression model statistics served as bases for qualitative and 

quantitative model evaluation and sensitivity analysis of yield anomalies to the model 

predictors. Models were tested for each federal state using unhomogenized climate 

data in 1999 and 2000. Residual analysis validated yield results, indicating the model 

applicability for yield anomaly prediction. However, sensitivity analysis was the main 

purpose of modeling, not future anomaly prediction. R2 values stated how much of 

the total variance was explained, changes in R2 referred to each accepted variable’s 

contribution to explaining inter-annual yield anomaly variance. Pre-adjusted 

probability of F (error level in %) accounted to the confidence and probability of error. 

Regression coefficients assumed an important role in analyzing the sensitivity of 

winter wheat anomalies. Parameter constellations revealed if and in what manner 

anomalies change with each accepted monthly climate variable. Non standardized B 

coefficients (regression coefficients) and their standard errors gave qualitative insight 

into the goodness of coefficient estimation. Furthermore, they were used to in 

regression equations for calculating the modeled yield anomalies for each 

administrative unit. Standardized ß coefficients (standardized regression coefficients,  

hereafter ß values) represented the measure of actual sensitivity by indicating how 

the dependent variable (yield anomaly) changes if the standardized monthly climate 

variable in question changes by 1. ß values represented the pivotal coefficient for 

sensitivity analysis. The absolute values indicate the variables’ relative importance for 

predicting the anomaly. This provided further insight into how yield anomalies 

correspond to monthly values of the predictors. Combining equations of the technical 

advancement regression and the multiple regression model enabled me to account 

for the total explained variance of the actual data series. Residuals were calculated in 

order to quantify the fraction of the yield anomalies associated with yield influencing 

factors beyond technical advancement and inter-annual weather variability. 

2.7.7 Simulating anomalies with climate scenario data 
Simulating winter wheat anomaly variability with selected county data series and 

climate scenario data allowed me to detect changes in (1) overall inter-annual 

variability and (2) frequency of extreme anomaly peaks or dips. Trends were 

determined for these reasons. Only models with a high goodness of fit were taken 

into consideration. Anomalies were simulated from 2001-2055 for five county models 

in Baden-Württemberg with R2 values among the highest (over 0.75). 
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Table 4 comprises the studies performed on each aggregation level and can serve as 

a look-up reference when necessary. 

 
Table 4. Overview of studies performed on each aggregation level. Shaded boxes indicate studies 
missing on this level. 

Area of interest   EU-15, Germany, federal states Baden-Württemberg, 
Studies   countries   counties 
Heat wave 2003 analysis Time series 2003 2003 2003 
  Crops wheat, maize winter wheat, spring wheat, winter wheat 
      all cereals, all wheat   

Long-term trend analysis Time series 1961-2003 1950-2003 
1970-2003, only on 
selected county 

with detrended anomalies Crops wheat, maize winter wheat winter wheat 
Inter-annual variation and Time series   1951-2003 1970-2003 
Sensitivity analysis         
with yield anomaly models Crops   winter wheat winter wheat 
Simulated yield anomalies Time series     2001-2055 
with climate scenario data Crops     winter wheat 

 

2.7.8 Mapping qualitative and quantitative results of models 
Dominating parameter constellations in models were visualized on both aggregation 

levels with GIS, and their spatial distribution was evinced. This helped detect regional 

accumulations of the highest correlating variables and differences between 

aggregation levels and administrative units therein. Quantitative analysis results were 

mapped for the same purpose. 

Models derived from applying the federal state model of Baden-Württemberg to each 

county, and county specific models were extensively compared. Conclusions were 

drawn for issues addressing scaling and generalization problems. 

 

2.8 GIS implementation and scaling 
Focusing on a single scale can obscure important processes that only become 

obvious at either a finer or broader scale (SCHULZE, 2000). GIS is applied here to 

represent the static spatial state, and partly changes of study results. Results of heat 

wave analyses, model results, and sensitivity analyses were visualized. Generally, all 

results applicable to the administrative units were integrated into a GIS to ascertain 

their spatial patterns and distributions. It must be emphasized here that data from 

representative single points (climate stations) was extrapolated to sometimes large 

administrative units (federal states), contrasting systematically aggregated yield data. 
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3 Results 

3.1 Linear trend fit lines of yield series 
Single and bilinear fit lines were determined for wheat yields in each unit on both the 

EU-15 and German federal states level in order to provide a basis for detrending. 

Table 5 allows direct comparison of linear fit lines among the same crop type 

between the aggregation levels of EU-15 countries and German federal states. It is 

important to take the following into account: (1) total EU-15 yields were directly 

extracted from the FAO database and then processed, and do not represent an 

average for EU-15 countries, unless indicated otherwise; (2) figures for Belgium and 

Luxemburg are combined throughout the study; (3) the length of time series differ 

between aggregation levels; (4) figures highlighted green or red in tables indicate the 

highest or lowest value in the category. This visual aid for tables is maintained 

throughout the study. 
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Table 5. Single and bilinear equations and R2 values of linear fit lines to long-term wheat yield series in 
German federal states (1950-2003) and EU-15 countries, and the total EU-15 (1961-2003). x is the 
number of the year in question (first year in series = 0, last year in series from 1950-2003 is 54, last 
year in 1961-2003 series is 43). If the difference between the actual year in question (y) and the 
breaking point year is >=0, the difference is multiplied with the second slope for EU-15 countries with 
bilinear fit lines. Furthermore, the increase of R2 with bilinear fits is indicated. The averages refers to 
all units on that particular aggregation level. 

Aggregation Aggregation Linear R2 Bilinear R2

 Level  unit  equation    Increase 
Baden-Württemberg 0.089x+2.1114 0.92   
Bavaria 0.0942x+2.081 0.91   
Hesse 0.0982x+2.2651 0.93   
Lower Saxony 0.1118x+2.2745 0.92   
North Rhine-Westphalia 0.121x+1.9814 0.92   
Rhineland-Palatinate 0.0837x+2.2922 0.91   
Saarland 0.0893x+1.6123 0.93   
Schleswig-Holstein 0.1289x+2.2909 0.93   

G
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m
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l s

ta
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Average   0.92   
Austria 2.46+0.09(y-1961)-0.11(max [ 0;y-1990 ] ) 0.87 0.07 
Belgium and Luxemburg 0.1189x+3.1098 0.87   
Denmark 0.0924x+3.7764 0.87   
Finland 1.74+0.05(y-1961)-0.12(max [ 0;y-1995 ] ) 0.61 0.05 
France 0.1144x+2.662 0.92   
Germany 0.1093x+2.8955 0.93   
Greece 1.29+0.07(y-1961)-0.09(max [ 0;y-1980 ] ) 0.68 0.32 
Ireland 0.1551x+2.6304 0.92   
Italy 1.95+0.04(y-1961)-0.08(max [ 0;y-1994 ] ) 0.80 0.08 
Netherlands 0.1218x+3.8022 0.89   
Portugal 0.74+0.03(y-1961)-0.05(max [ 0;y-1991 ] ) 0.46 0.12 
Spain 0.86+0.05(y-1961)-0.03(max [ 0;y-1988 ] ) 0.75 0.02 
Sweden 0.0759x+3.2567 0.81   
United Kingdom 3.30+0.12(y-1961)-0.11(y-1996) 0.90 0.009 
Average   0.72 0.10 

EU
-1

5 
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EU-15 1.89+0.11(y-1961)-0.18(max[0;y-1998]) 0.96 0.01 
 

For wheat, all 8 German federal states were modeled best with a single linear fit line. 

A better fit line was not achieved by applying the bilinear model. The average R2 for 

the 8 studied federal states (0.92) is slightly lower than that of total Germany as a 

single unit (0.95). Fit lines all lie in the compressed R2 range of 0.91-0.93. Intercepts 

of the equations compose a similarly condensed range (1.61-2.29 t ha-1). Only 

Saarland deviates markedly at 1.61 t ha-1. The exclusively positive slopes range 

between 0.08 t ha-1 y-1 (Rhineland-Palatinate) and 0.12 t ha-1 y-1 (North Rhine-

Westphalia). Average linear fit lines for the 8 federal states have an R2 of 0.87 

(cereals) or higher for winter wheat (0.92), spring wheat (0.87) and corn maize (0.89). 

Analogous values for the total of Germany are higher. The linear fit line of corn maize 

explains 96% of the overall variance, the highest overall percentage in Germany or a 
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federal state. This is counterbalanced by the lowest R2 value of 0.70 for the same 

product in Saarland. Similarities among states pertaining to R2, exclusively positive 

slopes and intercept values, shift negligibly and characterize a steady rising trend as 

a pattern resembled in all crops and states. These findings correspond well with the 

hypothesized long-term driving factor of yield increase. 

Values are generally lower on the EU-15 level and display a higher variance and 

variability. Conditions for cultivating wheat are much more heterogeneous, inter alia 

due to vast climatic differences among regions. The average R2 for linear trends 

explains 20% less of the total variance than for German federal states. A minimum of 

46% explained variance (Portugal) is a marked counterweight to the respective value 

in Germany. Crop yields and R2 figures are higher in western and central Europe. 

Linear fit line intercepts among the 15 countries span approximately 3 t ha-1. The 

highest intercept in the Netherlands (3.8 t ha-1) exceeds that of Portugal (0.74 t ha-1) 

by a factor four. Slopes accord to this high variance in EU-15 countries. Up until the 

breaking point year in Portugal, Ireland (0.16 t ha-1 y-1) displays an expected annual 

yield increase over five times as steep as Portugal’s (0.03 t ha-1 y-1). 

Bilinear trends reduce the squared sum of residual of single linear fits in 7 time 

series. In geographic terms, the United Kingdom is the only country outside of 

southern Europe with such a time series, and also is the exception to the rule that 

bilinear fit lines correspond to countries with low yields (Spain not included). The 

overall unexplained variance of yields subsequently fit with a second linear trend was 

reduced by an average 10%. Substantial improvements in models were achieved for 

Greece (+0.32) and Portugal (+0.12). All countries with the exception of Greece 

(1980) have breaking points in the nineties. Varying modifications are made to 

exclusively rising slopes at breaking points. The EU-15 in total experiences the most 

pronounced readjustment at a loss of -0.18 t ha-1 y-1 and Spain the slightest (-0.03 t 

ha-1 y-1). However, it must remain clear that negative second slopes do not equate to 

decreasing yields. The difference between first and second slope shows how yields 

develop after breaking points: thus, expected yields in Spain (+0.02 t ha-1 y-1) and the 

UK (+0.01 t ha-1 y-1) are still increasing, but at a lower rate per year, while yields in 

Italy (-0.04 t ha-1 y-1), Finland (-0.07 t ha-1 y-1) and the EU-15 in total (-0.07 t ha-1 y-1) 

are decreasing at the quickest rate per year. 

Up until the breaking points, all country units considered show increasing yield trends 

with varying steepness when fit with a regression line. Central and western EU-15 
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countries return the highest R2 values (including Sweden), all above 0.75. Lowest R2 

values associate to the countries with the least increase in yields and the lowest 

expected yields in 2003. Single linear and bilinear fit lines to all observed crops on 

the two aggregation levels produce fair to near perfect approximations to the actual 

yields. R2 values exceed 0.5 in all cases except for wheat yields in Portugal. R2 

average in German federal states is markedly higher than in EU-15 countries. 

3.1.1 Improving R2 values through bilinear fits 
Second order polynomial trend lines were plotted to the residuals of linear fits. Non 

random residuals were evident in 7 of the EU-15 countries. As the trends of linear fit 

residuals for Germany and Greece show in Fig. 1, the trend line of the bilinear fitted 

series for Greece clearly reduces residuals and approximates a random non biased 

distribution around 0 mean. A considerable reduction of residuals for the pertinent 

wheat series in Greece is achieved through a bilinear fit, cutting down unexplained 

residual variance from 49% to 0.002%.The residuals of single linear fitted German 

wheat display the factually best single linear approximation. Only 0.004% of residual 

variance remain to be accounted for. 

y = -3E-05x2  + 0.117x - 

Residuals, single linear fit Residuals, bilinear fit Trend, bilinear fit Trend, single linear fit
 

Fig. 1. Residuals of single linear and bilinear fits for wheat in Germany and Greece, 1961-2003. R2 is 
significantly increased by the bilinear fit for wheat data in Greece. 

 

Preceding bilinear fit tests not only provide a more realistic trend projection but also 

avoid misinterpretations of inadequately detrended data. In Fig. 2 single linear 

detrending in Italy projects a drastic plunge in absolute anomalies of wheat yields 

between 1990 and 2003, as displayed by the 3 year moving average. The bilinear fit 

y = -3E-05x2 + 0.117x - 115.95
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reducing the square sum of residuals presents a similar descent, before stabilizing 

after 1997. So overall, the amplitude between 1990 and 2003 is more compressed, 

with a reduced variance of the single fit line anomalies of 69% (0.04 t ha-1 compared 

to 0.13 t ha-1). The average was cut back from 0.05 t ha-1 to 0.00 t ha-1 (Fig. 2). 

 

 

Fig. 2. Comparison of yield anomalies detrended with single fit lines and bilinear fit lines for wheat in 
Italy and Greece, 1961-2003. Statistical parameters in the appended tables refer to the duration of the 
second linear fit line series 
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The statistical parameters are modified in a similar manner in the Greek anomaly 

series, but the tendencies of positive and negative anomalies are more pronounced. 

Variability is markedly reduced by applying a bilinear fit line starting in 1980, which 

readjusts the statistical parameters as displayed in the supplementary table. The 

steady rise to more positive anomalies from 1961 to 1980 and their decline thereafter 

is transformed into a lower variability series with more extreme negative anomalies 

and less markedly positive anomalies. The exception is the 2003 anomaly. However, 

the 2003 negative anomaly is less markedly modified to a less negative figure than 

through the bilinear fit line in Italy. It is important to note that anomaly averages of 

single linear fit figures in the supplementary tables diverge from 0 after the breaking 

point. This is because only the portion of the series starting at the breaking point is 

taken into account. Otherwise, averages would properly equal 0. 

3.1.2 Comparing yield trends on aggregation levels in Germany 
Next, linear models for Baden-Württemberg are taken into consideration and 

compared to the federal state and country figures in Fig. 3. R2 values for actual yields 

of all crops are generally slightly higher for Germany than they are for the federal 

states. County values lie below them. This is a result of what is referred to as the 

modifiable areal unit problem (MAUP). It becomes evident in the actual winter wheat 

series, where results are dependent on the yield data and the different spatial units 

the statistical data pertains to. In turn, results are affected by the chosen units, since 

they are in a sense an arbitrary division of space, i.e. a modifiable areal unit 

(SHEPHARD et al., 2004). Higher explained variance of yields in higher aggregation 

levels are attributed to leveling effects through aggregating yields subject to varying 

influences. Regionally confined extreme events are relativized. An exception to this, 

which represents an outlier in all 3 aggregation levels, is the heat wave event in 2003 

that lead to massive drops in yields. This finding is extensively discussed (see 4.4) 

and stresses the response of wheat and winter wheat to larger scale adverse 

weather conditions, as opposed to regionally confined conditions. 

The higher the aggregation level, the more explained variance per aggregation is 

associated with less pronounced inter-annual variations, such as in 1983, 1986 

(negative anomalies), and 1984 (positive anomalies, Fig. 3). Very similar R2 values 

for wheat and maize were achieved for countries adjacent to Germany. This suggests 

that similar climatic conditions are a predominant driver of crop yields under 

comparable technological advancement. Diverging inter-annual yield variability is 
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evident in degree and often in tendency among the 3 scales, while the slopes only 

depart slightly. Arguably, variability is the defining characteristic for comparing these 

series (Fig. 3). 
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Fig. 3. Actual yields of winter wheat on 3 aggregation levels in Germany: County of Ortenaukreis in 
Baden-Württemberg (1973-2003), Baden-Württemberg, and Germany (1950-2003) including the 
accordant linear regression equations  

 

3.2 Absolute and relative anomaly trends 
It was assumed that absolute anomalies in units with a steady rise of expected yields 

would increase over time in the series from 1950-2003. This assumption is based on 

the overall increase in yields possibly leading to larger deviations from expected 

figures. In order to detect any such trends, relative and absolute anomaly figures 

were turned into moduli for wheat, winter wheat, summer wheat, cereals, and maize, 

and compared. In this section (3.2) on anomaly trends both absolute and relative 

anomalies refer to modulated figures.  

A positive linear trend was observed in each absolute anomaly series on the 

aggregation level of Germany. Figures of absolute anomalies increased for all 

observed crops between 1950-2003, with rises in slopes across the board. Maize 
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experienced the highest increase (0.3 t ha-1), doubling the lowest increase for 

combined cereals (0.1 t ha-1).  

Results for relative anomalies markedly differ for the same areas, cultivars, and time 

series. Linear trends show an opposite tendency of relative anomalies’ modulated 

values. Summer wheat (+1.3%) shows the only positive trend. Both winter wheat 

anomaly indices and their antidromic trends are juxtaposed in Fig 4. Absolute values 

of relative winter wheat anomalies decrease in favor of smaller figures, the opposite 

of the absolute anomaly influx. Conclusively, both anomalies react antithetically over 

time in Germany. 

