
KIP

FOR

POTSDAM INSTITUTE

CLIMATE IMPACT RESEARCH (PIK)

PIK  Report

No. 103No. 103

Nicola Botta, Cezar Ionescu, Ciaron Linstead, Rupert Klein

STRUCTURING DISTRIBUTED
RELATION-BASED COMPUTATIONS WITH 

SCDRC



Herausgeber:
Prof. Dr. F.-W. Gerstengarbe

Technische Ausführung:
U. Werner

POTSDAM-INSTITUT
FÜR KLIMAFOLGENFORSCHUNG
Telegrafenberg
Postfach 60 12 03, 14412 Potsdam
GERMANY
Tel.: +49 (331) 288-2500
Fax: +49 (331) 288-2600
E-mail-Adresse:pik@pik-potsdam.de

Corresponding author:
Dr. Nicola Botta
Potsdam Institute for Climate Impact Research
P.O. Box 60 12 03, D-14412 Potsdam, Germany
Phone: +49-331-288-2657
Fax: +49-331-288-2695
E-mail: Nicola.Botta@pik-potsdam.de

POTSDAM, OKTOBER 2006ISSN 1436-0179



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 3

Abstract

In this report we present a set of software components for distributed relation-based
computations (SCDRC).We explain how SCDRC can be used to structure parallel
computations in a single-program multiple-data computational environment.

First, we introduce relation-based algorithms and relation-based computations as
generic patterns in scientific computing. We then discuss the problems that have to
be solved to parallelize such patterns and propose a high-level formalism for specifying
these problems.

This formalism is then applied to derive parallel distributed relation-based com-
putations. These are implemented in the C++ library SCDRC. We present language
independent elements of SCDRC and discuss C++ specific aspects of its design and
architecture.

Finally, we discuss how to use SCDRC in a simple application and provide prelim-
inary performance figures.



4 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

Contents

Abstract 3
1. Introduction 4
1.1. What is SCDRC? 4
1.2. What are relation-based computations? 5
1.3. Who can take advantage from SCDRC? 6
1.4. How does SCDRC compare to other approaches? 6
1.5. What is the state of development of SCDRC? 8
1.6. Outline 8
2. Relation-based algorithms and relation-based computations 8
2.1. Relation-based algorithms 8
2.2. Relation-based computations 11
2.3. Core problems 12
3. Implementation independent elements 13
3.1. Set, function and relation representations 13
3.2. Distributed functions and distributed relations 14
3.3. Problem specification 16
4. Implementation dependent elements 29
4.1. Computational environments and namespaces 29
4.2. Components, files, directories 34
4.3. Interfaces, class operations, contracts and documentation 36
4.4. Iterators 40
4.5. Relations 41
4.6. Relation-based algorithms 43
4.7. Communication primitives, exchange and MPI interface 44
5. Preliminary results, outlook 45
5.1. Center of area computations 45
5.2. Preliminary results 50
5.3. Outlook 55
Acknowledgements 55
References 55

1. Introduction

1.1. What is SCDRC? SCDRC is a set of software components for structuring
distributed relation-based computations.

Relation-based computations are simple but general patterns found in many sci-
entific computing domains. In climate research, they are at the core of grid-based
numerical methods for partial differential equations (ocean and atmosphere models),
of inference algorithms for Bayesian networks and of viability kernel algorithms (vi-
ability studies). They also arise in data interpolation between regular and irregular
grids (pre-processing, model coupling).

Relation-based computations are often nested in expensive, iterative programs.
These programs could, in principle, take advantage of distributed parallel architec-
tures to speed up computations.

In climate research, faster computations allow simulations on longer time scales,
improved resolution and more representative sets of realizations in uncertainty studies.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 5

In practice, however, computational tools for climate research do not take full
advantage of parallel computers. Although based on a small set of common computa-
tional patterns, climate models are traditionally developed for specific domains in a
sequential computational environment. They are neither easy to parallelize nor cheap
to adapt to other domains. If those common patterns could be organized in a generic
library, which can be used across different domains, substantial development efforts
could be saved and the degree of parallelism could be increased.

SCDRC is a prototype of such a generic library.

1.2. What are relation-based computations? The notion of relation-based com-
putations is introduced and discussed in detail in the next section. Examples of
relation-based computations are: the computation of neighbor elements on a grid;
the computation of geometrical properties of grid elements, e.g., element center, area,
boundary integrals; sparse matrix-vector multiplications.

Relation-based computations which can be easily implemented in a sequential,
single program single data (SPSD) computational environment are often difficult to
implement in a parallel, single program multiple data (SPMD) distributed case.

Consider, for instance, the problem of computing the centers of the triangles of a
triangulation. Let the triangulation be represented by an integer table vt: the j-th
row of vt contains the three indexes of the vertexes of the j-th triangle. Given vt and
an array x of vertex coordinates, a sequential computation of the centers could read:

Algorithm 1 : triangle centers

for j in [ 0 . . . size(vt) ) do

compute (1/3) ∗ (x(vt(j)(0)) + x(vt(j)(1)) + x(vt(j)(2)))
end for

In algorithm 1, [a . . . b) represents the interval of natural numbers a, a + 1, . . . ,
b− 1. It is not obvious how to implement the above rule on a parallel computer with
distributed memory. If one requires the implementation to be reasonably efficient,
one has to answer, among others, the following questions:

(1) How are vt and x distributed among remote partitions1?
(2) Which vertex coordinates are needed on the local partition which are stored

on remote partitions?
(3) Which vertex coordinates stored on the local partition are needed by which

remote partition?
(4) How can these coordinates be exchanged between partitions?

A few remarks are appropriate here: if the efficiency requirement can be neglected, a
parallel implementation of algorithm 1 can be easily derived by just duplicating the
whole x on all partitions. This approach is, for for most practical problems, unafford-
able. Moreover, it raises the non-trivial question of how to ensure the consistency of
duplicated data.

Message passing libraries, e.g. MPI, provide efficient and portable answers to
question 4: how to exchange data between partitions. However, they cannot provide
answers to questions 1-3: these questions are concerned with the structuring of the

1we do not attempt at defining the concept of a partition here: in a SPMD (single program
multiple data) distributed computational environment, different partition may correspond to remote
memory spaces.



6 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

parallel computation. In particular, the answers to question 2 and 3 essentially depend
on how question 1 is answered.

Of course, structuring rules or guidelines cannot be given in general but only for
certain classes of computations or computational patterns. Relation-based computa-
tions are a family of such patterns.

1.3. Who can take advantage from SCDRC? As a set of components for struc-
turing distributed relation-based computations, SCDRC is a software layer above
message passing libraries but below applications. It is not meant to be directly used
by application developers. Instead, SCDRC is designed to be the basis on which ap-
plication dependent software components are written. In other words, applications
are expected to use SCDRC indirectly via application dependent abstractions.

As an example, consider a triangulation class supporting the implementation of
finite element discrete differential operators. This is an application dependent ab-
straction (in the sense that it will implement, among others, methods which are
specific to finite element computations) which could be written on top of SCDRC. A
finite element program for approximating incompressible flows is an example of an
application.

Being a low-level software layer (w.r.t. applications), SCDRC does not attempt
at hiding the communication steps which are needed in relation-based computations.
Communication steps which are conceptually complementary but distinct are repre-
sented by distinct data structures or function calls.

This means that developers have a high degree of control over communication and
can take advantage of such control for optimizations. However, communication is
structured in a set of primitives which have been specifically designed for relation-
based computations. In particular, SCDRC users do not have direct access to standard
message passing (MPI) primitives and do not need to care about synchronization,
mutual exclusion, deadlock or race condition problems. They can develop application
dependent software components on the top of SCDRC which hide communication or
leave it visible to the user.

1.4. How does SCDRC compare to other approaches? A discussion of the
many and different approaches towards introducing abstraction layers between mes-
sage passing libraries and scientific computing applications goes beyond the scope of
this report.

For an overview of the role of subroutine libraries and of frameworks in generic soft-
ware components for scientific computing we refer the reader to [4]. A comprehensive
discussion of domain specific languages, frameworks and toolkits from the point of
view of domain engineering can be found in [9]. The concepts of grid and of algo-

rithm oriented design of software components for grids and geometries are discussed
in [1], [3] and [5].

SCDRC has been designed around patterns which are found in numerical methods
for partial differential equations (PDE) and in other applications domain: adaptive
stochastic sequential decision processes and Bayesian network inference are two promi-
nent examples. Up to now, the most significant efforts towards developing frameworks
of generic, reusable software components have been done in the PDE application do-
main. In the following, we point out differences and similarities between SCDRC and
well established frameworks for solving PDEs.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 7

A very elementary difference between SCDRC and frameworks like POOMA2,
Overture3, Amatos4 and OpenFoam5 is in terms of size. SCDRC is a very small,
thin software layer: at the present stage, sloccount6 counts about 12000 source lines
of code in the main directory tree of SCDRC. As a comparison, OpenFoam version
1.2 consists of about one million lines of code!

Another important difference between SCDRC and computational frameworks for
PDE lies in the level of abstraction. The central concepts in SCDRC are relations
and relation-based computations. The main problems addressed by SCDRC are how
to represent distributed relations and how to implement parallel relation-based com-
putations.

In numerical frameworks for PDEs, grid concepts play an outstanding role. Grids
are much more complex concepts than relations. One can think of relations in a cou-
ple of different ways – as sets of pairs, as characteristic functions or as functions – and
one can distinguish between different kinds of relations: regular relations, irregular
relations, etc. This complexity, however, is very little when compared to the com-
plexity of grid concepts. The grids needed in computational frameworks for PDEs
have geometrical and topological aspects. The latter are described by a whole set of
grid relations. Grid representations depend on the choice of a coordinate system, on
the number of dimensions of the geometrical space in which they are embedded, on a
number of grid coordinates. One can distinguish between structured and unstructured

grids, between regular and irregular grids, between rectangular, skew and curvilinear

grids. Adaptive grids, hierarchical grids, overlapping and non-overlapping grids are
other aspects of different grid taxonomies.

The development of SCDRC is an attempt at tackling the problem of structuring
algorithm-oriented parallel computations on the basis of the smallest common con-
cept and of the simplest computational patterns found in a wide class of scientific
computing problems: relations and relation-based computations.

Since it tackles the parallelization problem at an elementary level, the SCDRC
approach is more similar to the algorithmic skeletons or to POOMA’s stencil -based
approach than to grid-based domain decomposition approache. As it will become clear
in the following sections, relation-based algorithms and relation-based computations
are, in fact, non-trivially parallelizable data parallel algorithmic skeletons in the sense
of [14].