 

Fig. 4. Opposing trends in absolute figures of relative and absolute anomalies of winter wheat in 
Germany,1950-2003 

 

The extreme anomalies closing the series in 2003 steepen the 5 positive absolute 

anomaly slopes, while they level relative anomaly slopes. The tendency remains the 

same in all cases if figures for 2003 are excluded from the series. Four out of five 

crops experience the highest overall absolute anomaly in 2003. The anomaly for 

spring wheat ranks 4th highest. Winter wheat ranks lowest in 2003 among absolute 

anomalies and 6th lowest among relative anomalies. 

This underlines slightly differing calculations made by the 2 indices. The large 

anomalies in 2003 serve as an example for the influence of the selected anomaly on 
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results and interpretation. More pronounced absolute anomalies suggest higher crop 

sensitivity in the second half of the series than relative anomalies. 

Given the steady near linear increase of crops in Germany, this leads to the following 

interpretations for 4 out of 5 crops: An increase of the size of deviations from the 

trend line is observed for absolute anomalies. At the same time, this is 

counterbalanced by the increase of expected yields, leading to smaller deviations of 

relative anomalies. A synthesis of these interpretations leads to the notion that 

expected yields are increasing more than absolute anomalies are. 

 

3.3 Anomaly characteristics 
A key characteristic of anomaly series is the inter-annual variability, as shown in Fig. 

5. Variations of and between positive and negative figures are the rule and the mean 

state. This applies to either type of anomaly, both relative and absolute. By 

subtracting the long-term trend from actual yields the residuals represent the inter-

annual fluctuation of yields around expected values. Intensity varies among and 

within each aggregation level, and lower yields do not generally correspond with 

lower anomalies. As shown in Fig. 5, variance and standard deviation of the shorter 

Ortenaukreis absolute anomaly series (1973-2003) exceed the values for all of 

Germany approximately by a factor 3 and 2 (0.49 t ha-1 compared to 0.14 t ha-1; 0.69 

t ha-1 to 0.37 t ha-1). 

Fig. 5. Winter wheat absolute anomalies on different aggregation levels: Germany and the 
Ortenaukreis county in Baden-Württemberg 
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3.4 Analyzing wheat and winter wheat anomalies in the heat wave year 
of 2003 

A comprehensive analysis of anomaly variability in 2003 was performed for the study 

of yield anomalies and their significance on all aggregation levels. Results exemplify 

anomaly sensitivity to such a meso-scale extreme weather event. 

The following section investigates how yield anomalies in a particular year vary on 

different aggregation levels and scales. The year in question, 2003, was highlighted 

by a record summer heat wave in large parts of Europe and provided insights as to 

how an extreme weather event shifts yield figures stripped of the long-term trend. 

Furthermore, figures for 2003 are additionally put into the context of all anomalies in 

the data series using qualitative and quantitative statistical methods. Analyzing yield 

indices in a year of such a heat wave event sets the stage for the ensuing results of 

investigating yield sensitivity toward inter-annual weather variability. All three 

aggregation levels were taken into consideration to allow an extensively comparative 

approach. Wheat is analyzed on the EU-15 level, winter wheat in Germany and 

Baden-Württemberg.  

3.4.1 The meteorological and agricultural situation in Europe 
Before extensively analyzing the anomalies in 2003, a brief summary is given of the 

meteorological and agricultural situation from January to September of this year on 

all 3 aggregation levels. The order in which they are discussed reflects the 

downscaling from the smallest to largest scale. A preliminary statistical analysis of 

summer time series of mean temperatures (June, July, August) from 1761-2003 in 

Germany was conducted by SCHÖNWIESE et al. (2003). The summer of 2003 was the 

warmest on record. LUTERBACHER et al. (2004) conclude from multiproxy 

reconstructions of monthly and seasonal surface temperature fields for Europe that 

the summer of 2003 was very likely warmer than any other in Europe since 1500.  

An unusually stable high pressure zone anchored over central Europe was flanked 

by low pressure areas, corresponding to a Rossby wave (SCHÖNWIESE et al., 2003). 

Dominance of regenerating high pressure exposure in June and from mid July 

through August formed a barrier for rain bearing depressions. It also caused record 

high mean temperature streaks in central and southern European countries as well 

as high sunshine duration, breaking long standing record figures (Beniston, 2003; 

DWD, 2003; Müller et al., 2003). 
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Winter crops had been regionally affected by a harsh winter in advance. The 

unusually high temperatures accelerated crop development by up to 20 days, and the 

rapidly ripening winter crops were already widely exposed to low soil moisture. 

Quality and quantity of crop harvest were markedly reduced in these areas by the 

extreme weather conditions and high moisture demand (JRC, 2003; UNEP, 2004). 

3.4.2 The meteorological and agricultural situation in German federal 
states  

In the summer months, daily mean temperature (19.6°C) exceeded the reference 

figure from 1961-1990 by 3.4 K, an event that can be expected every 455 years if the 

progressive warming trend of the past decades is taken into consideration (DWD, 

2003; SCHÖNWIESE et al., 2003). June and August area averaged temperatures were 

the highest since commencing area averaging in Germany in 1901. July was the 7th 

warmest since 1901. Furthermore, the summer of 2003 was the 5th driest since 1901 

and the sunniest since 1951. A temperature gradient in Germany from northeast to 

southwest was determined. 

Winter wheat sowing proceeded under generally favorable conditions, but since 

spring had also been relatively dry and the heat led to increased evapotranspiration, 

wheat cultivars were severely damaged throughout Germany. Premature 

development of the cereals accelerated ripeness, and soil moisture was insufficient 

during seed ripening and fructification (JRC, 2003). The only wheat yields 

comparable to expected figures were reported from Schleswig-Holstein. Negative 

relative wheat anomalies in northwestern Germany (approximately -10%) were half 

as low as in Bavaria in the southeastern part. Collapses down to 20% of the 

expected wheat yields were suffered in Brandenburg and Saxony (DAINET, 2003; 

DBV, 2003; JRC, 2003). 

3.4.3 The meteorological and agricultural situation in Baden-
Württemberg counties 

Winter wheat had been stressed by a cold winter in February, 3 K below the long-

term average. The series of high pressure zones began thereafter with short 

interruptions, causing a drastic water deficit in high evaporation figures by May. They 

were accentuated in the brunt of the heat wave in June and August. Mannheim and 

Öhringen (northern Baden-Württemberg) reported precipitation sums of 12mm and 

15mm in June, 15% and 18% of the German area average (82 mm). The result was a 

considerable loss of yields. The highly unusual drought was terminated by abundant 
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rainfall in October (LÖPMEIER, 2004). In Karlsruhe, the daily mean temperature from 

July 7th to August 29th equaled or exceeded 25°C, amounting to 54 consecutive 

summer days. A record breaking mean daily maximum temperature of 30.6°C was 

reported in August. New records were set for sunshine duration, daily temperature 

maximum (40.3°C) , and heat days (53). Freiburg i. Br. reported 83 climatic summer 

days (maximum temperature >25.0°C) in the summer months, 9 days short of total 

summer days. The August mean temperature of 25.5°C exceeded that of the long-

term mean in Algiers, Algeria by 0.6°C (MÜLLER et al., 2003). The past 200 years do 

not show a comparable summer (MÜLLER et al, 2003; SCHÖNWIESE et al., 2003). 

The heat wave had a negative, albeit heterogeneous impact on aggregation units at 

all levels. Additionally, record high anomalies were documented in areas beyond the 

core of the heat wave. While yields in Germany and Baden-Württemberg are 

unanimously below average as a result of sensitive response to the adverse 

meteorological conditions, more heterogeneous harvests are observed on the EU-15 

country level.  

3.4.4 Yield index results for wheat in EU-15 countries 
Table 6 summarizes quantitative and qualitative indices for each country to determine 

how 2003 harvests in each of the EU-15 countries fit into the respective long-term 

yield series from 1961-2003 (43 years). The standard deviation [S] indicates the 

absolute detrended yield anomaly in t ha-1.  France (-3.22 A S-1) and Germany (-3.14 

A S-1) show the lowest negative standardized anomaly index AS (see 3.6.3). Both 

countries had the lowest anomaly rankings in each time series in 2003. Anomalies 

exceeded the country specific standard deviation by more than factor three. Austria 

follows with -1.52 A S-1, the 4th lowest anomaly since 1961. Northern Italy was also 

located in the core of the high pressure zone and Italian yield shows the 7th lowest 

anomaly in the series. Greece experienced the 5th lowest wheat anomaly since 1961. 

The absolute anomalies of all these countries excluding Italy are in the lowest 10% 

quantile of their series. 
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Table 6. Wheat anomaly indices in 2003 in EU-15 countries in the context of the data series from 
1961-2003. Red values mark the least favourable results, green values mark the most favourable. 

Country Standard Absolute AS [A S-1] Rank  (A) in 9th (A) in 1st Relative

  
 deviation 
(S) [t ha-1]  

Anomaly 
(A) [t ha-1] 

 
[t ha-1] (A) Quantile Quantile anomaly

Austria 0.33 -0.50 -1.52 4 1   -10.3
Belgium and Luxemburg 0.57 0.10 0.18 26     1.2
Denmark 0.45 0.08 0.18 28     1.0
Finland 0.43 0.11 0.26 19     3.7
France 0.41 -1.33 -3.22 1 1   -17.5
Germany 0.35 -1.09 -3.14 1 1   -14.4
Greece 0.26 -0.37 -1.43 5 1   -16.4
Ireland 0.59 -0.39 -0.66 13     -4.2
Italy 0.20 -0.21 -1.04 7     -7.0
Netherlands 0.54 0.08 0.14 25     0.9
Portugal 0.27 -0.03 -0.13 20     -2.7
Spain 0.32 0.16 0.49 33     8.0
Sweden 0.46 1.07 2.35 43   1 16.5
United Kingdom 0.47 -0.12 -0.26 21     0.0
EU-15 0.21 -0.13 -0.64 13     -2.4

 

Negative anomalies (9 cases) prevail positive anomalies (6 cases). Sweden shows a 

markedly positive AS (+2.35 A S-1), benefiting largely from the highest ranked 

anomaly since 1961 and representing the only single absolute anomaly figure in the 

90% quantile. Other positive figures are below +0.50. The tendency of unfavorable to 

severe anomalies in 2003 is shown in the 13th lowest ranking EU-15 wide absolute 

anomaly (-0.61 t ha-1) in the series. However, a far more drastic figure of -1.61 t ha-1 

was produced in country data exclusively fit with single linear trends, for which the 

rank slips to lowest in the series. 

Results attributing to absolute, country weighted, and relative anomalies help clarify 

the patterns and differences among them (Table 6). Absolute anomalies, AS, and 

relative anomalies show identical tendencies for each country, while the degree of 

deviations shift slightly. Shifts in these values and ranks stemming from the linear 

(single and bilinear) fit lines to yield series of EU-15 countries are extensively 

considered in the discussion section. 

A broadly corresponding pattern of countries in which yields were substantially 

affected is determined in the 3 yield indices plotted in Fig. 6: France, Germany, Italy, 

Austria, and Greece show results among the lowest in each plot with anomalies and 

AS below each respective standard deviation, the Italian absolute anomaly excluded.  

Two conspicuous patterns were determined at this aggregation level. First, the 

countries affected most by wheat yield loss coarsely outline the main region 
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influenced by the regenerating high pressure zones over central Europe. French and 

German agricultural productions were severely dented, and Austria suffered a similar 

albeit less extreme loss. In Greece, the agricultural situation of wheat yields was 

comparably severe. The actual wheat yield was 16.4% below the expected value, 1% 

higher than the figure of France. Whether this was caused by similar influences 

remains to be explained. 

The second pattern counters the first in terms of anomaly tendency but not in 

intensity: a gradient of countries along the North and Baltic Sea show persistently 

positive figures within all 3 mapped values with absolute anomalies ranking between 

25th highest (in Finland) and highest (in Sweden) in each data series (Fig. 6). Positive 

indices in Belgium and Luxemburg, the Netherlands, Denmark, and Sweden contrast 

the adjacent countries with negative yield outcomes. While the Benelux countries and 

Denmark show marginally positive absolute anomalies and AS (between 0.08 and 

0.10t t ha-1; 0.14 and 0.18 A S-1, respectively) as well as surpluses of relative 

anomalies up to 5%, Sweden exhibits the highest values in each category and 

surpasses the expected yield by 16.5%. The favorable crop yield results in Finland 

much resembles those of the Benelux Countries. To which degree a connection can 

be made between these figures and this strip’s location within front interaction 

between the high pressure zones and flanking depressions remains to be discussed. 
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3.4.5 Yield index results for winter wheat in German federal states  
Winter wheat was analyzed on a federal state level to guarantee compatibility with 

county data for Baden-Württemberg, for which only winter wheat figures were 

available. In 2003, negative results for winter wheat indices prevail throughout the 8 

federal states studied within the time series from 1950-2003. Fig. 7 accords to 

anomaly index studies on the EU-15 country level. All federal states besides North 

Rhine-Westphalia show negative yield anomalies higher than 1 standard deviation. 

Bavaria undercut it by more than a factor 3 (-3.12 A S-1), Saarland and Baden-

Württemberg by -2.80 and -2.54 A S-1 (Table 7). The 4 southern federal states 

(Bavaria, Baden-Württemberg, Rhineland-Palatinate and Saarland) display the four 

lowest figures for each index and were generally hit more severely. Actual yields 

were 10-19% lower than expected (-19% in Bavaria), and absolute anomalies were 

continuously among the 3 lowest on record (lowest for Bavaria and Baden-

Württemberg). Overall, winter wheat yields in Bavaria were cut back most severely. 

Although all negative, Hesse, North Rhine-Westphalia and Schleswig-Holstein show 

the least affected winter wheat yields and the highest figures of all indices. 

 
Table 7. Wheat anomaly indices in 2003 in German federal states in the context of the data series 
from 1950-2003. The absolute anomaly is calculated by subtracting the long-term technical trend 
influence from the yield series, indicating the deviation from the expected yield in the year of interest. It 
is divided by the yield series’ standard deviation for indicating the likelihood of its yield figure and for 
comparative purposes among countries (Absolute anomaly / standard deviation). The relative anomaly 
expresses the absolute anomaly in percent for comparative purposes among countries. 

  

Federal State Standard Absolute  AS Relative Actual Expected Rank of
   deviation (S) anomaly (A)  [A S-1] anomaly yields [t ha-1] yield A 

Schleswig-Holstein 0.57 -0.65 -1.13 -6.96 8.64 9.29 10
Saarland 0.39 -1.10 -2.80 -16.78 5.45 6.55 1
Rhineland-Palatinate 0.41 -0.82 -2.02 -11.93 6.05 6.87 2
North Rhine-Westph. 0.54 -0.51 -0.94 -5.95 8.06 8.57 10
Lower Saxony 0.52 -0.99 -1.90 -11.79 7.40 8.39 3
Hesse 0.42 -0.58 -1.39 -7.68 7.03 7.61 7
Baden-Württemberg 0.41 -1.05 -2.54 -14.94 5.97 7.02 1
Bavaria 0.45 -1.40 -3.12 -19.32 5.84 7.24 1
MEAN 0.46 -0.89 -1.98 -11.92 6.81 7.69 4
MAX 0.57 -0.51 -0.94 -5.95 8.64 9.29 10
MIN 0.39 -1.40 -3.12 -19.32 5.45 6.55 1
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3.4.6 Yield index results for winter wheat in Baden-Württemberg 
In the following section, results of yield indices on smallest scale the highest 

resolution data are presented. Consistent winter wheat data was available from 1970-

2003, or 1973-2003 for 37 out of 45 counties (82%) in Baden-Württemberg. The 7 

counties unaccounted for, exclusively city counties, had inconsistent data series with 

low winter wheat production. 

Yield indices in 2003 are mapped and labeled for all considered counties in Fig. 8. An 

average 1.12 t ha-1 less than the pertinent counties’ expected winter wheat yields 

(6.89 t ha-1) was harvested in all counties, the lowest ratio of any year. Even the 

highest actual yield (6.80 t ha-1 in the Alb-Donau county) turned out lower than the 

average expected yields, which demonstrates the all encompassing spatial extent of 

low yields in 2003 in this area. Standardized absolute anomalies also exemplify the 

holistic spatial impact of the weather in 2003: On average, absolute anomalies were 

2.21 times lower than the counties’ long-term standard deviation, with a maximum of 

-1.50 A S-1 and minimum of -3.09 A S-1.  

Absolute and relative anomalies of all studied counties fall drastically short of 

expected long-term figures. The average absolute anomaly (-1.18 t ha-1) is below the 

1st percentile (-0.95 t ha-1) for absolute figures in Baden-Württemberg from 1970-

2003. Only 1 county suffered a relative loss of less than 10% (Reutlingen, -8.2 %). 

22% (8 counties) dealt with relative anomalies dropping under 20% of the expected 

yield, falling below of the average loss of 17%. No distinct pattern can be derived 

from plotted anomalies in Fig. 8. However, relative classification of counties 

corresponds well between both indices. Counties composing the Upper Rhine Trench 

are affected less, excluding the county clearly hit most severely: Breisgau-

Hochschwarzwald that shows the lowest AS, absolute, and relative anomaly in 

Baden-Württemberg, all ranking lowest in the county record (1973-2003). The other 

region that was less affected comprise the counties Esslingen, Göppingen, and 

Reutlingen, all with figures in the upper 95% percentile of each index.  