Special kind of relations – symmetric, anti-reflexive graphs – play a fundamental
role in graph partitioning algorithms such as those implemented in the Metis [12]
and ParMetis [8] library. As we will see in the next section, SCDRC provide an
interface to these libraries. The interface allows one to apply partitioning algorithms
to SCDRC relations. The application domains of Metis and ParMetis – graph and
grid partitioning – on the one side and of SCDRC on the other side are complementary
but clearly separated.

As a set of software components for structuring distributed relation-based compu-
tations, SCDRC provides a subset of the functionalities provided by the Janus frame-
work, see [10]. In fact, the initial phase of the SCDRC development has been done
in collaboration with Dr. J. Gerlach, the main developer of Janus. As we will show

2http://acts.nersc.gov/pooma
3http://acts.nersc.gov/overture
4http://www.amatos.info
5http://www.opencfd.co.uk/openfoam
6By David A. Wheeler, http://www.dwheeler.com/sloccount



8 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

in section 3, SCDRC shares with Janus (and with ParMetis) the conceptual model
of representing distributed functions and relations. There are, however, important
differences between SCDRC and Janus. These differences are both in implementation
independent aspects and in the implementation design.

A major implementation independent difference is architectural. In contrast to
Janus, the architecture of SCDRC is based on the formal specification of a small set
of problems. These problems are informally introduced at the end of the next section
and problem specifications are discussed in detail in section 3.

Another difference between SCDRC and Janus is in how solution algorithms for
the problem specifications of section 3 have been derived. In SCDRC, this has been
done on the basis of a single communication primitive in the spirit of the BSP (bulk
synchronous parallel processing) model, see [7], [6]. This communication primitive
is discussed in detail in 3 and 4. In contrast to SCDRC, Janus algorithms are not
explicitly designed around a single communication primitive, and attempt to hide the
distinction between parallel and sequential execution.

A third major difference between Janus and SCDRC is in the approach towards
constructing relations. Janus supports incremental construction with a very flexible
(albeit non trivial) two-phase model. SCDRC takes a more straightforward approach
and does not support incremental construction.

1.5. What is the state of development of SCDRC? SCDRC is in a prototypi-
cal stage. Its sources are available under the GPL licence but have not been released
(please contact botta@pik-potsdam.de). SCDRC has been compiled with gcc ver-
sion 3.3.6 and 4.0.2 and tested on a linux-cluster under lam-mpi and mpich and on
a 240 CPU IBM p655 cluster. At the present, no application dependent software
components have been built on the top of SCDRC but a few simple examples are
provided.

1.6. Outline. The rest of this report is organized as follows. In section 2 we intro-
duce and discuss relation-based algorithms and relation-based computations following
the triangle center example outlined above. Section 3 describes implementation in-
dependent design elements of SCDRC. In this section we discuss, among others, how
distributed functions and distributed relations are conceptually represented – remem-
ber question 1) above – and which aspects of this representation are visible to SCDRC
users. In section 4 we discuss implementation dependent aspects and architecture of
SCDRC. In the last section we comment a simple application and discuss preliminary
results.

2. Relation-based algorithms and relation-based computations

2.1. Relation-based algorithms. Let’s go back to algorithm 1 introduced in section
1 to represent a triangle center computation. In this rule we have used x(i) (for i
equal to vt(j)(0), vt(j)(1) and vt(j)(0)) to represent the i-th element of the array x.

We use the notation x(i) — in contrast to the more usual x[i] — to underline the
fact that, for the purpose of expressing the triangle center computation, the way the
vertex coordinates are obtained is immaterial. In concrete implementations, x does
not need to be an array and one can easily think of triangulations in which the vertex
coordinates are given by analytical expressions.

Let’s take a critical view at algorithm 1: what if the triangulation covers a sphere
and the triangles themselves are spherical? In this case, algorithm 1 yields triangle



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 9

centers that do not lie on the surface of the sphere. This is probably not what a
triangle centers algorithm is meant to compute. Algorithm 1 can be easily modified
to avoid triangle shape over-specification:

Algorithm 2 : triangle centers

for j in [ 0 . . . size(vt) ) do

compute center(x(vt(j)(0)), x(vt(j)(1)), x(vt(j)(2)))
end for

The new rule delegates the computation of the centers to the center function. This
function is now assumed to know whether plane of spherical triangles are at stake
in any particular case. In fact, algorithm 2 can be easily generalized to compute
whatever function of the coordinates of the triangle vertexes, for instance the triangle
areas. This is, in contrast to center, a non-linear function. We can go one step further
and think of algorithm 2 as a particular instance of a computational pattern in which
j is drawn from some array js of positive natural numbers and a function h is applied
to the array of values some function f takes at those indexes i which are in relation
with j:

Algorithm 3 : relation-based algorithm

for j in js do

compute h([ f(i) | i in R(j) ])
end for

Here R(j) is an array of indexes which are in relation R with j, in the triangle center
example R(j) = [vt(j)(0), vt(j)(1), vt(j)(2)]. The notation [ f(i) |i in R(j) ] is an
instance of an array comprehension, which generalises in the natural way the familiar
set comprehension, and which is found in many programming languages, among which
are Python, Haskell, Perl6.

We call the above computational pattern a relation-based algorithm (RBA). Relation-
based algorithms are defined in terms of two functions h and f and of a relation R.