Mapped rankings of both anomalies (Fig. 9) show the placement of 2003 figures 

relative to all 34, or 31 considered annual values. For 73% of the studied counties, 

the harvest in 2003 marked the lowest absolute anomaly in the data series. It was the 

lowest, second, or third lowest for each county. 51% experienced the highest 

negative deviation from the expected yields, and all figures were among the lowest 5 

relative anomalies. Likewise, the spatial distribution of counties with lowest ranking 
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absolute and relative anomalies in 2003 show high resemblance: 84% of the counties 

with the lowest relative anomaly placement rank lowest in both anomalies, and 78% 

of the counties with the lowest absolute anomaly. 

Winter wheat showed a highly sensitive reaction to the record heat wave summer in 

2003. The lowest absolute anomaly between 1950-2003 (-1.04 t ha-1) on the 

aggregation level of Baden-Württemberg is composed by consistently unfavorable to 

severely decimated yields in 2003 at the county level. In homogeneity, intensity, and 

spatial location,  the unusually negative outcome therein corresponds well with the 

largely stable weather conditions in Baden-Württemberg close to the core of the high 

pressure zones over central Europe in the summer of 2003. 
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3.4.7 Comparisons among scales 
Neither for wheat nor for winter wheat data were continuous time series including the 

year 2003 available across the 3 scales under consideration: EU-15 countries, 

German federal states, and counties in Baden-Württemberg. However, comparing 

wheat yields on the EU-15 level with winter wheat yields in the 2 lower aggregation 

levels is justifiable with winter wheat making up the vast majority of all wheat grown in 

EU-15countries, and in particular in Germany and Baden-Württemberg. The 

highlighted regional differences point out a northwest-southeast gradient of wheat 

yield losses from the North Sea inland. Relative anomalies and quotients decrease 

sharply between the Netherlands to Bavaria before increasing in Austria. Similar 

minima are observed in Baden-Württemberg. However, a supporting gradient is not 

detectable on the county scale. This provides evidence that yields there pose a 

measure for sensitivity to weather variation, as the gradient coincides well with part of 

the core area the heat wave covered. 

 
Fig. 10. Distribution of winter wheat yield anomalies in 2003 for the units comprising each aggregation 
level (EU 15 = 15 countries, Germany = 8 federal states, Baden-Württemberg = 44 counties) . Each 
white box comprises 50% of the aggregation level units’ values, the black vertical lines above and 
below indicate the upper and lower 25%. 

 

Anomaly AS Relative anomaly 
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Fig. 10 gives an overview of boxplotted quartiles, medians, and averaged extremes 

of winter wheat indices. Findings shown here do not address scaling effects due to 

diverging areas of interest. However, comparisons among yield indices give an 

overview of the outcome of harvests in the heat wave year of 2003 on different levels. 

The sum of units per level ranges from 8 (Germany) to 37 (Baden-Württemberg). The 

range of value shrinks with each hierarchy level downward in the case of AS, 

corresponding to a reduction of area. The large area encompasses different 

influential factors and response to the regional climate. The middle 50% of figures 

(2nd and 3rd quartile) decreases in range with each successive disaggregation for 

each index.  

The EU-15 countries span index ranges far greater than the units in lower 

aggregation levels do. This can be largely explained by the prominent figures for 

Sweden, and by the finding that only part of the EU-15 harvests suffered adverse 

effects from the heat wave. Both anomalies define a wide range in Baden-

Württemberg than in Germany, in which the figures up to the 3rd quantile are 

markedly low. This is a result of the 2003 minima in Baden-Württemberg. Relative 

anomalies are distributed more broadly in Baden-Württemberg than in Germany due 

to greater yield damage suffered. 

In 2003, winter wheat harvests were damaged severely on each aggregation level, 

although the totality of the affected area varies on each scale. The intensity of 

negative results increases down to Baden-Württemberg as a result of it’s 

approximation to the core of the heat wave and it’s spatial restriction. At the same 

time, median values decrease in each case mainly due to the extent to which each 

level was stricken by the heat wave. Central European countries were affected by 

very low to record low index figures. The exemption of the Benelux Countries and 

Denmark, conveying positive results, suggests a gradient of increasing damage from 

regions influenced by the Atlantic southeastward. Results in observed federal states 

and counties support this finding. Homogeneity of negative results is highest on the 

county level, with no identifiable spatial gradient. 

 

3.5 Multiple regression analysis models for German federal states 
Multiple regression analyses were performed with forward selection at a 5% error 

level for federal states and all counties. The objectives were to determine to which 

monthly climate variables anomaly series are most sensitive, and to what extent a 
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prediction of anomalies is possible through inter-annual weather variation specified in 

the selected variables. Spatial and qualitative differences in model composition are 

analyzed extensively. 

3.5.1 Model comparison and analysis 
2 model runs were conducted, setting the tolerance criterion to 5% and 10% error 

level. Multiple regression analyses fit equations to the absolute anomalies. Table 8 

shows the winter wheat variance figures explained by single linear (for long-term 

yield trend) and multiple regression models (for short-term yield anomaly variation) 

for each federal state. Anomaly models with a 5% error level explain an average 

4.0% of total yield variance and 56.6% of inter-annual anomaly variability. The 

models with a 10% error level include an average 5.6 monthly climate variables more 

to each multiple regression to explain a total of 0.9% more inter-annual variance. The 

number of variables included at the 10% error level is twice as large as at the 5% 

error level (2-18 as opposed to 1-9). In terms of R2 values, the range spans 62.5% at 

a 5% error level and 71.0% at a 10% error level. Only Saarland and Rhineland-

Palatinate (9.4%, 16.7%) models explain less than half of the inter-annual anomaly 

variability in both cases, particularly contrasting to models of adjacent states. Hesse 

and Saarland R2 values diverge substantially among models: 4 additionally accepted 

variables contribute to an R2 0.22 higher than that of the 5% error level model (0.20) 

in Saarland, and 0.49 higher with 14 more values accepted at a 10% error level for 

Hesse. In the other cases, values differ by an average of 7.1% explained by an 

average 1 variable more included in the models with a 10% error level, with R2 values 

for 5% error level models varying between 52.1% and 71.9%. Models are identical in 

the cases of Baden-Württemberg and North Rhine-Westphalia. 
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Table 8. Multiple regression model results for 2 error levels in German federal states. Variances 
explained by long-term trends and multiple regression models and their sums are included. The 
Variance (L) pertains to the percentage of overall actual yield variance explained by the linear 
regression models, while (I) pertains to the percentage of detrended, inter-annual anomaly variance 
explained by the,multiple linear regression models.Weather and anomaly data series: 1951-1998 

Federal state Error level Indep. Variance explained by models [%] 
  [%] variables Sum (L + I) Long term Inter-annual  R2 10%-5% error I to total 
        trend (L) variability (I)  level model variance
Bavaria 5 7 97.2 91.6 66.5   5.6
  10 8 97.4 91.6 69.2 2.7 5.8
Baden- 5 7 97.4 92.2 67.1   5.3
Württemberg 10 7 97.4 92.2 67.1 0.0 5.3
Hessen 5 4 95.7 93.1 38.3   2.7
  10 18 99.1 93.1 87.7 49.4 6.1
North Rhine- 5 7 97.1 92.4 61.8   4.7
Westphalia 10 7 97.1 92.4 61.8 0.0 4.7
Lower Saxony 5 9 97.8 92.0 71.9   5.8
  10 12 98.4 92.0 79.7 7.8 6.4
Rhineland 5 1 92.1 91.3 9.4   0.8
Palatinate 10 2 92.7 91.3 16.7 7.3 1.5
Saarland 5 2 94.4 92.9 20.3   1.4
  10 6 96.0 92.9 43.0 22.6 3.0
Schleswig- 5 4 96.3 92.3 52.1   4.0
Holstein 10 5 96.7 92.3 56.3 4.2 4.3
Mean 5 5.6 96.2 92.1 52.4   4.1
  10 8.4 97.0 92.1 62.6 10.2 4.9

 

The lower probability of error in 5% error level models and overall model similarities 

excluded the models with a 10% error level from further implementation. 6 out of 8 

models explain 52.1-71.9% absolute anomaly variability with 9 variables at most. The 

2 models coupled for L and I, one single linear regression equation and the multiple 

regression, explained an average 96.2% of overall actual winter wheat yields in the 

federal states. R2 values explaining variability variance are lower than those fit to the 

long-term technical advancement trend. Short-term inter-annual sensitivity of winter 

wheat to weather conditions is more complex than the response to the long-term 

trends. This is supported by multiple regression models performed on actual yields 

for all counties, which produced an average R2 value of over 0.70. 
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Residuals of actual and modeled absolute anomalies at 5% error level of 
model, Lower Saxony, 1951-1998
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Fig. 11. Actual (A) and modeled yield anomalies (R) of winter wheat at a 5% error level and residuals 
[A-R] for the German federal state Lower Saxony (R2=0.71). The difference A-R is illustrated in the 
area shaded red. Data series: 1951-1998 

 

The actual and modeled anomalies are shown in Fig. 11 for the model with the 

highest R2. Generally, actual inter-annual variability of winter wheat is greater both in 

amplitude and intensity. The average standard deviation is 3 times higher (0.38 t ha-1 

compared to 0.12 t ha-1). The average anomaly range of 2.1 t ha-1 exceeds the 

modeled range (1.5 t ha-1) by 0.6 t ha-1. Very high yields are underestimated more 

than very low yields are overestimated, and positive extremes are accounted for less 

than negative extremes. Fig. 11 shows how the anomaly tendency is modeled to a 

satisfactory degree, while the 10 highest positive anomalies (>=0.5 t ha-1) are 

underestimated in 9 cases. These findings are applicable to the other federal state 

models. Negative modeled anomalies <= -0.5 correspond better with actual 

anomalies. Here, inter-annual variability of modeled winter wheat absolute anomalies 

corresponds best with to actual figures. Modeled standard deviation (0.38 t ha-1) falls 

0.08 t ha-1 short of the actual anomaly series’ 0.46 t ha-1. 

The series modeled best shows a good general approximation to the actual anomaly 

tendency and course (Fig. 11), which is also present in other federal state models 

>=0.5, but to a lesser degree. 
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3.5.2 Multicollinearity 
The question of multicollinearity as a potentially burdening factor for models’ 

goodness of fit is considered further in the discussion section (5.6.2). One or more 

predictors display an almost perfect degree of correlation if one independent variable 

is the linear function of others. In this undesirable situation of multicollinearity 

redundant effects among them become inseparable (SPSS, 2003). Such events 

could be assumed for some of the selected climate variables, but results of 

multicollinearity tests show that these assumptions were not justified. 

3.5.3 Model testing 
On short notice the opportunity arose to conduct first non extensive tests for 

evaluating federal state models on newly obtained homogenized climate data for the 

two years following the fit period from 1951-1998. As the actual analysis of model 

results is prioritized over the fits’ prediction capabilities, this evaluation method posed 

a basis sufficient enough for the purpose. The first step of model evaluation could 

have been succeeded by cross-validation, but this was turned down in the further 

course of the study due to time restrictions. Therefore, other testing methods in 

similar studies, such as the prediction of a year in the fit period through all remaining 

years applied by BAUMANN & WEBER (1966), are factored out. 
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Fig. 12. Testing the linear fit winter wheat yield models for the fit period from 1951-1998: Actual and 
predicted yield anomalies of winter wheat for test years in 1999 and 2000 in German federal states 
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The yield anomalies of 1999 and 2000 predicted by multiple regression are plotted 

with the actual anomalies in each federal state in Fig. 12. Figures of the modeled 

anomalies undercut the degree of actual anomalies in all cases. As noted above, the 

higher anomalies are not adequately modeled with the regression fit, which remains 

to be further analyzed and improved. R2 amounts to 0.11. Standard deviation and 

variance of the modeled yields in test years all fall below those of the fit line for the 

federal model. 

Generally, the anomalies in 2000 were modeled better than in 1999. Erring 

predictions in Lower Saxony particularly stand out in 1999. The large positive 

anomaly strongly contributes to an average residual variance of 0.24. Average 

residual variance exceeds the anomaly variance (0.12) and the low predicted 

anomaly variance (0.07).  

It remains to be investigated if these observations are caused by unusual weather 

development in test years, especially in 1999, or if they adhere to imprecisions in the 

models. Overall, the models do not produce applicable forecasts in the 2 years 

predicted. Model verification was not performed for Baden-Württemberg county 

model results due to the time available. 

 

3.6 General yield sensitivity analysis - distribution functions of actual 
winter wheat anomalies 

Sensitivity analysis of federal state models is broken down into two separate studies. 

First, the general sensitivity of actual anomalies is determined through 

comprehensive analysis of their distribution patterns. Then the modeled anomalies 

are comparatively analyzed using the same statistical methods in order to determine 

sensitivity differences and first conclusions are drawn on sensitivity to inter-annual 

weather variation. In the following, the results of quantitative and qualitative analysis 

are discerned in order to determine to which degree model variation can be 

apportioned to independent variation sources. 

A key question in this model analysis is how sensitive anomalies are to which climate 

variables. Model coefficients give insight to these questions. R2 values do not allow 

direct statements on anomaly sensitivity. However, the standardized regression 

coefficient ß is the estimate for how the dependent anomaly responds when the 

independent variable is changed by one unit. The absolute value expresses its 

relative importance for prediction: the higher the coefficient (ß value), the more it 
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contributes to the prediction. It furthermore represents the standardized sensitivity of 

anomalies to a climate variable as the first derivative of dy after dx, independent of 

the observation unit. Partial correlation coefficients indicate the relation of y to one 

independent variable x revised of correlation to other independent variables. The 

standard error of the non-standardized regression coefficient B specifies the 

goodness of the coefficient estimation.  

Table 9 lists parameters that extensively characterize each federal state anomaly 

distribution. Skewness and kurtosis help summarize the shape of anomaly function. 

The parameters describe the degree of symmetry and the relative peakedness or 

flatness in the variable distribution. Negative skewness means more than 50% of the 

returns are to the right of the mean or that the returns on the left of the asset's mean 

are further left than right. Positive kurtosis refers to a relatively thin, spiked 

distribution, a negative kurtosis to relatively flat, leveled one. Extremely positive or 

negative yield anomalies increase the kurtosis. 
 