In relation-based algorithms and, in general, in SCDRC, we will only consider
relations between zero-based intervals of natural numbers. This restriction is discussed
in detail in section 3. For the moment, let’s accept this restriction and think of a
relation R as a subset of [0, m)× [0, n) where m and n are the sizes of the target and
of the source of R, respectively. In this report we will always use a left-from-right
notation when giving the signature of relations and functions:

R :: [ 0 . . .m )←− [ 0 . . . n )

R(·) :: subarrays([ 0 . . .m ))←− [ 0 . . . n )

If we allow f to take as argument pairs in [0, m)× [0, n):

Algorithm 4 : relation-based algorithm

for j in js do

compute h([ f(i, j) | i in R(j) ]),
end for



10 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

relation-based algorithms can be easily specialized to represent matrix-vector multi-
plications. Let A be a sparse matrix and c, e and p be a CRS (compact row storage,
see [8]) representation of A that is, c, e and p satisfy the following equivalence:

(1) A(j, i) 6= 0 ≡ ∃! k in [ p(j) . . . p(j + 1) ) : i == c(k) ∧ A(j, i) == e(k)

An efficient representation of the computation of the product between A and a suitably
sized vector b reads:

Algorithm 5 : sparse matrix vector multiplication

for j in [ 0 . . . n ) do

compute sum([ e(k) ∗ b[c(k)] | k in [ p(j) . . . p(j + 1) ) ]),
end for

Using 1, this rule can be written as a relation-based algorithm with

h = sum

f(i, j) = e(k(i, j)) ∗ b[i]

where k(i, j) = p(j) + index of(i, R(j))

R(j) = [ c(k) | k in [ p(j) . . . p(j + 1) ) ]

In the above expression we have used the function index of which computes the index
of a given element in an array:

k == index of(s, ls) ≡ s == ls[k]

Of course, index of is a function only for array arguments which are nubbed that is,
contain no duplicates. We impose this requirement on any relation representation
R(·).

Implementations of sparse matrix-vector multiplications as relation-based algo-
rithms are useful only if the data structures that implement relations provide efficient
ways of computing R(j) and index of(i, R(j)). We will address this problem in section
4. For the moment let us summarize the results of the above analysis in the following
observations:

• Relation-based algorithms are computational patterns (algorithmic skeletons)
commonly found in many application domains; we have seen two examples:
grid computations and linear algebra. Examples in numerical methods for
PDEs and other application domains can be easily made.
• Relation-based algorithms are not, in general, trivially parallelizable; in par-

ticular, they are not trivially parallelizable whenever the following conditions
occur:

– the function f is represented by storing f values in memory. In scientific
computing it is often the case that f -values are stored in arrays.

– The relation R is such that any disjoint splitting of its source in np partial
relations R1 . . . Rnp−1 yields non-disjoint ranges ran(Rp), ran(Rq) for
distinct p, q < np.

Unfortunately, many interesting computations, among others the examples
discussed above, are not trivially parallelizable.

In section 4 we show how distributed relation-based algorithms can be defined in
SCDRC by specializing a generic RBA rule with concrete types for the functions h,
f and for the relation R. In SCDRC, concrete RBA objects can be constructed by



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 11

passing concrete distributed objects representing h, f and R to RBA constructors.
Distributed f objects can be, in turn, distributed relation-based algorithms. This
provides a natural scheme for composing distributed relation-based algorithms to
define complex parallel computations.

2.2. Relation-based computations. While being powerful patterns, RBAs are cer-
tainly not enough for structuring even simple distributed computations like the tri-
angle centers example introduced in section 1. Let’s go back to this example and
assume, for concreteness, that the table vt and the vertex coordinates array x are
initially stored in a file (vt and x can be seen as a minimal representation of a trian-
gulation).

If we think of vt as of the relation R and of x as of the function f of a relation-based
algorithm, then the following steps have to be done before a parallel computations of
the triangle centers can take place:

(1) read vt and x from the file.
(2) compute a partitioning of the source of vt.
(3) compute a partitioning of the source of x.
(4) distribute vt and x according to these partitioning.

We will discuss in detail what it means to distribute a relation and an array according
to a given partitioning in the next sections. For the moment, let’s consider steps 2 and
3. Computing a partitioning of the source of vt simply means associating a unique
partition number to each triangle of vt.

Of course, one would like to partition the triangles of vt is such a way that the
subsequent parallel computation of the centers is done efficiently. This boils down to
requiring that all partitions contain approximately the same number of triangles (or
a number of triangles proportional to the computational capacity associated with the
partitions) and that the total number of edge-cuts is minimal and equally distributed
among partitions. Notice that the number of edge-cuts – pairs (v, t) in vt such that
v and t belong to different partitions – can only be computed if a partitioning of
the vertexes is already known (or computed together with the partitioning of the
triangles). Minimizing the number of edge-cuts means minimizing the number of
vertex coordinates that have to be exchanged between partitions in the triangle centers
computation.

Grid and relation (graph) partitioning is a well-established research area and SC-
DRC does not attempt at providing new solutions in this field. Instead, SCDRC
provides an interface to Metis [12] and ParMetis [8]. These are very efficient graph
partitioning libraries. The SCDRC interface could be easily extended to other parti-
tioning algorithms.

Of course, different partitioning algorithms put different requirements on their
argument relations. Metis and ParMetis, for instance, require such relations to be
symmetric and anti-reflexive. This means that

(iRj ≡ jRi) ∧ (iRj ⇒ i 6= j)

The vertex-triangle relation of our example is certainly non symmetric. This means
that, in order to take advantage of Metis and ParMetis for computing a partitioning
of vt, one has to construct a symmetric, anti-reflexive auxiliary relation, say avt, that
represents vt “well”.