Table 9. Statistical distribution parameters of winter wheat absolute anomalies in German federal 
states from 1950-2003 

Statistical Bavaria Baden- Hesse North Rhine- Lower Rhineland- Saarland Schleswig-
parameter  Württemb.  Westphalia Saxony Palatinate   Holstein 

Skewness 0.18 -0.09 -0.52 -0.13 -0.11 -0.67 -0.77 -0.36
Kurtosis 2.27 0.05 -0.44 -0.51 -0.74 1.20 0.16 -0.77
Standard deviation 0.45 0.41 0.42 0.54 0.52 0.41 0.39 0.57
Minimum -1.40 -1.05 -1.00 -1.27 -1.13 -1.37 -1.10 -1.34
1st quartile -0.30 -0.27 -0.28 -0.35 -0.36 -0.22 -0.20 -0.40
Median 0.02 0.01 0.13 -0.02 -0.02 0.04 0.09 0.02
3rd quartile 0.18 0.24 0.32 0.38 0.52 0.26 0.26 0.49
Maximum 1.45 1.00 0.80 0.95 0.92 0.81 0.73 0.88
Range 1st-3rd quart. 0.48 0.51 0.59 0.73 0.87 0.48 0.46 0.88
Range min-max 2.85 2.05 1.80 2.22 2.05 2.18 1.83 2.22

 

Anomaly figures in the 2nd and 3rd quartile, composing 50% of each data series, 

generally range between +0.5 (3rd quantile) and -0.5 t ha-1 (1st quantile) in each 

federal state, excluding Lower Saxony (+0.52 t ha-1 for 3rd quantile, Table 9). 7 

distributions (data series 1950-2003) show a slight negative skewness, ranging from -

0.09 in Baden-Württemberg to -0.77 in Saarland, and all maximum anomalies are 

lower than the absolute minimum figures. In Bavaria, the diverging case , skewness 

is +0.18, and the maximum is higher. In 7 out of 8 cases this supports the 

assumption that negative anomalies reach further to the left (smoother slope) than 

positive do to the right (steeper slope), possibly caused by physiological constraints 
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of crop growth dominating near optimal conditions in these areas. Kurtosis values are 

also close to 0 (kurtosis of a Gaussian distribution), excluding those of Bavaria and 

Rhineland-Palatinate (+2.27 and +1.20). These federal states show more spiked 

centers and thinner tails due to low negative outliers and accumulation of anomalies 

close the 0.  
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Fig. 13. Distribution of actual and modeled winter wheat anomalies in German federal states from 
1951-2003. Modeled series are labeled with an M. Each white box comprises 50% of the yield 
anomaly values, the black vertical lines above and below indicate the upper and lower 25% 

 

There is a marked south-north gradient from values spiked and condensed around 

the mean to a flatter distribution with heavier tails, as shown in the cumulative 

frequency distributions of its beginning (Bavaria) and endpoint (Schleswig-Holstein) 

in Fig. 13. This corresponds with stretched or condensed 2nd and 3rd quantiles of 

actual winter wheat anomalies. Ranges from the 1st to 3rd quartile are smallest in 

Bavaria (0.48 t ha-1) and highest in Schleswig-Holstein (0.88). This divergence in 

distributions is best exemplified by the according high and low class frequency of 

actual anomalies shown in Fig. 14 (the modeled cumulative frequencies in the figure 

are discussed in Section 4.7.3). A transition between the diverging distributions 

occurs in the federal states between them. 
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These findings lead to the following conclusions: (1) influencing factors on winter 

wheat in northern federal states with more evenly distributed anomalies (Schleswig-

Holstein, Lower Saxony, and North Rhine-Westphalia) differ from those in southern 

federal states in combination and/or in intensity; (2); the transition between the two 

states is gradual; and (3) the frequency of greater yield variations is higher in 

northern federal states at the expense of the frequency of low deviations, which 

suggests a higher sensitivity to weather there than in the series with the highest 

kurtosis (Bavaria, 2.85 t ha-1, highest minimum and maximum), suggesting a lower 

sensitivity. 
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Fig.14. Cumulative frequency distributions for actual (1950-2003) and modeled winter wheat 
anomalies in the German federal states Bavaria (1952-1998) and Schleswig-Holstein (1952-1988) 

 

These conclusions are supplemented with the notion that the skewness distinctly 

correlates with the federal state size (the correlation coefficient is +0.91). Average 

anomaly distributions are displayed more precisely in smaller federal states. The 

mean of each anomaly data series is 0, so if the relative size of cultivation areas are 

similar, this relation suggests that the positive anomalies aggregated over smaller 

areas tend to be more frequent. They display a better image of local anomalies. On 

the other hand, this means the larger the area the series represents, the more the 

distribution approximates a standard distribution. This is a result of anomalies 
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compensating and complementing each other. In this case, Saarland would be the 

most accurate image of local crop conditions: a steep decrease of frequency to the 

right of the center is caused by insoluble constraints despite conditions being 

optimally exploited. Adversely, a longer tail to the left is caused by fair to unfavorable 

conditions for anomalies. 

The extreme figures of the non-standardized data series are not excessively high and 

provide evidence against the assumption that the anomalies might be illegitimate due 

to violations of normality. 

 

3.7 Yield sensitivity to climate variables 
After discerning sensitivity for possible influential factors, how and to what extent do 

winter wheat anomalies respond to the weather influence modeled by specific climate 

variables? The following section summarizes the distributions of modeled anomalies. 

Furthermore, it remains to be determined to which degree they are adversely or 

beneficially affected by monthly climate variables accepted to the multiple regression 

models as a response to monthly weather variation between June of the pre-harvest 

or sowing year and October of the harvest year. Thus, variation of anomalies on a 

year to year basis can be apportioned both qualitatively and quantitatively to different 

sources of variation represented by monthly climate variables. 

Monthly climate variables used for the analysis include values from 1951-1998. 

However, anomalies in 1951 were excluded because homogenized climate data was 

not available for 1950 sowing year calculations. The source of influence apportioned 

to monthly climate variables qualitatively and quantitatively contributes to total 

influences on winter wheat anomalies.  

3.7.1 Multiple regression equations as models for federal states 
Multiple regression analysis resulted in the following relationships between detrended 

winter wheat anomalies and selected monthly climate variables: 
 

Bavaria (5)

JunJunJulAprNovAugOctBA PETWSPSDMIPETTSWSY *011.0*004.0*003.0*050.0*047.0*003.0*004.0393.1 __ −−−−−++=  
 

 

Baden-Württemberg (6)

JunAugOctDezAugNovAprBW PETPSWSPETPETTSCWBY *008.0*003.0*003.0*044.0*009.0*003.0*003.0624.0 ____ −−+−+−−=  
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Hesse (7)

JulNovJanAprHE DMICWBPETCWBY __ *041.0*002.0*068.0*003.0164.0 −−+−=  
 

 

North Rhine-Westphalia (8)

JunAugFebJulOctAugAprNRW WSTSPETWSDMIPSCWBY *003.0*005.0*057.0*002.0*094.0*006.0*007.0068.2 _ −+−+++−−=  

 

 

Lower Saxony (9)

MarOctJunJulSepAugOctJunAprLS PSWSPSPETWSPSPSPSCWBY *004.0*002.0*004.0*012.0*005.0*008.0*009.0*002.0*005.0063.1 __ ++−+−++−−−=

 

 

Rhineland-Palatinate (10)

JunRP WSY *03.0884.0 −=  

 

 

Saarland (11)

FebOctSA PETDMIY *027.0*063.0091.0 _ +−−=  
 

 

Schleswig-Holstein (12)

JulJunFebAprSH CWBPETWSTSY __ *007.0*022.0*040.0*012.0*027.0 −−++=  
 

Calculations and abbreviations for climate variables are explained in Table 10, and 

IIY = absolute anomalies of detrended winter wheat in Bavaria, Baden-Württemberg, 

Hesse, North Rhine-Westphalia, Lower Saxony, Rhineland-Palatinate, Saarland and 

Schleswig-Holstein, the 2 suffixed capital letters indicating the federal state; and for 

example JanCWB = the climate variable with the pertaining month as a subscript, 

whereas a prefixed “_” indicates months in the year previous to harvest (sowing 

year).  
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Table 10. Abbreviations and methods for calculating the monthly climate variables that compose the 
federal state yield models for Germany 

 
Climate variable 

 
Abbreviation

 
Calculation 

Average temperature 

sum  

TS 
avg

d

i

T∑
=

max

1

 

Monthly precipitation 

sum 

PS 
sum

d

i

P∑
=

max

1

 

≥ 5°C temperature 

sum 

WS 
CT

d

i

°≥∑
=

5max

max

1

 

Potential 

evapotranspiration 

PET for CT °≥ 5max : 

15
*)209(**0031.0

max

1 +
+∑

= T
TGCf irr

d

i

 

where 1=Cf  if %50≥relH  

and
70

)50(
1 relH

Cf
−

+=  if %50≥relH  

for CT °< 5max : 

2
max

1

)25(*)100(*000036.0 +−∑
=

TH rel

d

i

 

Climatic water 

balance 

CWB 

sum

d

i P
PET∑

=

max

1

 

De Martonne aridity 

index 

DMI 

10

max

1 +∑
= T

Psum
d

i

 

 

R2 values for each model can be looked up in Table 8. Months pertain to harvest year 

months if not indicated otherwise. 

In Bavaria, sowing year October WS (ß=+0.336) correlates highest with anomalies. 

Sowing year November PET (ß= -0.312) shows the second highest ß value. This 

means yield anomalies benefit from warmer Octobers >=5°C and lower PET in the 

following month. Both suggest that winter wheat yields are sensitive to weather 

during or after late sowing periods. They are the most reliable predictors for yield 

anomalies of the successive harvest. Dryer Aprils have a positive impact on 

anomalies in Bavaria, as well: the acceptance of April DMI of (ß=–0.215) to the 

model increases the explained R2 by 8.3%. 
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In Baden-Württemberg, sowing year October WS (ß=+0.283) is of relative importance 

for favorable anomalies, yet less than in Bavaria. 4 out of 8 accepted climate 

variables originate from the time of average sowing between August and November. 

Varying PET in 3 months sums up to 0.23 of the total R2 of 0.67.  

Variations in CWB figures contribute 23.6% to the overall 38.3% of anomaly variance 

explained in Hesse. Negative ß-coefficients in April (-0.382) and in sowing year 

November (-0.319) indicate that winter wheat is beneficially influenced by low CWB 

rates in Hesse. 

Anomalies in North Rhine-Westphalia show a slight sensitivity to April CWB (-0.399, 

highest in North Rhine-Westphalia) and the lowest sensitivity to weather variation 

during the sowing season. Out of all states they are also most sensitive to 

temperature sums during summer and harvesting (August): a warmer August 

(ß=+0.364) and sum of T>=5°C in July (ß=+0.183) contribute to more favorable 

anomalies as a cooler June (ß=-0.233) does respectively. 

The equation for Lower Saxony contains the highest amount of climate variables (9). 

An input of 25.8% of the 71.9% explained overall variance stems from April CWB. 

Yields are highly sensitive to PS variability, and modeled figures explain 29.1% of 

their variance from 5 monthly PS figures. They respond to anomalies increasing to 

higher PS in 3 months (October, sowing year August, and March), and a negative in 

2 (June and sowing year June). October PS shows the highest absolute ß (+0.585) in 

any model. WS has a marked correlation with anomalies in this month and in the 

month before (ß=+0.212;-0.410). 

The only variable accepted to the model in Rhineland-Palatinate indicates that 

warmer Junes are adverse to yields at a 5% error level (WS, ß=-0.306).  

Monthly anomalies in Saarland respond sensitively to periods before distinct 

accumulation of biomass in spring. Anomalies markedly increase with lower sowing 

year October DMI (ß=-0.378) and less so with higher PET in February (ß=+0.310). 

April TS correlates highest with anomalies in Schleswig-Holstein (ß=+0.379) which 

contrasts to the dominating precipitation influence in April CWB figures in adjacent 

states. Winter wheat in the northernmost federal state responds stronger to 

temperature than precipitation in April. It benefits from warmer weather in February 

as well (ß=+0.345). CWB figures in July have a similar effect on anomalies here as in 

other states in April (ß=-0,262). 
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3.7.2 April climatic water balance 
The prominent role of April CWB as the best predictor for anomalies requires a closer 

look at its coefficients in the 4 federal models in which it correlates highest with 

anomalies. April CWB is the first variable included in 4 out of 8 federal states (Baden-

Württemberg, North Rhine-Westphalia, Hesse, Lower Saxony, all R2 above 50%) at a 

5% error level and correlated highest with the anomalies each time. The consistently 

negative ß values between -0.365 (Baden-Württemberg) and -0.399 (North Rhine-

Westphalia) show that low or negative CWB values result in higher yields and vice 

versa, considerably effecting winter wheat anomalies.  

The driving climate variable behind the negative correlation between April CWB and 

yields in the 4 federal states can be attributed to temperature and/or precipitation. 

Detracting April CWB from the forward selection regression analysis results in a 

replacement by April PS as the variable with the highest correlation in three cases. 

All ß coefficients are negative, ranging between -0.37 and -0.41. In North Rhine-

Westphalia, April PET correlates highest with the yield anomalies. April PS are the 

driving force behind the prominent position of April CWB as the single variable 

explaining the most overall variance. Lower precipitation sums benefit from higher 

yields, and in the case of North Rhine-Westphalia higher April PET has a similar 

effect. April TS do not play a comparable role in these federal states. Positive or even 

high CWB values exasperate sufficient biomass growth for high yields. Dryer Aprils 

promote positive, while moister Aprils induce negative anomalies. 

The most variables accepted to the 8 models pertained to April and June, both 

months having 6 entries. 41 variables were entered altogether. It was found that in 

June anomalies decrease with higher WS, PET, and PS for all 6 entries. So 

generally, June TS and PS conditions are not optimal. June WS has the second most 

distinct impact on anomalies after April CWB. Variables for February, July, August, 

and October of the harvest year, as well as August, October, and November of the 

sowing year are counted 3 times each. Altogether, 41.5% of the monthly climate 

variables retained by forward selection attribute to summer months in the sowing and 

harvest year, which suggests that winter wheat yields are most sensitive to weather 

in these seasons. 29.3% thereof (12 variables) correspond to the harvest year 

summer season. 2 months out of 17 play no role in predicting anomalies (sowing 

year September and May of the harvest year). The monthly distribution of variables 

correlates at +0.28 with the succession of months. The trend line of both plotted 
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against each other shows a slight increase of monthly counts during the 17 selected 

months.  

3.7.3 Distribution function of modeled yields 
The next step is to compare the statistical parameters and distributions of modeled 

winter wheat anomaly series with those of actual anomaly series distributions as a 

summary of sensitivity to inter-annual weather variation.  

ß values range in the interval between +0.424 and -0.585 (for July PET and October 

PS, both in Lower Saxony). No month or climate variable stands out with an overt 

dominance, and ß values rarely exceed +/-0.5. These findings show how winter 

wheat yields in Germany are sensitive to an array of monthly conditions that 

compensate and add up to the adverse, indifferent, or beneficial effects the yields are 

sensitive to. Anomaly figures as direct responses to the character of monthly climate 

variables are unequally determined by the predictors, which account for between 

9.4% (Rhineland-Palatinate) and 71.9% (Lower Saxony) of the anomaly variance in 

federal state models. This is evident in the contrasting boxplots (Fig. 13) and 

cumulative frequency distributions of the best and lowest fit models. Cumulative class 

frequency for models explaining more than 50% of actual anomaly variance 

correspond well with actual frequency, while actual and modeled class frequency 

among Rhineland-Palatinate and Saarland deviate drastically: 2 classes account for 

over 90% of the values (-0.2 - 0, 0 - +0.2 for the former, and 0 - +0.2, +0.2 - +0.4 for 

the latter). Skewness is retained in modeled distributions in all cases except 

Rhineland-Palatinate, Saarland, and Schleswig-Holstein. However, relative 

peakedness or flatness only resemble the actual distribution in Lower Saxony and 

Hesse (Table 9 and 11). Minimum and maximum figures are lower in all modeled 

series in accordance with the identified systematic underestimation of actual 

anomalies. The lower the R2 value, the more the center classes in the distribution are 

overestimated in frequency. Generally, the models of weather induced anomalies 

tend to reproduce the small anomaly distribution well, at the expense of larger 

anomalies. For example, modeled 2nd and 3rd quartiles show a satisfactory 

resemblance in Bavaria, Baden, North Rhine-Westphalia, and Lower Saxony in the 

boxplots (Fig. 13), while the upper and lower quartile lack it. The aforementioned 

models allow an overall estimation of yields toward monthly climate variables, while 

models with markedly lower goodness of fit do not.  
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Boxplotted Schleswig-Holstein model values stand out as the only series with a larger 

span of figures than the actual anomaly series. The excessively large distribution 

figures in Table 11 are caused by high modeled positive anomalies in the 1990s. 6 

out of 8 are larger than +1 t ha-1 while actual anomalies all range between +0.5 and -

0.5. In Fig. 14, the cumulative frequency distribution of modeled anomalies was 

plotted without Schleswig-Holstein figures from 1990 to 1998, and yield data was not 

available for 1989. In this figure, distributions for Bavaria and Schleswig-Holstein 

show an overall appropriate fit to the diverging actual distributions discussed there. 

This means that the north-south gradient of flatter to more spiked distribution shapes 

is also evident in modeled anomalies, which in turn suggests that anomaly 

distributions are driven by weather differences. However, comparing Table 11 with 

Table 9, displaying the distribution parameters for actual anomalies, reveals that 

skewness and kurtosis are seldomly accurately maintained in modeled series. The 

following conclusion is drawn for the series which do explain a distinct amount of 

overall anomaly variance: yield sensitivity to weather conditions alone can not explain 

the shape of actual anomaly functions at the resolution of data used and the climate 

stations selected. 
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Table 11. Statistical distribution parameters of modeled winter wheat anomalies German federal states 
from 1950-2003 

 Statistical  Bavaria Baden- Hesse North Rhine- Lower Rhineland- Saarland Schleswig-
 parameter   Württemb.   Westphalia Saxony Palatinate   Holstein 
Skewness 0.10 0.25 -0.35 -0.08 -0.16 -0.18 0.60 0.46
Kurtosis -0.20 0.31 -0.03 0.24 -0.83 0.04 -0.17 -0.07
Standard deviation 0.34 0.28 0.25 0.40 0.38 0.12 0.12 0.74
Minimum -0.74 -0.42 -0.66 -0.94 -0.77 -0.37 0.05 -1.19
1st quartile -0.14 0.00 -0.21 -0.31 -0.32 -0.14 0.14 -0.18
Median 0.02 0.14 0.04 -0.01 -0.03 -0.02 0.20 0.27
3rd quartile 0.25 0.31 0.12 0.18 0.31 0.04 0.30 0.94
Maximum 0.75 0.84 0.45 0.92 0.71 0.21 0.54 2.23
Range 1st-3rd quart. 0.39 0.31 0.33 0.48 0.63 0.18 0.15 1.12
Range min-max 1.49 1.26 1.11 1.86 1.48 0.57 0.49 3.42

 

3.8 Sensitivity analysis in counties in Baden-Württemberg 
Analysis of distribution functions on the county level in Baden-Württemberg was ruled 

out due to the time available. ß values and partial correlation coefficients of the 

monthly climate variables most often included to county models were compared with 

findings on the higher aggregation level. Models derived from differently scaled data 

were also compared. Consequently, diverging results stemming from scaling and 

models are juxtaposed with quantitative and qualitative methods. The availability of 

homogenized climate data from 1971 to 2000 temporally restricted the winter wheat 

data time series.  

3.8.1 Quantitative model analysis 
Producing models on two different aggregation levels, federal state and county, 

contributed not only to determining the applicability of models on scales with higher 

resolution data, but also to establishing the appropriate scale for modeling inter-

annual sensitivity to yield anomalies. 2 models were derived for 39 of 44 counties 

using county specific winter wheat series and climate data. First, the Baden-

Württemberg federal state model (hereafter federal model) was applied to all counties 

by entering all the formerly accepted climate variables. Second, the forward selection 

method used on the federal state scale was applied to each county dataset to 

produce scale specific models (hereafter county specific model). Both model 

approaches had threshold values of 5% error level. The climate stations selected for 

each county can be viewed in the annex (7.1). 
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The R2 average of the county specific models (0.59) explains an average 23% more 

inter-annual anomaly variability than that of the federal models. Its fits to existing 

anomalies are substantially better for predicting inter-annual figures (Table 12).  

 
Table 12. Average R2 values and statistical parameters of county specific compared to federal state 
models applied to 39 out of 44 counties in the German federal state Baden-Württemberg 

Statistical County specific Federal state
parameter Model model 

Mean 0.59 0.34
Minimum 0.15 0.13
Maximum 0.98 0.51
Variance 0.05 0.01
Standard dev. 0.21 0.09
Range 0.83 0.38

 

The table gives an overview of each model's average statistical parameters. R2 

values range from 0.15 to 0.98 among county specific models and from 0.13 to 0.51 

among federal models. Climate data and winter wheat yield data from the county the 

anomaly prediction is modeled with explains up to almost 4 times more overall 

variance than variables of the federal state do (Freudenstadt county, 0.62 compared 

to 0.13). in 33 out of 39 cases (84.6%), anomalies are modeled with a better 

goodness of fit if monthly climate variables are not preselected on a different 

aggregation level.  

Fig. 15 juxtaposes the widely contrasting R2 values of both models for counties. It 

shows a zonal distribution of R2 classes above and below a strong fit of 0.60 in the 

southern half of Baden-Württemberg. Most counties bordering Switzerland all have 

R2 fits considerably below 0.60, while those in the broad strip to the north are 

considerably above and among the best fits, with one exception. In the case of 

county specific models, winter wheat anomalies in the northern half of Baden-

Württemberg generally show a more heterogeneous pattern of R2 compared to the 

southern half. This partition is not evident in the federal models: the sensitivity 

appears more balanced, which in turn suggests that the selected climate station is 

representative for Baden-Württemberg. However, spatial variations of monthly 

climate parameters in county specific models are large enough to assume either 

altering weather influences within Baden-Württemberg, or climate stations 

approximating the course of monthly weather in counties to a varying degree. 
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R2 standard deviation among county specific models averages at 0.21, 0.12 higher 

than among federal models (0.09). R2 values are higher in 32 county specific models, 

lower in 6 cases, and identical in one case. 

Similarities are abound when absolute anomalies are replaced by relative anomalies 

in county specific calculations. However, they return slightly lower R2 values, 

averaging 0.04 less. They exceed absolute anomalies half as often (10 times) and 

show a higher overall standard deviation (0.26). Both anomalies produce the same 

range of R2 values (0.15-0.98). These findings further support the notion that weather 

information in relative anomalies is overlapped by inherent technical advancement 

trends, distorting analyses of sensitivity to inter-annual weather variation. Actual 

winter wheat yields are not viable for this purpose because the long-term trend 

superimposes the smaller inter-annual variation. 

3.8.2 Qualitative sensitivity analysis 
In order to determine the spatial distribution of climate variables in county specific 

models, the 3 highest partial correlation values for each model were determined and 

counted. This established in how far the first 3 climate variables accepted to the 

federal state model of Baden-Württemberg are also spatially inherent in county 

specific models. Fig. 16 and Table 13 show the overall spatial and sensitivity induced 

dominance of the 2 most commonly selected monthly climate variables. The ß values 

(standardized ß coefficients, standardized regression coefficients) represent the 

measure of actual sensitivity by indicating how the dependent variable (yield 

anomaly) changes if the standardized monthly climate variable in question changes 

by 1. The absolute values indicate the variables’ relative importance for predicting the 

anomaly. 

June PET in the sowing year is among the 3 highest correlating variables in 17 out of 

39 county models (44%). Consistently negative ß values range between -0.33 and -

0.71 and show partial correlation coefficients up to -0.97 (Table 13). Winter wheat 

anomalies respond to lower PET values with more favorable anomalies. This extent 

of sensitivity was not identified to any climate variable in federal state models. 

Sensitivity to the according variable on a federal scale in Baden-Württemberg was 

lower (ß= -0.35). 
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Table 13. Sensitivity of winter wheat anomalies to the 2 monthly climate variables most commonly 
accepted into county specific models in Baden-Württemberg. ß values represent the measure of actual 
sensitivity by indicating the yield anomaly if the standardized monthly climate variable in question 
changes by 1. 

  June PET (Sowing year) April PS (Harvest year) 
  ß value Partial  ß value Partial  
    correlation   correlation 
Minimum -0.71 -0.97 -0.72 -0.76 
Maximum -0.33 -0.40 -0.46 -0.57 
Average -0.54 -0.70 -0.55 -0.65 

 

April PS, the other variable entered to more than 5 models, correlates highest with 

the anomalies in all 6 entries. With an average negative ß value of -0.55, winter 

wheat anomalies in the pertaining counties are more sensitive to April PS than June 

PET variability in the sowing year: the less precipitation in April, the higher the 

positive anomalies. This prominent position of April PS influence on anomalies 

corresponds with the findings on the federal state level, but, as shown in higher ß 

values, anomalies are more sensitive to varying precipitation on a county level than 

on the federal state level. However, no equivalent to June sowing year PET in 

frequency or magnitude is apparent on the federal state level. 

Fig. 16 maps the spatial distribution of the 2 monthly climate variables most 

commonly accepted into county specific models. It shows a particular dominance of 

June PET frequency in eastern and northeastern Baden-Württemberg. April PS do 

not show an evident pattern. No county specific model contains both variables. 

Mapped counties with R2 values >= 0.30 (federal state model, Fig. 15) and the 2 

climate variables anomalies react most sensitively to (Fig. 16) show a marked spatial 

correlation. Counties with average and above average R2 values in the federal state 

models widely correspond with them, indicating high R2 changes with the acceptance 

of these variables to models. 

Although the multiple regression equation of the federal state model for Baden-

Württemberg (see 4.7.1) is reflected to a degree in county specific models, it is not 

generally evident. In addition to the 2 climate variables extensively discussed, sowing 

year October WS and sowing year November PET show 4 and 3 counts in the 

highest 3 partially correlating variables. Both respond to higher values with 

decreasing yield anomalies. 
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Fig. 16. Most common monthly climate variables among top 3 partial coefficients for each county 
specific yield model in Baden-Württemberg. Winter wheat yield anomalies were simulated for the 
2001-2055 (see following section 4.9) in counties highlighted and striped orange. 

 

3.9 Winter wheat anomaly development under climate scenario data 
In the preceding chapters, anomaly series for the past decades were 

comprehensively analyzed, and a recent extreme weather event was linked to further 

sensitivity analysis. As a final experiment, the development of anomalies as a 

response to climate scenario data was simulated. Winter wheat anomalies were 

simulated from 2001-2055 with climate scenario data for 5 climate stations in 

counties with county specific model R2 values >=0.75. Thus, only models with a 

highly distinct goodness of fit were considered. The counties (Emmendingen, 

Ortenaukreis, Reutlingen, Rottweil, and Tübingen) used for scenarios are highlighted 

in Fig. 16. The scenario data is based on a moderate temperature increase of +1.2 - 



 81

+1.4 K to 2055 resulting from a simulation run from the global climate model 

ECHAM4-OPYC3 (MENZEL et al., 2003). The temperature is impressed on to local 

temperature series as a linear trend. The run is driven by the A1 CO2 emission 

scenario. A continuation of the detected rising linear long-term trend for winter wheat 

yields was assumed for the study. The objective of this concluding study was to 

determine how anomalies and their variability develop under the assumption of a 

changing climate scenario, and what the simulated trends suggest for anomaly 

means and variability at an extended anomaly series ranging from 1971-2055. 

Development of average anomalies ranges from steady to increasingly (a) 

pronounced inter-annual variability and (b) negative anomalies. Fig 17. gives an 

overview of the tendencies in 3 graphs. Reutlingen data shows a slightly decreasing 

trend of anomaly figures in the polynomial trend (3rd order). Tübingen yields show a 

high variance shift, accompanied by a steady increase of negative anomalies starting 

around 1990. Ortenaukreis data shows a more drastic decrease with effectively no 

variance shift.  

Generally, anomalies decrease to more negative figures in all counties tested. Slopes 

of linear trend lines for anomalies’ absolute figures vary from nearly planar for 

Reutlingen (0.0012 t ha-1 y-1) and for Rottweil (0.0015 t ha-1 y-1) to a steeper drop for 

Ortenaukreis (0.0112 t ha-1 y-1). Linear characters of slopes with 3rd order polynomial 

trend lines point out steady decreases throughout.  

4 out of 5 counties show an increasing number of negative anomalies. The 

polynomial trend lines assure a near linear slope of varying degree in each case. 

Merely 5 positive anomalies were simulated for Ortenaukreis in the 21st century, 

where climate scenario data has the most increasingly detrimental effect on winter 

wheat anomalies (Fig. 17). Here, a decrease of 1.50 t ha-1 is observed between the 

linear trend line intercept of +0.25 t ha-1 in 1970 and a closing figure of -1.25 t ha-1 in 

2055. Rottweil displays steady anomaly variation and a slight increase in absolute 

values. So despite the spatial adjacencies among these counties all located in 

southern Baden-Württemberg the development of anomaly variance and intensity is 

diverse.  

Shifts in anomaly variability were determined based on changes in variance between 

1971-2000 and 2001-2055. Variance increased in 4 counties (Table 14). While 

variance for simulated anomalies is almost equivalent in the county most adversely 

affected (Ortenaukreis, +7%), it increases by +47% in Rottweil, and doubles in 
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Tübingen (+104%) and Emmendingen (+112%, Table 14). Variance in Reutlingen 

decreases by approximately a third (-38%). Overall, a tendency towards higher winter 

wheat anomaly variability is evident in most of the simulated data trends. This 

observation does not generally attest to a positive or negative anomaly trend and 

vice versa. But anomalies predominantly respond to the climate scenario data with 

increased variability and adverse anomalies in this study. 

Anomaly variability increases markedly in 3 cases that correspond to accretive 

negative anomaly development under the assumption of a moderate rise in 

temperature. This is contrasted by a relative stability of variance and mean anomalies 

in 2 counties. Given the spatial proximity among studied counties, such diverse 

negative effects can hardly be explained by their climatic differences, but rather by 

differing climate variables among their models. They are attributed to the effects of 

different constellations of monthly climate variables among models. ß values remain 

constant for both past and future anomaly estimations. This sensitivity is addressed 

by increasing adverse anomalies under the climate scenario data, resulting in 

decreasing average anomalies. 

Simulations on all county data series would provide a better starting basis for 

evaluating these results. Winter wheat anomalies were simulated for 5 counties only, 

so results must not be overestimated. 

 
Table 14. Variance changes of actual and simulated winter wheat anomaly series between the periods 
1970-2000 and 2001-2055 in selected counties in Baden-Württemberg 

County Variance Variance Difference R2, county 
   1970-2000  2001-2055 [%] specific model 

Ortenaukreis 0.44 0.47 +7 0.84 
Reutlingen 0.11 0.08 -38 0.77 
Rottweil 0.19 0.28 47 0.91 
Emmendingen 0.25 0.53 +112 0.87 
Tübingen 0.25 0.51 +104 0.98 
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Fig. 17. Selected anomaly simulations for 3 Baden-Württemberg counties. The actual anomalies 
range from 1973-2000 (orange), and the simulated anomalies range from 2001-2055 (red). The 
scenario data impressed on to local temperature series as a linear trend is based on a temperature 
increase of +1.2 - +1.4 K to 2055 (simulation run from the global climate model ECHAM4-OPYC3). 
The run is driven by the A1 CO2 emission scenario. A continuation of the detected rising linear 
long-term trend for winter wheat yields was assumed for the study. 

County: Tübingen; Weather station: Rottenburg-Niedernau
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3.10 Heat wave year analysis 
A strictly temperature driven criteria catalogue was applied for determining years in 

which additional constraints on yields were expected due to unusually warm weather 

conditions. 5 climate stations selected to encompass most of Germany provided the 

climate data to determine heat wave years. They are listed in the annex (7). Years 

with 15 or more summer days exceeding the 90th percentile of climate station mean 

summer maximum temperatures in June, July, and August were considered heat 

wave years in German federal states. The years that meet this criterion match those 

with the highest average number of consecutive days with temperature maxima over 

the 90th percentile. Thus, regionally confined heat waves were excluded in favor of 

those covering most of Germany. Homogenized daily data was used from 1951-

1998, amounting to 47 years. The heat wave summer of 2003 was not included due 

to lack of available homogenized climate data.  

The years were crosschecked with area averaged summer temperature anomalies in 

Germany deviating from the 1961-1990 mean for June, July, and August, as 

performed by SCHÖNWIESE et al. (2003). These 3 studies are aligned in Table 15, and 

the 7 admitted years coincide almost completely. Years accepted due to threshold 

exceedance and its persistence are identical, while their ranks diverge. Of these 

years, 5 out of 7 are summers with positive temperature anomalies among the 7 

highest between 1951 and 1998, as determined by SCHÖNWIESE et al. (2003). Years 

selected in all categories include 1994, 1992, 1983, 1976, 1995. 1952 and 1964 are 

missing in the category of area averaged summer temperature anomaly. 1994 ranks 

first in each category. 11.4 out of 24 average days were consecutively below the 90th 

temperature percentile. 

 
Table 15. Years with number of days during which mean daily temperatures exceed the 90th quantile 
threshold >=15 days, compared to persistence of this threshold exceedance, and highest summer 
anomalies in K above the CLINO average from 1961-1990 in Germany. Each year is consistently 
marked with the same color. Years not selected for the threshold exceedance category are black. 

 Threshold exceedance Persistence of threshold exceedance Summer temperature anomaly
Rank Year Days Year Days Year K 

1 1994 24 1994 11,4 1994 2,1
2 1992 18,8 1976 11,2 1992 2,1
3 1983 18,6 1983 10,8 1983 1,9
4 1995 17,8 1952 9,4 1976 1,4
5 1976 17,4 1964 8,4 1959 1,4
6 1964 16,6 1995 8,2 1995 1,4
7 1952 16,2 1992 7,8 1997 1,4
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Average ranks of all 8 federal states’ winter wheat anomalies correspond well to total 

anomaly ranks in the German dataset, differing a maximum of 4 ranks (Table 16). 

The exception is 1992, with cumulated federal state anomalies ranking 23 places 

higher. This explained by the inclusion of the 5 new federal states, which were 

affected far more severely. This event, tagged as the “North Summer”, has been 

extensively studied (SCHELLNHUBER et al., 1994). The average ranks and anomalies 

of the 8 federal states were used instead of the German totals because they do not 

include city states and the new federal states as of 1990, which are not studied here. 

 
Table 16. Average winter wheat anomalies and ranks in heat wave years (1=lowest), averaged each 
year with the figures of federal states in Germany. Data series: 1951-1998 (48 years, or ranks). Ranks 
refer to actual absolute anomalies. 

 Rank Average anomaly [t ha-1]  
Heat wave year 8 federal states Germany, total Absolute Modeled Difference

1952 38 38 0.38 -0.11 0.49
1964 22 19 -0.04 -0.43 0.39
1976 4 1 -0.82 -1.15 0.33
1983 14 18 -0.33 -0.82 0.49
1992 29 6 0.10 -0.39 0.49
1994 26 28 0.03 -0.48 0.52
1995 27 27 0.10 -0.45 0.55

 

Winter wheat anomalies rank an average 20th lowest or 28th highest in heat wave 

years in Germany, close to the median rank (25). Anomalies in 1976 were the 4th 

lowest in the time period between 1951 and 1998 and ranked lowest when calculated 

for total German yields. 1976 produced the only distinctly high anomaly of all 7 

selected years, with an average anomaly of -0.82. 3 out of 7 anomalies are in fact 

positive, while modeled anomalies are exclusively negative, as shown in Table 16. 