Since avt is to be used to compute a partitioning of the source of vt, its source
has to coincide with the source of vt. Moreover, partitionings of (the source of) avt



12 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

which satisfy minimal edge-cut constraints should lead to minimal or almost minimal
edge-cuts for vt as well.

Grid-relations like vt are commonly found in many application domains. They
often describe coverings of 1- 2- or 3-dimensional manifolds or neighborhood relation-
ships on such coverings. A common way of computing an auxiliary relation for grid
relations like vt is the following:

(1) compute the converse of vt, vt◦.
(2) compute tvt = vt◦ · vt.
(3) compute avt = tvt− id[ 0...source size(vt) )

We use R◦ to denote the converse of a relation (or of a function) R. If R : [ 0 . . .m )←−
[ 0 . . . n ), then R◦ : [ 0 . . . n )←− [ 0 . . .m ) and jR◦i ≡ iRj.

Notice that tvt is symmetric and represents a neighborhood relationship: tvt(j)
provides, for the j-th triangle, the indexes of those triangles that share at least one
vertex with the j-th triangle. Neighborhood relationships naturally arise, among
others, as stencils of discrete differential operators in finite volumes, finite elements
and finite differences methods for the numerical approximation of partial differential
equations.

The relation avt is symmetric and anti-reflexive and its source coincides with the
source of vt. Thus avt can be used to compute a partitioning of (the source of) vt
with the Metis library. Given such partitioning, say sp, a “suitable” partitioning tp
of the target of vt – the source of x in our example – can be easily computed by
considering the relation sp · vt◦. This relation associates to each vertex the partition
numbers of those triangles that share the given vertex. A suitable way of partitioning
the target of vt (the source of vt◦) is then to pick-up, for each vertex i in the source of
sp · vt◦, the partition number that appears most frequently in the array (sp · vt◦)(i).
This choice, the fact that tvt is a neighborhood relation and the edge-cut properties
of the partitioning of avt computed by Metis, guarantee that the partition number of
most vertexes will coincide with the partition number of the triangles it belongs to.
This, in turn, means that the number of edge-cuts is almost minimal.

Notice also that the computation of tp described above is itself a relation-based
algorithm with R = vt◦, f = sp and h = most frequent. Here most frequent is a
function that takes an array of natural numbers and returns a natural number such
that no other array element appears more frequently.

2.3. Core problems. In this section we have introduced relation-based algorithms
as computational patterns. We have seen that, in order to a apply such patterns in
a distributed parallel computational environment, other relation-based computations
– among others composition and conversion – are needed. Of course, one would like
these computations too to run in parallel and on distributed data.

In developing SCDRC, we have focused our attention on a few core problems. In
order to implement distributed relation-based algorithms, these problems have to be
solved no matter which programming languages and data structures are used for the
implementation. Of course, concrete implementations will require the solution of more
additional problems.

We close this section by listing the core problems informally, as they have been
formulated at the beginning our analysis. In the next two sections we will introduce a



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 13

more formal specification, discuss the most important elements of the SCDRC archi-
tecture and show how SCDRC components can be combined to implement distributed
relation-based computations.

(1) Given a distributed representation of a function f and of a partitioning of its
source, compute a new distributed representation of f consistent with the
given partitioning.

(2) Given a distributed representation of a relation R and of a partitioning of its
source, compute a new distributed representation of R consistent with the
given partitioning.

(3) Given a distributed representation of a function f and given, on each partition,
a subset of dom(f), compute, on each partition, the correspondent values of
f .

(4) Given a distributed representation of a relation R and of a partitioning of its
target, compute a distributed representation of R◦ consistent with the given
partitioning.

(5) Given consistent, distributed representations of relations S and T , compute
a consistent, distributed representation of S · T .

3. Implementation independent elements

3.1. Set, function and relation representations. As mentioned in the previous
section, SCDRC relations are defined between zero-based intervals of natural numbers.
Very often, such relations represent relations between finite sets. In our triangulation
example, for instance, vt is understood to be a representation of a vertex-triangle
relation vt into a vertex set V from a triangle set T:

V oo vt
T

[ 0 . . .m )
��

ρV

oo

vt
[ 0 . . . n )

��

ρT

Most applications only deal with representations of finite functions and relations:
neither the sets V and T, nor the relation vt or the representation functions ρV

and ρT do appear in algorithm 1. One can think of any table vt′ obtained via
a permutation of the rows of vt as another representation of vt having the same
legitimacy as vt.

For applications that only deal with representations of finite functions and relations,
natural numbers (Nat) and zero-based Nat intervals are very convenient abstractions
for set elements and finite sets. They are computationally cheap (a zero-based Nat
interval is described by a single Nat) and naturally lead to representations of finite
functions in terms of arrays. For instance, the vertex coordinates of our example are
represented by a simple one-dimensional array x of size m (nd here is the number of
dimensions of the space in which the triangulation is embedded, typically 2 or 3, and
V (Real, nd) is the set of nd-dimensional real-valued vectors):

R
nd oo x

V

V(Real, nd)
��

ρ
Rnd

oo
x [ 0 . . .m )

��

ρV



14 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

In turn, arrays of some generic type X, A(X), are, for many computational purposes,
very efficient representations of finite functions.

An alternative approach for representing finite sets of a generic type X is by means
of a parameterized data structure: Set(X). Representations of finite sets-based on
parameterized types are, of course, more powerful than representations-based on
zero-based Nat interval abstractions. They can distinguish between sets of different
types but same cardinality. On the other hand, parameterized relation and function
representations based on parameterized set representations – data structures of the
kind Rel(Set(X), Set(Y)) or Fct(V(Real, nd), Set(Y)) in place of A(V(Real, nd)) for
functions – make functions and relations dependent on application-specific, possibly
inefficient representations of set element types.

Notice that frameworks like Janus support parameterized representations of finite
sets but rely on relations between zero-based Nat intervals. In SCDRC we only
consider sets, functions and relations which are finite. We adopt the Janus approach
for relations but we do not support parameterized representations of finite sets. Of
course, there are situations in SCDRC in which sets (most probably of Nats) have to
be explicitly represented. In these cases we use suitable containers like lists or arrays.

The analysis presented in this section is based on a simple conceptual representation
of finite functions and relations as arrays of some type X and as arrays of arrays of
Nats, respectively. We stress the fact that this is a conceptual model. As we will see
in section 4, SCDRC relations are implemented by means of specific data structures
like CRS Rel and Reg Rel(n). While being isomorph to arrays of arrays of natural
numbers (both CRS Rel and Reg Rel(n) can be constructed in terms of such an
array), SCDRC implementation of relations are defined in terms of an iterator-based
interface which is very different from the array interface.

3.2. Distributed functions and distributed relations. In the list of problems
presented at the end of the previous section, we have used the term distributed rep-

resentation for functions and relations. In this paragraph we discuss such represen-
tations. We follow the approach outlined above and think of functions and relations
as arrays of some type X and of type A(Nat), respectively. Let a be an array. A
straightforward way of distributing a on np partitions is:

(1) Cut a into np chunks.
(2) Assign the first chunk to the first partition, the second chunk to the second

partition and so on.

For this partitioning scheme, the function pa :: [ 0 . . . np ) ←− [ 0 . . . size(a) ) that
associates a partition number in [ 0 . . . np ) to each element of a is non-decreasing. As
usual, we represent pa with an array of Nats. Therefore, if size(a) == size(pa) >> np,
pa can be more economically represented by an array of offsets (again of Nats) of size
np + 1. In fact, any non-decreasing array ofs satisfying:

(2)

size(ofs) == np + 1

ofs(0) == 0

ofs(np) == size(a)

represents the non-decreasing partition function pa : [ 0 . . . np )←− [ 0 . . . ofs(np) ):

(3) ofs(p) <= k < ofs(p + 1) ≡ pa(k) == p

Conversely, given pa non-decreasing, the corresponding ofs can be easily computed:



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 15

Algorithm 6 : offsets

Require: is not decreasing(pa) ∧ max(pa) < np
1: ofs = make array(np + 1, 0)
2: for k in [ 0 . . . size(pa) ) do

3: p = pa(k)
4: ofs(p + 1) = 1 + ofs(p + 1)
5: end for

6: for p in [ 0 . . . np ) do

7: ofs(p + 1) = ofs(p) + ofs(p + 1)
8: end for

Ensure: size(ofs) == np + 1 ∧ ofs(0) == 0 ∧ ofs(np) == size(pa)

At line 1, ofs is initialized as an array of size np + 1 with elements equal to zero.
At the end of the first loop ofs(p + 1) contains the number of indexes of pa whose
partition number is p. The pre-condition max(pa) < np guarantees that, inside loop
1, p + 1 < np + 1 always holds. Thus, no array bound violation can occur at line 4
and each entry of pa is counted exactly one time in exactly one ofs entry. Therefore,
at the end of the first loop, the sum of the entries of ofs is equal to the size of pa. In
the second loop this sum is stored in ofs(np).

Since SCDRC functions and relations are conceptually represented in terms of
arrays, it is natural to conceptually represent functions and relations which are dis-

tributed on np partitions as np-tuples of arrays, as described above. The cutting up
of the array in np pieces induces an array of offsets. Alternatively, we can view the
np-tuple as resulting from the non-distributed array according to the array of offsets.
In either case, we can assume that both the tuple (f0 . . . fnp−1) and the offsets ofs
are present: they constitute a valid representation of f if

f0++f1++ · · ·++fnp−1 == f

ofs(k + 1)− ofs(k) == size(fk) ∧ ofs(0) == 0

The ++ operator “glues” the chunks together. The two conditions are equivalent to
the following ones, which are more useful in practice since they provide an explicit
“point-wise” characterization of the elements involved.

(4)

ofs(np) == size(f)

f(j) == fp(j
′)

where

j′ = j − ofs(p)

p : ofs(p) <= j < ofs(p + 1)

ofs : ofs(0) == 0 ∧ ofs(q + 1) ==

k<q+1
∑

k=0

size(fk), q in [ 0 . . . np )

Notice that ofs(np) ==
∑k<np

k=0 size(fk). Therefore the first equation in 4 can be
written as

size(f) ==

k<np
∑

k=0

size(fk)



16 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

which states an obvious size-consistency condition between f and (f0 . . . fnp−1). Sim-
ilarly, (R0 . . . Rnp−1) is a distributed representations of R if:

ofs(np) == source size(R)

iRj == iRpj
′

where

j′ = j − ofs(p)

p : ofs(p) <= j < ofs(p + 1)

ofs : ofs(0) == 0

∧

ofs(q + 1) ==

k<q+1
∑

k=0

source size(Rk), q in [ 0 . . . np )

A caveat: just like the model for non-distributed functions and relations discussed in
the previous paragraph, the model discussed here for distributed functions and rela-
tions is a conceptual one. It is essential for understanding the formal specification of
the problems introduced in the next section. This model, however, does not mean that
there are data structures, in SCDRC, representing a function or a relation together
with its corresponding offset or partitioning function. In much the same way, you
will not find, in SCDRC, functions that formally take tuple arguments that represent
distributed functions or relations.