On one hand, this shows that average anomalies alone do not stipulate sensitive 

crop response to warm weather conditions. On the other hand, modeled anomalies 

predict more adverse anomalies in each year. These findings suggest an inclusion of 

further yield driving factors to explain average yield anomaly outcomes in heat wave 

years. Years with the lowest area averaged precipitation sums for Germany, also 

determined by SCHÖNWIESE et al. (2003), show that lower PS sums correspond well 

with lower anomaly ranks in each heat wave year. However, low precipitation sums 

and high threshold exceedance do not always resemble adverse anomalies. In 1952, 

the 5th lowest precipitation sum and high values of daily threshold exceedance were 

measured in a year with the 11th highest winter wheat anomaly.  
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Averaged modeled heat wave year anomalies (-0,55 t ha-1) undercut actual 

anomalies (-0.08) by 0.47 t ha-1. The estimations vary among states, as do the 

variables that account for them. The federal state specific variables in summer 

months of the harvest year and their contributions to the anomaly estimate are the 

focus of interest here.  

 
Table 17. Average absolute anomalies (t ha-1) in heat wave years and those modeled by multiple 
linear regression solely with harvest year summer climate variables of each federal state model in 
Germany. See Table 10 for the explanation of the climate variable abbreviations. 

Federal State Average Summer variable Modeled Variables in summer months
   Anomaly  contribution  Anomaly   

Bavaria -0.07 0.17 -0.01 August TS, July PS, June WS 
Baden-Württemberg -0.24 1.01 0.03 August PET 
Hesse -0.13   0.01   
Lower Saxony 0.03 2.19 0.05 June PS, July PET 
North Rhine-Westphalia 0.07 1.39 0.20 July WS, August TS, June WS 
Rhineland-Palatinate -0.15 -1.03 -0.15 June WS 
Saarland -0.15   0.23   
Schleswig-Holstein -0.04   1.00   

 

Table 17 lists actual and modeled anomalies averaged for each federal state in heat 

wave years. Additionally, the modeled anomaly portion contributed by summer 

months is included. For this purpose, the pertinent regression coefficient (B) of each 

summer climate variable selected for the model is multiplied by the monthly climate 

variable figure. 

Average modeled anomalies incorporating all climate variables deliver satisfactory 

results when compared with the actual figures. The exception, Schleswig-Holstein, 

deviates from this finding due to the excessive anomaly figures modeled in the 

1990s, which have been discussed in a preceding section (3.7.3). In 5 out of 8 

federal state models, climate variables in June, July, or August contribute to the 

modeled figures (Table 17). However, with the exception of Bavaria, the contributions 

deviate considerably from the actual anomalies. Monthly climate variables for non-

summer months reduce modeled anomaly figures to better fits in all studied federal 

states besides Rhineland-Palatinate, for which the variables increase the modeled 

anomaly to the exact actual figure. Selected figures tend to overestimate anomalies. 

Modeled anomalies overestimate heat wave year anomalies by an average 0.25 t ha-

1, while the selected variables alone deviate with an average 0.81 t ha-1. The models 

do not show a negative sensitivity to extreme summer heat necessary for a more 

accurate estimation of anomalies. In fact, 3 out of 5 summer climate variable sums 
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indicate a markedly beneficial effect on yields and anomaly sensitivity to extreme 

weather events. However, the finding that average anomalies in heat wave years 

predominantly occupy midfield ranks emphasizes that extreme weather events do not 

always cause adverse anomalies. Finally, moderate ß values of summer monthly 

climate variables summarize averaged anomaly sensitivity to weather variability in 

the complete time series, and not to extreme weather events alone. Varying periods 

and intensity of unusually warm weather are either not covered in the models, or the 

monthly time scale is too coarse. 
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4 Discussion 

4.1 Inter-annual weather variability and yield sensitivity analysis  

4.1.1 Important findings 
Before interpreting the results of multiple regression modeling and sensitivity analysis 

in the context of similar studies, the study’s most important findings in these fields are 

summarized in the subsequent section. The following summary focuses on 

methodology, model analysis, and determining sensitivity to weather rather than 

explaining cited literature’s different results and climatic differences among study 

areas. 

The combined models that approximate long-term trends through single and bilinear 

regression fits and inter-annual yield variations through multiple linear regression 

explain an average 96.2% of all winter wheat yield variance in the 8 federal states 

included in the study. An average 52.4% of the anomaly variance is explained by 

monthly climate variables for modeling weather variation, to which yields respond 

with varying sensitivity. Yields are most sensitive to April CWB, the climate variable 

with the highest correlation in 4 out of 8 federal state models. Their ß values average 

at -0.38, indicating that yields are most sensitive to wetter Aprils and respond with 

decreases, as shown through further analysis of April TS and PS. This can be 

explained by high precipitation clogging soils and obstructing root development 

(HOOKER, 1922). The average April CWB partial correlation coefficient is -0.51. 

Federal state models are sensitive to a combination of meteorological factors rather 

than a single monthly climate variable. 41.5% of the selected monthly climate 

variables winter wheat anomalies are most sensitive to allude to summer months. 

Goodness of fit to anomaly series of federal state accounts for over 50% of winter 

wheat anomaly variance in 5 out of 8 states. R2 values range between 0.71 (Lower 

Saxony) and 0.09 (Rhineland-Palatinate). 

County specific models (average of 59%) explain 25% more variance than county 

models based on the higher aggregated federal state model (average of 34%). 

Higher partial correlation coefficients between winter wheat yields and monthly 

climate variables are also determined on the lowest aggregation level. A maximum of 

13 variables are accepted to 1 model, explaining 98% of winter wheat anomaly 

variance through modeling the inter-annual weather influence on crops. A mere 2% 

of residuals attribute to unaccounted for weather impact or influences beyond 
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weather. The partial correlation coefficient of sowing year June PET is among the 3 

highest for monthly climate variables in 17 out of 39 county models (44%). It shows a 

negative coefficient of -0.40 up to -0.97, the latter being a near perfect negative 

correlation. Thus, winter wheat yield anomalies are especially sensitive June PET 

values before sowing has even taken place, and high rates correspond with notably 

decreased yields. This suggests that drier weather has a highly beneficial effect on 

the ripening seeds predestined for sowing in the following year. The climate variable 

accepted to models second-most is April PS, which shows that it also affects yields 

on a level lower than the federal state aggregation level. There, the adverse effect of 

higher April CWB on yields was accredited to high precipitation. ß values (-0.46 to -

0.72), however, are higher on the county level. Partial correlation coefficients are also 

greater, ranging from -0.57 to -0.76. 

4.1.2 Interpretations and comparisons 
HOOKER (1922) found a less pronounced negative correlation between sowing year 

June PS and wheat yields in more basic correlation analyses of wheat and 

temperature and precipitation sums in England: Partial correlation between wheat 

yield and rainfall and temperature sums in overlapping periods of 8 weeks from 

sowing year spring until after harvest for a county in England were highest in October 

of the sowing year (-0.49) and February of the harvest year (-0 50). 

The average R2 of federal and county models are similar to Baumann & Weber’s 

results (1966). Their study on relations between oat yields and weather at a field 

experiment in Schleswig-Holstein found by means of multiple regression analysis that 

6 out of 15 indices with varying temporal resolution led to a minimization of residuals 

and explained 59.4% of yields for the single data series investigated. They 

preselected temperature averages, precipitation sums, and threshold temperature 

sums with a method detecting significant weather differences between years with 

high and low yields. Then they applied backward elimination to composing the 

regression model. This led to partial correlation coefficients which were slightly higher 

than correlations on the federal state level, but comparable to its county level 

coefficients. The authors’ different methodology and higher resolution spatial scale 

reached similar results concerning R2 values. 

ALEXANDROV & HOOGENBOOM (2001) developed statistical crop-weather models with a 

stepwise multilinear regression for local level winter wheat in Georgia, U.S.A. Their 

study implemented detrended yield anomalies, and anomalies of precipitation, 
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minimum, and maximum temperature. The monthly and multi-monthly predictors 

derived from 85 climate stations explained 60% of yield variance at a 5% error level. 

Thus, weather factors determined the variance of wheat anomalies with a similar 

goodness of fit calculated here on a county level. The authors’ segmentation of the 

area in question into climatically homogeneous areas enabled them to measure a 

more exact correspondence between aggregated yields and climate, spatially 

matching them to each other. As my county specific models’ adherence to 

administrative rather than homogeneous climatic units demonstrates, this does not 

improve results in terms of a better goodness of fit to winter wheat yields. 

44% of the county models in this study explain more than 60% of overall yield 

anomaly variance. These models are possibly a result of climate stations 

approximating the climate better in the counties the yields were aggregated in. If this 

is the case, then the models that explain less variance could be improved by data 

from more representative climate stations. Not only would this improve overall R2, it 

would also argument for studying weather influence on yield variability with less 

aggregated data in smaller units. If this is not the case, then differences of anomaly 

influencing factors among counties may account for large deviations in model R2s. 

CHMIELEWSKI & POTTS’s (1995) study on the relationship between meteorological 

variables and non detrended yields derived its findings from a long-term winter wheat 

field experiment in Rothamstead, England. They found that monthly average 

minimum, maximum and average air temperatures explained 33% of long-term yield 

variance. Relationships were approximately linear. Correlation coefficients were 

highest with 9-month precipitation sums (-0.48). This and BAUMANN & WEBER’s 

findings in 1966 show that yield variance (not detrended) explained through simple 

climate variables can vary markedly at the local level. Further studies determining 

whether this is caused by methodological or climatic differences are necessary in 

order to adjust a method best fit to the common objectives here. 

 

4.2 Heat wave analysis 

4.2.1 Heat wave 2003 
In 2003, winter wheat harvests were damaged severely on each aggregation level. 

The totality of the adversely affected area on each scale varies. Expectedly, 

homogeneity of negative results for all considered yield indices (anomaly, A S-1, 

relative anomaly) increases with each disaggregation and associated spatial 
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restriction. Median values of units’ yield indices decrease with increasing spatial 

resolution, due to rising proximity of each higher resolution scale to the core of the 

heat wave. Given the location of the study areas, this means an increase of 

statistically unusual and adverse yields towards the center of the EU-15, meaning 

eastern France and southwest Germany. Central EU-15 countries experienced very 

low to record low index figures, as results in this study show. 

The EU-15 countries lay out a heterogeneous pattern of responses to the historic 

heat wave. Homogeneity of negative results increases with each higher resolution 

within each aggregation level observed, and is highest on the county level, with no 

identifiable spatial gradient. The contrast between these figures and those recorded 

in the Benelux Countries and Denmark, all 4 of which measured positive results, 

suggests a gradient of increasing damage from Atlantic regions southeastward.  

The core of the high pressure zones located over Europe in the first half of summer 

was located in central and northern Europe (MÜLLER ER AL., 2003). The most severely 

affected areas in terms of wheat yield indices correspond to the spatial delimitation of 

the heat wave by UNEP (2004): an area from northern Spain to the Czech Republic, 

and from northern Germany to southern Italy recorded average temperatures 

deviating more than +2°C from the average. The center of action in southern France, 

outlined by the highest temperature deviation, corresponds with the country series 

showing the highest negative anomaly, AS, and relative anomaly. Here, summer 

excesses of up to 5 standard deviations of average temperature deviation in this area 

(SCHÄR et al., 2004) are met with over 3 standard deviations of the yield anomaly (-

3.22 A S-1). The French AS average was nearly matched by a single county average 

in the less severely affected state of Baden-Württemberg (minimum AS was –3.09 A 

S-1 here). Estimated damage to farms in France was between 1.1 and 4.4 billion US $ 

(HOUSEGO, 2003).  

A transect of areas with less affected yields was identified, ranging from the Benelux 

Countries over Denmark to Finland. Countries in the determined transect of 

indifferent to distinctly positive yield anomalies flank the center of action and 

correspond with lower positive temperature deviations (+1-2°C). In the cases of 

Sweden, which recorded the highest yield and positive anomaly in the data series, 

and Finland, this suggests that such temperature deviations provide better conditions 

for wheat than currently present. Consequently, the two identified gradients and 

transects contrast strongest between yield indices in Sweden (highest yield anomaly 
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in data series) and Germany (lowest). This is exemplified by the following 

permutation: In 2003, Germany harvested Sweden’s expected average yield (6.5 t 

ha-1, 16% below expected yields), and Sweden harvested Germany’s expected yield 

(7.6 t ha-1, 16% above the expected yield). 

Altogether, the historic heat wave holds a unique position in Europe’s long-term data 

series, both for its intensity and spatial extent. This position is not matched by 

negative wheat yield indices on the EU-15 level. At the same time, the two 

approximate in rank with each higher resolution scale of the areas of interest. In the 

EU-15, wheat yield anomalies were the 13th lowest in the summer of 2003 in the data 

series starting in 1961, which was very likely warmer than any other in Europe since 

1500 (LUTERBACHER et al., 2004). The rank drops to lowest if a single linear trend fit 

line is used for the EU-15, which is discussed extensively in section 5.5.2. Germany 

and Baden-Württemberg experienced their lowest winter wheat anomalies since 

1950 and 1970 in their warmest summer since 1761 (Schönwiese et al., 2003). 30 

out of 39 counties in Baden-Württemberg had the lowest AS in the data series. 

4.2.2 Heat wave selection and sensitivity analysis 
Heat waves in Germany since 1950 were determined according to 2 averages: (1) 

the average number of summer days exceeding the 90th percentile of 5 climate 

stations’ mean summer maximum temperatures in June, July and August; and (2) the 

average number of consecutive days with temperature maximums over the 90th 

percentile. The 7 years selected correspond well with years showing the highest area 

averaged summer temperature anomalies. Using the models previously derived, the 

following section summarizes findings of correlation studies between extreme 

weather and deviating yield figures in similar studies, and then evaluates the 

objective of judging how strongly anomalies are driven by extreme weather, in this 

case heat wave events. Thereby, it is important to take into account that other factors 

which influence crops are not considered here: for example, effects of CO2 

fertilization are higher at increased temperatures (WHEELER et al., 1996), while soil 

moisture depletion and lack of convective rainfall reduce yields, all processes that 

characterized the 2003 heat wave (BENISTON, 2004). Furthermore, other stress 

events coinciding with sensitive crop development phases significantly contribute to 

variations in grain yields (BATTS et al., 1997). So it must be stressed here that 

extreme temperatures alone do not cause the negative yields. 
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CHMIELEWSKI & POTTS (1995) determined the influence of unusual weather years on 

yields in Rothamsted, southern England, by isolating yields that occurred in years 

within the upper and lower quartiles of monthly climate variables on one hand, and 

isolating upper and lower quartile yields on the other. The authors found that low 

yields always corresponded with relatively cold and wet years, while dry weather was 

beneficial. 

SOJA & SOJA (2003) investigated the monthly weather that caused the lowest winter 

wheat harvests by normalizing harvests of Austrian federal states and extracting 

those below the 5th percentile of relative anomalies and quantile thresholds for 

absolute anomalies. Cold Februarys with negative deviations from average values 

recurred in these extreme harvest years. 

Modeled yield sensitivity to weather variation often falls short of responding to 

extreme weather in distinctly deviating anomaly years. BAUMANN (1996) draws a 

connection between weather conditions and optimal yield rates. Accordingly, years 

with yields below the optimal rates must have weather patterns deviating from these 

conditions. However, findings in the experiments performed by HOOKER (1922, 

outlined in 2.1.2) stand in contrast to this finding: results in highest and lowest yields 

did not appear to have significantly higher partial correlation coefficients to 

temperature and precipitation sums. At the same time, the actual yields often 

exceeded the calculated values without offering an explanation through particular 

events. Moreover, they were recorded in years with persistently (un)favorable 

conditions as opposed to extreme weather events alone. 

Winter wheat ranks among the 8 federal states were averaged for heat wave years. 

They are scattered throughout the range of 48 year ranks, averaging at 20th lowest. 

This suggests that (1) yields are sensitive to more than summer temperatures that 

exceed the thresholds used for heat wave selection here, and (2) heat waves may 

even have beneficial effects on yield anomalies. Furthermore, the diverging ranks 

suggest that the criteria for selecting heat wave years in Germany are a unifying 

factor for years with otherwise diverging characteristics. The fact that only one year 

(1976, -0.82 t ha-1) out of 3 negative anomalies showed a distinct drop confirms that 

streaks of excessive heat alone do not trigger large yield reductions.  

Exclusively negative figures of averaged modeled anomalies indicate that they are 

more sensitive to the temperature rises than the actual anomalies are: the latter are 

underestimated in each run by an average 0.47 t ha-1. However, the modeled figures 
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approximate actual anomalies well when averaged for each federal state, besides 

Schleswig-Holstein, in heat wave years: the difference is halved to 0.25 t ha-1. 

Sensitivity to weather variation in summer months is evident in 5 out of 8 models. The 

summer climate variables of each federal state model that contribute to anomaly 

figure are temperature driven or involve temperature as a parameter in 8 out of 10 

cases. However, (1) processes beyond those in summer months superimpose their 

explanatory capabilities; (2) positive and negative sensitivity counterbalance each 

other. Thus, summer variables alone only approximate the modeled anomaly in 

Bavaria.  

Modeled heat wave year anomalies averaged for each federal state strongly respond 

to the summer climate variables in heat wave years in 4 out of five case, and show 

deviations of over 1 t ha-1. In Lower Saxony, modeled yields respond to June PS and 

July PET with an average yield deviation of over 2 t ha-1 in heat wave years.  

Conclusively, modeled yields tend to respond distinctly to summer climate variables 

in heat wave years, but these responses must be put into the context of overall 

weather influence on winter wheat anomalies within the total range of observed 

months. In addition, some federal state models, all 3 explain less than 50% of total 

anomaly variance, show no sensitivity to summer weather (Hesse, Saarland, 

Schleswig-Holstein).  

Analyzing the response to the heat wave summer in 2003 would provide further 

insights into (1) how modeled anomalies are sensitive to unusually warm periods 

spanning months, as opposed to weeks; and (2) when heat wave effects 

superimpose the counterbalancing effect of weather variability on yields beyond 

summer months. Summarizing the sensitivity to the most common climate variables 

here shows that higher June WS has adverse effects, and higher August TS has 

positive effects on yield anomalies. 

 

4.3 Climate variables 

4.3.1 PET following Turc-Ivanov 
Calculating potential evapotranspiration with the formula after Penman may 

contribute to the multiple regression models accounting for a greater part of overall 

anomaly variance than with the formula following Turc/Ivanov. Tests have shown that 

Turc/Ivanov returns deviating values early in the year, and correction factors were 

recommended for implementing the formula into models (DVWK, 1996). If calculated 
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PET values are in fact proportionally lower than actual measurements, as the tests 

had found for the federal states, then this systematic error is not expected to have 

distorted results on multiple regression models. 

4.3.2 Predictors beyond temperature and precipitation sums 
Several reasons affirm incorporating climate variables PET, CWB and DMI, in 

addition to often used temperature sums (TS and WS) and precipitation sums (PS): 

(1) they comprise 20 out of 41 (49%) of the monthly climate variables included in 

federal state models, and 81 out of 155 (53%) in county specific models; (2) they also 

provide a monthly variable that correlates highest with yield anomalies in 5 out of 8 

federal state models (63%) and 23 out of 39 county specific models (59%); and (3) 

they contribute monthly variables most often correlating highest with yield anomalies 

on both levels model were calculated on. PET plays a prominent role in explaining 

yield anomaly variability on both scales. 

4.3.3 Inclusion of further indices 
As stated in the introduction, an objective is to test relatively simple monthly climate 

variables within the chosen methodological framework and draw conclusions about 

the applicability of this approach to other problems on the one hand, and about using 

more complex variables with different temporal resolutions on the other. Selected 

models on the county level explain 75% and more of winter wheat yield anomaly 

variability through monthly climate variables alone at a 5% error level and a 

maximum of 13 accepted variables. The average R2 for the 39 counties is 0.59. The 

remaining variance unaccounted for can be attributed to 2 aspects: (1) influences on 

anomalies aside from weather; and (2) weather influences beyond that comprised by 

the included monthly climate variables. The yield and weather data are considered to 

be exempt of systematic errors. Thus, the findings do not suggest that the total 

weather influence is covered by the 6 variables, because adjacent administrative 

units with similar climate conditions often show strongly diverging model results. 

These discrepancies can hardly come from comprehensive shifts in weather 

influence patterns and other crop driving influences substantially changing. It is 

assumed that the spatial heterogeneity of model results and anomaly sensitivity can 

be improved in favor of more homogeneous federal models with an overall higher 

goodness of fit. Differences in models can not be deducted from climatic differences 

alone, which provides empirical evidence for this. For example, strongly contrasting 
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models for the adjacent federal states Rhineland-Palatinate and North Rhine-

Westphalia suggest shifts in climatic regimes that do not correspond with long-term 

observations. 

The monthly climate variables produce figures that do not consider the 

meteorological situation in preceding weeks or months, nor short or long-term build 

ups of abnormal dryness or wetness, nor spatial and temporal high resolution 

extreme weather events. These events can have strong impacts on crops, but are not 

automatically inherent in figures I calculated. For example, the impact of events such 

as hailstorms and late frosts on yields can play an important role in explaining 

anomaly outliers otherwise falsely attributed to different factors, and increasing 

variability on finer aggregation levels. 

Control variables for determining water stress, drought or crop moisture could 

account for extreme weather events impact on crops which are either shorter or 

longer than the selected temporal resolution, or are averaged in the monthly 

calculations. For example, the Palmer Drought Severity Index (PDSI) and Crop 

Moisture Index (CMI) measure long-term (matter of months) and short-term drought 

(matter of weeks), respectively. They reflect rainfall and moisture deficit or excess 

and are useful for following the impacts of precipitation on agriculture (NOAA, A AND 

C). However, applicability of these semi official indices in the United States must be 

tested for the study area first. Furthermore, threshold variables could detect short 

extreme weather events, such as hailstorms or flash floods.  

Variables calculated for shifting time windows of phenological phases could also be 

implemented in a consecutive study. Although they are not climate variables in the 

sense predictors abided by, yield sensitivity to them can be measured in an 

analogous approach. 

4.3.4 Representative climate data  
There is a compromise in model quality if the location point yield data is gathered at 

does not coincide with the location of the climate station selected for weather data. 

This can lead to the assumption that model quality declines with expanding area it 

represents. The model results on the federal state level do not support this 

assumption. In fact, R2 values and federal state area in km2 display a distinct 

correlation of 0.72, with the 4 largest federal states (Bavaria, Lower Saxony, North 

Rhine-Westphalia, Baden-Württemberg) showing the markedly highest R2 values for 

models. This can be explained by the finding that variance decreases with increasing 
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aggregation of yield data. In consequence, yields aggregated over a larger area and 

less prone to spatially confined weather events will be averaged more, considerably 

reducing outliers. This provides conclusions as to why models of the smaller federal 

states Saarland and Rhineland-Palatinate show less sensitivity to weather variation. 

These results do not contradict the finding that county specific models in Baden-

Württemberg explain more inter-annual yield anomaly variance than models on a 

federal state level. Counties are an average 3.6% of the size of Baden-Württemberg. 

Yield data for counties is (1) less aggregated and (2) more likely a closer fit to yield 

data located at the climate station than in federal states. So both the predictors and 

the dependent variable in the multiple regression models are better approximations of 

the aggregation unit they present on the one hand, and better approximations of 

each other spatially on the other.  

County size ranges between 97.8 km2 and 1854.8 km2. R2 values for county specific 

models and area in km2 correlate at –0.09, displaying a near non existent correlation. 

This suggests that counties in this size range are equally adequate for the model 

methodology established. Results returned recommend (1) testing the adjustments 

and extensions to the methodology derived from the discussion so far; and (2) 

applying the methodology to differently sized counties in other federal states. 

 

4.4 Further scaling issues 
In the subsequent section, conclusions will be drawn for to which aggregation level 

contains information as accurate as necessary and as generalized as possible, as 

well as for up- and downscaling issues. These objectives are met by comparing 

modeling yield anomalies and their sensitivity to inter-annual climate data on two 

scales, as stated in the introduction. The 2 scales coincide with the 2 aggregation 

levels in question, defined by administrative borders (federal states in Germany, and 

counties in Baden-Württemberg). 

Different conclusions are made at different scales, and implementing GIS methods 

helped establish the appropriate scale for modeling effects of heat waves and climate 

variables on yields. For these reasons, I compared R2 values produced by: (1) 

modeling county yield anomalies with county specific climate data; and (2) applying 

the federal state model to all counties. Results from asking the same questions on 

different scales contributed to revealing the scale best suited to pose the question on. 
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4.4.1 Up- and downscaling models 
According to a brief introduction by STEIN et al. (2001), upscaling changes high 

resolution data towards a low resolution, and downscaling is the inverse process. 

Scaling, which entails process changes aside from spatial changes, resulting in 

constraints and feedbacks (SCHULZE, 2000), goes beyond simple (dis-)aggregation of 

values between levels. Scaling is thus complex, as processes can differ between 

scales and can require separate treatment for different components. In this study 

model downscaling signifies the simple and unmodified transference of a model 

derived from one aggregation unit to a finer scale therein, represented by finer 

aggregation units. This may have resulted in inaccuracies. More complex methods of 

downscaling in environmental studies have been applied by SCHULZE (2000) and 

STEIN et al. (2001).  

4.4.2 Upscaling 
Applying the federal state model to counties produced models with a distinctly lower 

average goodness of fit than county specific models. Further studies are necessary 

to discern how models based on data aggregated on a county level are suitable for 

explaining yield variability on a higher aggregation level. For example, the county 

model with the highest information content for estimating yield anomalies through 

weather could be determined with statistical criteria, and then applied to the pertinent 

federal state. This approach is the upscaling counterpart to the model downscaling 

applied here. The Akaike Information Criterion (AIC), a model fit measure, could 

provide the selection criteria for the model with the highest information content. It 

quantifies models’ relative goodness of fit by balancing a model’s complexity (i.e. 

number of explaining variables) with goodness of fit to its sample data. 

4.4.3 Downscaling and further disaggregation 
A further disaggregation from a county level to a borough (Ger. Gemeinde) level 

could determine whether yield sensitivity to weather rises further with even higher 

spatially resoluted data. This would be a preceding step for deriving models from 

more homogeneous units in terms of weather variability. Information content and 

detail, however, could increase at the expense of the appropriate spatial overview 

aimed at. Earlier studies cited in this context did not produce models approximating 

yield variability with climate variables notably better on a lower scale. By contrast, the 

findings in this study do not suggest that the methodology applied on federal state 

and county levels will lead to lower correlations on a local level than on levels 
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modeled on. A climate stations’ data could hereby be expected to explain yield 

anomaly outliers better on higher resolution scales. This is because the increase of 

information on spatially confined extreme weather events may lead to a better match 

of yield data and weather data variability. 

4.4.4 Multiple regression analysis with actual yields 
As a test, county specific model results were produced, but this time the dependent 

variable was represented by actual winter wheat yields instead of anomalies. This 

means that models did not explain variance of yield anomaly variability, the short-

term characteristic of yield series, but rather long-term yield dependencies on 

monthly climate variables. The time series (1971-1998), area of interest (Baden-

Württemberg counties), and methodology of multiple regression analysis were 

identical. Because of the focus on the weather information in detrended anomalies, 

results beyond R2 values are not discussed here. 

Average R2 for the 39 counties reaches a soaring figure of 0.75, 0.16 higher than for 

anomaly models on the same scale. The standard deviation of the absolute anomaly 

models is halved to 0.06 t ha-1. To what degree each component that was factored 

out through detrending contributes to this better fit remains an open question. If 

similar results for long-term yield model analysis are achieved on coarser scales and 

aggregation levels, arguments for the upscaling of yields model that rely exclusively 

on monthly climate variables could be further substantiated. 

4.4.5 Influence by agroeconomic policies 
Implemented EU policies may explain stagnant yields in bilinear fitted countries to an 

extent. In Italy for example, an area payment scheme determines an average 

productivity for a fixed area. The sum of money paid to farmers corresponds to this 

average, regardless of how much is harvested. The payments are higher for maize 

than for barley, which in itself would not diminish barley yield figures. It does have 

this effect though, because barley is ousted to areas with less favorable soil 

conditions (BADECK et al., 2004). If climate conditions enable further cultivation of 

maize, then it replaces barley, and overall barley yield per hectare decreases. A 

similar study could investigate if identified wheat yield changes in EU-15 countries fit 

with bilinear fit lines are related to comparably implemented policies. 

This would provide an empirical explanation for the absence of bilinear trends in 

northern European Countries, where maize cultivation is either not an option due to 
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climatic conditions, or only grows in confined areas and thus can not compete with 

wheat in the manner outlined for barley and maize. 

 

4.5 Interpreting results of a statistical approach to yield anomaly 
analysis 

4.5.1 Comparing results of a prognosis through Remote Sensing and a 
statistical data approach 

Results of the heat wave 2003 analyses show how yields responded to this meso- 

scale extreme weather event. They were put into the context of long-term data series 

to qualitatively and quantitatively determine if in fact yields were as unusual as the 

weather event itself. This study has emphasized inter-annual variation as a distinct 

characteristic of yield figures. Therefore, comparing yield figures to those 1 year in 

advance, for instance, rather than to a trend, will lead to different conclusions. 

Additionally, the methodology of how yield data is gathered, assessed and evaluated 

also strongly influences results.  

Fig. 18 shows how wheat yield changes diverge (1) by how the comparison is made 

and (2) how yield data is assessed. Map A is a reproduction of a yield change 

prognosis from 2002 to 2003 in % by monitoring agriculture with Remote Sensing as 

performed in the Joint Research Center (JRC) MARS project (2003), published in 

August 2003. Map B applies the same temporal comparison, but with FAO yield 

figures and with the methodology this study applied. So a Remote Sensing approach 

combined with yield models is juxtaposed to a statistical reproduction of the map. 

Map C shows the deviation of actual from expected yields of single and bilinear 

trends in %, as performed and explained in 3.4 and 3.5.3. The dataset used is 

identical to that in Fig. 6, but this time the legend used by JRC for defining 

percentage change classes is applied throughout. Map B shows larger yield change 

contrasts than A, with more countries showing yield changes over +3.5% (Ireland, 

Benelux countries), and countries with the lowest standardized anomaly deviations 

(Germany, France, Austria, Italy, see Table 6) dropping below JRC values. Map A 

implies a large scale negative change spatially, but milder in intensity. Map C shows 

a further accentuation of the contrasting figures in B and exhibits the beneficial 

(Sweden) and adverse (countries in core of high pressure zones) conditions well. 

2003 yield changes are classified differently in 11 countries mapped in A and C.  
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The wheat yield figures in 2003 relative to long-term figures display changes in a 

different context, and with different results. This notion is best summarized by the 

diverging figures on the Iberian Peninsula. Portugal experienced a minor decrease of 

–2.7% relative to the long-term (bilinear) trend, while figures caved in over 20% 

relative to 2002 figures. Spain shows the same tendency, but with more moderate 

changes.  

Changes detected in Map A do not allow qualitative conclusions about yields in 2003, 

because they do not take into consideration how favorable or unfavorable yields in 

2002 were. While this approach can exemplify inter-annual yield variation, map C 

shows how yields deviated from long-term figures and indicates the intensity with 

which areas factually benefited or suffered losses. This is the favorable approach to 

qualitative and quantitative spatial analysis of a meso-scale heat wave events actual 

significance. 
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4.5.2 Qualitative changes through different methods for fitting yield 
trends 

The preceding discussion shows how results of a Remote Sensing based prediction 

and an a posteriori analysis of statistical data approach can diverge, especially if 

compared to long-term trends. Table 18 displays implications of how this statistical 

data, and consequently yield sensitivity analysis, is highly dependent on how the 

long-term trend is derived. 

Ranks of wheat anomalies in EU-15 countries from 2000-2003 and 1976 are listed for 

both single and bilinear trends (where found necessary), and for exclusively single 

linear trends. This qualitative assessment suggests 2 largely straying responses of 

wheat to influences beyond technological advancement on the EU-15 level since 

2000. Lower numbers correspond to lower ranks and yield anomalies. Ranks since 

2000 diverge by an average 16 ranks between fits. The overall EU-15 yield anomaly 

fit with the determined declining trend starting in 1998 (see Table 5 in section 4.1 for 

slope values) alternates between moderately low and high ranks in the anomaly 

ranking of single and bilinear fit lines to the left. It ranked 13th lowest in 2003, despite 

the heat wave, anomalies in two of the largest wheat producing countries (France 

and Germany) ranking lowest, and 3 more ranking in the lowest 10. The bulk of other 

countries have anomalies predominantly ranking in the 2nd and 3rd quantile. The 

lowest rank for single and bilinear fit lines was achieved in 1976 for the EU level. 

Total EU-15 yield data for calculating its rankings was downloaded from the 

FAOSTAT website as such, and was not calculated from the separate country figures 

used here. 

Yields detrended by single linear fits alone suggest that influences on wheat yields 

were highly adverse in EU countries in 3 of the past 4 years, causing 3 of the 6 

lowest anomalies since 1961. This negative anomaly streak culminates to the lowest 

anomaly rank in 2003. 8 country anomalies rank among the 10 lowest, 5 of them rank 

lowest. The 1976 figure ranks 3rd lowest here. 
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Table 18. Ranks of wheat anomalies of EU-15 countries in selected years. 1=lowest anomaly, 
43=highest anomaly. Data series: 1961-2003 

Ranks of wheat anomalies, single and bilinear trends Ranks of wheat anomalies, single linear trends 

EU-15 country 2000 2001 2002 2003 1976
Austria 5 38 28 4 40 
Belgium & Luxemburg 5 19 16 26 8 
Denmark 24 17 5 28 3 
Finland 39 31 24 19 41 
France 15 2 20 1 3 
Germany 20 43 3 1 2 
Greece 34 25 18 5 35 
Ireland 37 24 5 13 1 
Italy 32 6 39 7 21 
Netherlands 12 3 1 25 13 
Portugal 35 2 39 20 27 
Spain 41 6 35 33 19 
Sweden 15 7 16 43 24 
United Kingdom 34 3 33 21 1 
EU-15 35 11 39 13 1  

2000 2001 2002 2003 1976 EU-15 country 
2 16 6 1 40 Austria 
5 19 16 26 8 Belgium & Luxemburg 

24 17 5 28 3 Denmark 
23 18 13 8 38 Finland 
15 2 20 1 3 France 
20 43 3 1 2 Germany 
20 11 8 1 37 Greece 
37 24 5 13 1 Ireland 
12 2 11 1 27 Italy 
12 3 1 25 13 Netherlands 
20 1 26 4 32 Portugal 
37 4 26 23 20 Spain 
15 7 16 43 24 Sweden 
23 2 20 5 1 United Kingdom 
24 2 6 1 3 EU-15  

 

The evaluation differences in 2003 attest to modified bilinear anomalies for 7 EU-15 

countries. Austria, Greece and Italy rank lowest with single fit lines, as opposed to 4th, 

5th and 7th with bilinear fit lines. As Fig. 19 and Table 18 show, the assumed impact 

on yields relative to expected yields or long-term trends changes through adjusting fit 

lines to stagnating or declining wheat yields in the past decades. 