The scheme described above for distributing a one-dimensional array a on np par-
titions and the corresponding conceptual representation of distributed functions and
relations is not new. This scheme is used in ParMetis where it is referred to as dis-
tributed CRS format. In Janus, distributed relations are equipped with “descriptors”
which contain, among others, informations about sizes and offsets of tuple represen-
tations.

One can argue that there are many other ways of distributing an array a on np
partitions and some of them might be better than the scheme presented here. For
instance, if some “communication” relation is defined between the chunks of a and
between the partitions (these could be arranged, for a certain computational archi-
tecture, according to some hardware “topology” that makes communication between
some partitions faster that between others), one might want to “fit” the structure of
a to that of the computing architecture. Beside simplicity and minimality, another
consideration supports the conceptual model presented here: the problem of parti-
tioning the source and the target of a relation for efficient distributed computations of
relation-based algorithms is not trivial. As mentioned in the previous section, SCDRC
delegates the solution of this problem to external libraries like Metis and ParMetis.
It is in the solution of the partitioning problem that additional, architecture specific
partitioning constraints can and should be naturally accounted for.

3.3. Problem specification. In this paragraph we give a formal specification of the
problems informally introduced at the end of section 2. This specification rests on
the conceptual representation of function and relations discussed in 3.1 and 3.2.

3.3.1. Problem 1. Given a distributed representation of a function f and of a parti-
tioning of its source, compute a new distributed representation of f consistent with



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 17

the given partitioning.

Given:
(f0 . . . fnp−1), fp :: A(X)
(pf0 . . . pfnp−1), pfp :: A(Nat)

such that:
i) size(fp) == size(pfp)
ii) size(pfp) == 0 ∨ max elem(pfp) < np

find:
(

f ′

0 . . . f ′

np−1

)

, f ′

p :: A(X)
such that:

iii) f ′

p · permp == [ f(i) | i ∈ [ 0 . . . size(f) ) , pf(i) == p ]
where

permp :: [ 0 . . .mp )←− [ 0 . . .mp ) is bijective
mp == size([ f(i) | i ∈ [ 0 . . . size(f) ) , pf(i) == p ]).

Let us comment on this specification: as discussed in 3.2, f is represented by a tuple
of arrays, one array for each partition. On each partition, a partition function pfp

specifies how the elements of fp have to be redistributed among np partitions. As
usual, pfp is represented with an array. This has to have the same size as fp and has
to take values in [ 0 . . . np ). The solution of problem 1 is a new distributed function
f ′. Condition iii) requires f ′

p to contain exactly those values f(i) of f such that
pf(i) == p. Because of the permutation permp, these values can appear in any order
in f ′

p.
In the above specification, we have assumed that non-empty arrays of Nats are

equipped with a function max elem :: Nat ←− A(Nat) that computes the maxi-
mal element. max elem and size are examples of functions whose implementation
depends on the computational environment. The implementation of such functions in
SCDRC’s SPSD and SPMD-distributed environments is discussed at the beginning
of section 4. Let’s turn the attention to the second problem introduced at the end of
section 2. The specification of problem 2 is completely analogous to that of problem
1:

3.3.2. Problem 2. Given a distributed representation of a relation R and of a parti-
tioning of its source, compute a new distributed representation of R consistent with
the given partitioning.

Given:
(R0 . . . Rnp−1), Rp :: A(A(Nat))
(pR0 . . . pRnp−1), pRp :: A(Nat)

such that:
i) source size(Rp) == size(pRp)
ii) size(pRp) == 0 ∨ max elem(pRp) < np

find:
(

R′

0 . . . R′

np−1

)

, R′

p :: A(A(Nat))
such that:

iii) R′

p · permp == [ R(i) | i ∈ [ 0 . . . source size(R) ) , pR(i) == p ]
where

permp :: [ 0 . . .mp )←− [ 0 . . .mp ) is bijective



18 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

mp == size([ R(i) | i ∈ [ 0 . . . source size(R) ) , pR(i) == p ]).

Notice that, even in the case in which permp is taken to be the identity permutation
on all partitions both in problem 1 and in problem 2, f ′, R′ are not, in general, equal
to f and R. This is because of the fact that pf and pR have not been required to be
non-decreasing. In other words, the repartitioning is not required to be a re-cutting.

In section 3.2, we have motivated a conceptual representation of distributed func-
tions and relations that rests on non-decreasing partition functions. From this point
of view, the specifications given above seem to be far too general: a (generic) pro-
gram redistribute implementing these specifications, allows one to write a SPMD
distributed parallel program to:

(1) on all partitions p in [ 0 . . . np ), do: initialize an empty vertex coordinates
array xp and an empty vertex-triangles relation vtp.

(2) on partition 0, do: read a vertex coordinates array x and a vertex-triangle
relation vt from some file into x0, vt0.