Fig. 19 displays deviations of actual from expected wheat yields in 2003 in EU-15 

countries. Single and bilinear fit lines for yield data are on the left, and exclusively 

single linear fit lines for yield data on the right. Positive changes of relative anomalies 

in all 7 modified yield series result in a less negative effect on Mediterranean 

Countries. The Greek relative anomaly improves by +13%. The Portuguese figure 

has the highest positive change (+19%). The area at the core of the heat wave 

remains far below expected yield figures, despite less negative deviations in Italy and 

Austria, and confirms how sensitively wheat yields responded to the weather situation 

there. 
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Fig. 19. Deviation of actual from expected wheat yields in EU-15 countries in 2003. Single and bilinear 
fitted yield trends are on the left, exclusively single linear fitted yield trends on the right. The numbers 
in the left maps represent the relative anomaly change in % for the countries with bilinear fit lines. 

 

Anomalies are derived from long-term trends and respond to the varying impact of 

factors on an inter-annual basis. The trends are induced inter alia by technological 

advancement (SWANSON & NYANKORI, 1979; PHILLIPS et al., 1999) agropolitical 

regulations (BADECK et al., 2004) and climate change (CHMIELEWSKI & POTTS, 1995). 

Anomalies can not be used to directly determine what the driving factors of the long-

term trends are. Therefore, interpreting causes of a stagnating wheat yield trend 

found for the EU-15 after 1998 is not an objective here. Yields in 2003 represent the 

last data cases in EU-15 country yield series. This must be considered here as a 

trend adjusting factor. Research on wheat yield trends in 188 nations by HAFNER 

(2003) showed that yield growth is not being limited by general physiological 

constraints on crop productivity, so the finding of such bilinear trends raises 

questions as to (1) whether the aforementioned trend can be attributed to modified 

driving factors; (2) what the driving force behind it is; and (3) in how far this trend will 

persist.  
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4.6 Statistical challenges in the applied models 

4.6.1 Number of predictors 
The number of predictors used to fit a model should be less than a fourth of the 

number of samples. A maximum of 13 monthly climate variables was accepted to a 

multiple regression model (to the county specific model of Tübingen, Baden-

Württemberg, R2=0.98). Only this model and the Karlsruhe (R2=0.92) county model 

exceeds the quotient. The model for Rottweil, the county providing data for the 3rd 

best fit (R2=0.91), has 8 accepted predictors. While the number of potential predictors 

is extremely high (102), the acceptance criteria reduce these to a statistically viable 

amount in all multiple regression models but 1. 

4.6.2 Multicollinearity 
The problems of collinearity and multicollinearity were not extensively addressed in 

the multiple regression analysis. Collinearity refers to a situation where one 

independent variable is a linear function of others and can result in a nearly total 

prediction of independent variables through other ones included (VOGEL, 2000; 

SPSS, 2003). This complicates separating redundant effects. For example, 

temperature sums >=5°C (WS) may be prone to collinearity with temperature sums 

>=0°C (TS) incorporated in the same models. 

However, the tolerance of each variable accepted to federal state models do not 

confirm that multicollinearity needs more scrutiny here. Tolerance is defined as 1-R2 

for the regression of an accepted variable to all other variables accepted (without 

considering the dependent variable). Tolerance close to 0 indicates high 

multicollinearity and unstable ß values (SPSS, 2003). The lowest tolerance is 0.573, 

for July PET in the Lower Saxony model, and represents 1 of 2 values below 0.6. All 

other variables selected for multiple regression models have tolerance values 

between 0.981 and 0.678. 

4.6.3 Adjusted R2 
Trade-off relationships between information content and the number of explaining 

variables were not considered in multiple regression analysis for discouraging 

potential overfitting. The AIC and adjusted R2 take such effects into account. 

Reasons for considering R2 over adjusted R2 values were stated in the methodology 

section (3.7.6). However, if the study were to be repeated again, the adjusted R2 

would be used for studying multiple regression model results of the Baden-
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Württemberg federal state model applied to each county. This would take into 

account that the sample sizes (yields in 31 or 34 years) are lower than the size the 

federal state level model is derived from (yields in 54 years). Adjusted R2 would 

temper goodness of fit, because (1) it can drop with further variables accepted to the 

model, as opposed to the customary R2; (2) less observations decrease adjusted R2; 

and (3) higher amounts of independent variables decrease adjusted R2. Conclusively, 

R2 values for county models based on the Baden-Württemberg federal state model 

would be even lower, further broadening the gap of prediction quality between them 

and county specific models. 

  

4.7 Variability: record high winter wheat yields and turnovers in Baden-
Württemberg in 2004 

The following calculations are based on winter wheat yield data obtained from the 

Baden-Württemberg State Bureau of Statistics website (Sept. 2004) and close the 

discussion section. In 2003, the lowest winter wheat anomaly (-1.05 t ha-1) in the 

Baden-Württemberg data series from 1950-2003 was calculated for the warmest 

summer in Germany since at least 1761 (SCHÖNWIESE et al., 2003). In 2004, it 

rebounded to the 3rd highest anomaly (+0.79 t ha-1) in the highest yield anomaly 

change between 2 consecutive years (+1.85 t ha-1). This equals a relative anomaly 

jump of 32%. Such inter-annual variability, referring to variations in the mean state of 

inter-annual yield indices, is the main characteristic of anomaly series in question and 

can be explained to an extent by meteorologically induced factors, or weather 

variation, to which crops are sensitive. This relationship between weather and crop 

yields prompts me to pose the following closing questions: (1) are inter-annual 

weather and, in turn, wheat yield variability increasing?; and (2) if so, how are wheat 

yields sensitive to such a weather variability increase? SOUTHWORTH et al. (2002) 

concluded from their climate and crop model analysis that climate variability is an 

influencing factor for wheat yields. MEARNS et al. (1992) in turn suggest that changes 

in climate variability, in addition to changes in mean conditions, could have serious 

effects on crops. So, finally, (3) does the yield sensitivity to such variability remain 

linear, or does it increase at a non-linear rate the more extreme the events are, as 

WAGNER (1999) has shown for simulated extreme high temperature run probabilities 

to increasing climate variability? 
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4.8 Limitations of spatial consistency through lacking data 
Multiple regression analyses could not be conducted in all areas of interest, which cut 

back on the aim to perform all analyses on each aggregation level. First and 

foremost, although the overall compiled data situation can be positively reviewed, the 

availability and consistency of data series did pose a limiting factor: a comprehensive 

regression analysis of winter wheat yields in eastern German federal states was 

obtruded by lacking data. Series of crop yields in the former German Democratic 

Republic and the five federal states emerging from it after the Reunification in 1990 

are incomplete and not included in the analyses. The Federal Statistical Office of 

Germany could not provide digital data for eastern German federal states before 

1990. Specifically for this study the disadvantage lies in omitting spatially holistic 

results for Germany. Not only did the acquisition of gathered data take long, the 

availability of digitized data series was restricted. Compiling older data sources from 

annual statistical yearbook would have been possible, but refining them to the values 

appropriate for today’s federal state boundaries was ruled out for reasons indicated 

in the methodology section (3.2.1.2). Altogether, restricted data access cut back 

analyses on the three aggregation levels to a degree, but did not threaten the 

applicability of the general methodology and approach. Time constraints already 

alluded to impeded a multiple regression analyses for EU-15 countries. 
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5 Conclusions 
By modeling the weather influence on detrended winter wheat yield anomalies 

through multiple regression analysis, this study sought to determine to which degree 

yields can provide a measure of sensitivity to inter-annual weather variability. I relied 

on statistical methods to establish both the sensitivity to weather and which weather 

has beneficial or adverse effects on yields. Inter-annual weather variation was 

modeled through 6 monthly climate variables. In how far weather contributed to 

explaining yield anomaly variability was also addressed. These studies were 

performed on 2 scales segmented by 2 aggregation levels, namely on former West 

German federal states, and on Baden-Württemberg counties. Applying GIS methods 

helped determine spatial homogeneity or heterogeneity of modeled winter wheat 

yield anomalies as well as actual yield indices after the historic heat wave in 2003. 

Changes in statistical coefficients, determining sensitivity and correlation, and yield 

variability occured between aggregation levels. These shifts hold for counties both in 

relation to the federal state Baden-Württemberg, and to other federal states. The 

average predictability of winter wheat yield anomalies, ß values of the highest 

correlating variables and partial correlation coefficients increase as the spatial 

resolution of the Baden-Württemberg model increases. These findings imply an 

amplification of yield sensitivity through disaggregation. The higher resolution data on 

county levels leads to better model results. Sensitivity is higher at the county level as 

a measure of winter wheat yield anomalies’ response to weather. Thus, these 

findings confirm that focusing on one scale obscures important information that takes 

effect at a finer scale, a conclusion noted in SCHULZE’s (2000) study on transcending 

scales in studies of climate change on agrohydrological responses. Conclusively, 

findings indicate advantages of a higher resolution approach for analyzing crop 

sensitivity to weather on different scales that are segmented into units of different 

aggregation. 

More than half of the inter-annual variance of detrended yield anomalies can be 

explained by weather on both aggregation levels, to which anomalies can be highly 

sensitive. R2 values exceed 90% in some counties models. Partial correlation 

coefficients and ß values of monthly climate variables most often selected by multiple 

regression models are substantially higher on the county level. Other studies cited 

here that employed similar methods do not show partial correlation coefficients of the 

scale found here between county-level yield anomalies or yields, and climate 
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variables. The results of multiple regression model analysis discussed in the context 

of similar studies are consistent and sound enough on a low aggregation level, but do 

not suggest that the variation in yield anomalies apportioned to weather has yet been 

fully covered, both qualitatively and quantitatively. With the help of methodological 

improvements noted in the discussion section, up- and downscaling multiple 

regression models to different resolution data could be further tested.  

Potential evapotranspiration plays a prominent role in explaining yield anomaly 

variability on both of the scales multiple regression analyses were conducted on. 

These findings meet 2 further objectives of this study, namely (1) testing the 

methodology on different scales to determine at which level the problems are best 

approached on; and (2) applying climate variables beyond those introduced in similar 

studies. In conclusion, arguments were provided to incorporate more complex 

variables in further studies, as  the methodology used here arrived at solid results. 

Multiple regression model analyses at a federal state level suggest that wetter Aprils 

are the primary cause of lower yield anomalies. Sowing year Junes with low potential 

evapotranspiration assume this role on a county level, but yields here are also 

sensitive to wetter Aprils. In the context of analyzing vulnerability as defined by the 

IPCC (2001, B), these findings of sensitivity can contribute to determining to which 

degree yields in the areas of interest are susceptible to, or unable to cope with 

changes in climates’ mean state, variability and extremes. 

I extensively analyzed detrended yield indices in the heat wave year 2003 on 3 

different scales segmented by 3 aggregation levels. Wheat and winter wheat 

anomalies were put into the context of long-term data series to qualitatively and 

quantitatively determine if they were in fact as unusual as the weather event itself.  

Relative to the time series used, the negative anomalies approximate the historic 

rank of the heat wave with each higher resolution scale of the areas of interest. 

SOUTHWORTH et al. (2002) have shown that in areas where current growth of wheat is 

limited in some way, climate change may induce increased growth and higher yields. 

Studies predict the increasing occurrence of such summers as in 2003 in Europe in 

the 21st century (BENISTON, 2003) and results from regional climate models suggest 

that approximately every second summer will be as hot or hotter than 2003 by the 

end of the 21st century (LUTERBACHER et al, 2004). Thus, in the light of these findings, 

it can be assumed that the basic spatial patterns of yield anomalies found in this 
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study for after the highly unusual heat wave in 2003 will become increasingly 

common in years to come. 
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7 Annex - selected climate stations 
 
Table 19. Climate stations selected with GIS methods for providing homogenized climate data for 
federal state models. The homogenized data was used for multiple regression analysis. 

Station Name/Location Federal State Longitude Latitude Station ID

Hameln Lower Saxony 9.33 52.12 1547

Gütersloh North Rhine-Westphalia 8.35 51.88 1577

Simmern-Wahlbach Rhineland Palatinate 7.60 50.00 2268

Grebenhain-Herchenhain Hesse 9.27 50.48 2633

Laichingen Baden-Wuerttemberg 9.70 48.50 2729

Westermarkelsdorf/Fehmarn Schleswig-Holstein 11.07 54.53 3835

Augsburg-Mühlheim Bavaria 10.93 48.43 4128

Berus Saarland 6.68 49.27   

 
Table 20. Climate stations selected with GIS methods for providing homogenized climate data for 
county models in Baden-Württemberg. Climate scenario data of stations highlighted red was used for 
anomaly simulations. Climate data of precipitation stations with 5-digit numbers Ids was interpolated. 
They are located at the bottom of the table. 

Station Name/Location County Longitude Latitude Station ID

Baden-Baden-Geroldsau Baden-Baden 8.25 48.73 2701

Buchen Neckar-Odenwald-Kreis 9.32 49.52 2685

Crailsheim-Ingersheim Schwäbisch Hall 10.08 49.13 4099

Ellwangen/Jagst Ostalbkreis 10.13 48.97 4100

Freudenstadt Freudenstadt 8.42 48.45 2751

Hechingen Zollernalbkreis 8.98 48.38 2754

Heidenheim/Brenz Heidenheim 10.13 48.67 4102

Heilbronn Heilbronn; City 9.23 49.15 2689

Karlsruhe Karlsruhe; City 8.37 49.03 2698

Klippeneck Tuttlingen 8.75 48.10 2758

Lahr Ortenaukreis 7.83 48.37 2303

Laichingen Alb-Donau-Kreis 9.70 48.50 2729

Lenningen-Schopfloch Esslingen 9.53 48.53 2717

Mannheim Mannheim; City 8.55 49.52 2695

Mergentheim, Bad-Neunkirchen Main-Tauber-Kreis 9.77 49.48 2679

Muensingen-Apfelstetten Reutlingen 9.48 48.38 2753

Neudenau Heilbronn 9.27 49.30 2687

Oehringen Hohenlohekreis 9.52 49.22 2684

Pforzheim-Eutingen Pforzheim; City 8.75 48.90 2711

Sankt Blasien Waldshut 8.13 47.77 2776
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Schallstadt-Mengen Freiburg im Breisgau; City 7.72 47.97 2314

Stoetten Göppingen 9.87 48.67 2728

Stuttgart-Neckartal Stuttgart; City 9.22 48.78 2715

Überlingen/Bodensee Bodenseekreis 9.18 47.77 2787

Ulm Ulm; City 9.95 48.38 2730

Villingen-Schwenningen Schwarzwald-Baar-Kreis 8.47 48.05 2739

Vogtsburg-Oberrotweil Breisgau-Hochschwarzwald 7.63 48.10 2305

Weingarten Ravensburg 9.62 47.80 2791

Althengstett Calw 8.75 48.74 25131

Backnang Rems-Murr-Kreis 9.43 48.96 25133

Ettlingen-Ettlingenweiler Karlsruhe 8.38 48.93 25155

Freiamt-Keppenbach Emmendingen 7.92 48.15 24106

Kandern-Sitzenkirch Lörrach 7.63 47.72 28115

Koenigsbach-Stein Enzkreis 8.63 48.97 25297

Konstanz Konstanz 9.18 47.68 29107

Pleidelsheim Ludwigsburg 9.20 48.95 25304

Rottenburg-Niedernau Tübingen 8.90 48.47 25113

Rottweil Rottweil 8.63 48.19 25018

Schwendi-Schoenebuerg Biberach 9.94 48.16 25205

Sigmaringen Sigmaringen 9.20 48.06 25035

Sinzheim-Leiberstung Rastatt 8.10 48.75 25307

Weil Der Stadt Böblingen 8.88 48.77 25300

Wiesloch Rhein-Neckar-Kreis 8.68 49.30 25272

 
Table 21. Climate stations selected for determining heat wave years in Germany 

Station Name/Location Federal State Longitude Latitude Station ID

Giessen Hesse 8.67 50.58 2701

Hohenpeissenberg Bavaria 11.02 47.80 2685

Karlsruhe Baden-Württemberg 8.37 49.03 4099

Potsdam Brandenburg 13.07 52.38 4100

Prague (Czech Republic) 14.45 50.00 2751
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