(3) on partition 0, do: compute suitable7 partition functions px0, pvt0 of the
sources of x0, vt0; on all partitions p 6= 0 initialize empty pxp, pvtp.

(4) on all partitions, do: redistribute (x0 . . . xnp−1), (vt0 . . . vtnp−1) according to
(px0 . . . pxnp−1), (pvt0 . . . pvtnp−1).

These steps rephrase steps 1-4 of section 2.2 in terms of the notation introduced in this
section for distributed representations of functions and relations. Steps 1-4 of section
2.2 have been introduced to set up a SPMD parallel computation of the centers of the
triangles of the triangulation represented by the vertex coordinates array x and by
the vertex-triangle relation vt. In this section we are going to use this computation
as an example of a SPMD parallel relation-based algorithm. We will come back to
this example over and over again to motivate and refine formal specifications for the
problems introduced at the end of section 2.

Consider steps 1 and 2 above. These yield distributed representations (x0 . . . xnp−1),
(vt0 . . . vtnp−1) of x, vt with x0 == x, vt0 == vt and xp == vtp == [ ], p in
[ 1 . . . np ). Similarly, step 3 provides distributed representations (px0 . . . pxnp−1),
(pvt0 . . . pvtnp−1) of px, pvt with px0 == px, pvt0 == pvt and pxp == pvtp == [ ],
p in [ 1 . . . np ). If px and pvt are not non-decreasing, step 4 yields distributed rep-
resentation

(

x′

0 . . . x′

np−1

)

,
(

vt′0 . . . vt′np−1

)

of arrays x′, vt′ such that, in general (i.e.
for arbitrary x, vt), x′ 6= x and vt′ 6= vt. The analysis raises two questions:

(Q1) Why do we put forward specifications of redistribution problems that seem to
imply more general conceptual representations of distributed functions and
relations than the one introduced in section 3.2?

(Q2) If we stick to the conceptual representation of distributed arrays of section
3.2 (and restrict ourselves to partition functions that can be represented by
arrays of offsets), isn’t it very inefficient to represent px, pvt with tuples of ar-
rays (px0 . . . pxnp−1), (pvt0 . . . pvtnp−1) (of total size size(x), source size(vt))
instead of offsets-based representations of size np + 1 independent of the size
of the represented function?

To answer these questions and refine the problem specifications presented above, let
us discuss steps 1)-4) in a concrete case. Consider a very simple triangulation in

7in the sense explained in section 2.2, e.g. using the SCDRC interface to Metis.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 19

which x and vt are:

(5)
x = [ [ 0.0, 0.0 ] , [ 1.0, 0.0 ] , [ 1.0, 1.0 ] , [ 0.0, 1.0 ] ]

vt = [ [ 0, 1, 3 ] , [ 1, 2, 3 ] ]

10

23

0

1

and represent the triangulation of the unit square sketched above. Assume np == 2.
Then, at the end of step 2, our distributed representation of the triangulation is:

(x0, x1 ) == ([ [ 0.0, 0.0 ] , [ 1.0, 0.0 ] , [ 1.0, 1.0 ] , [ 0.0, 1.0 ] ] , [ ])

( vt0, vt1 ) == ([ [ 0, 1, 3 ] , [ 1, 2, 3 ] ] , [ ])

where x0 == x, vt0 == vt and x1, vt1 are still empty (remember step 1). Assume
that, in step 3, the following partitionings have been computed:

(6)
( px0, px1 ) = ([ 1, 1, 0, 0 ] , [ ])

( pvt0, pvt1 ) = ([ 1, 0 ] , [ ])

The tuples (x0, x1 ), ( px0, px1 ) and ( vt0, vt1 ), ( pvt0, pvt1 ) fulfill the preconditions
i) and ii) of the specifications for problems 1 and 2, respectively. Therefore we can
apply step 4 using any program that implements these specifications. The distributed
representation

(7)
(x′

0, x
′

1 ) == ([ [ 0.0, 1.0 ] , [ 1.0, 1.0 ] ] , [ [ 0.0, 0.0 ] , [ 1.0, 0.0 ] ])

( vt′0, vt′1 ) == ([ [ 1, 2, 3 ] ] , [ [ 0, 1, 3 ] ])

0 1

2 3

0

1

is a legitimate outcome of step 4: with perm0 = [ 1, 0 ], x′

0 ·perm0 is indeed equal to
[ x(i) | i ∈ [ 0 . . . size(x) ) , px(i) == 0 ]. The remaining requirements are all satisfied
with identity permutations.

In the framework of the conceptual representation of distributed arrays introduced
in section 3.2, ( x′

0, x
′

1 ), ( vt′0, vt′1 ) is obviously not a distributed representation of the

triangulation represented by (x0, x1 ), ( vt0, vt1 ). As sketched in the figure, the tri-
angles of x′, vt′ are now overlapping ! The inconsistency between (x0, x1 ), ( vt0, vt1 )
on one side and (x′

0, x
′

1 ), ( vt′0, vt′1 ) on the other side comes into place because, in
our example

(1) px is not non-decreasing.
(2) permp is not the identity.

The effect of non non-decreasing partitioning functions px and non identical permuta-
tions permp is obviously that of modifying the order in which the elements of x appear
in x′: for arbitrary px and permp steps 1)-4) yield vertex coordinates x′ which are
permutations of x:

(8) x′ == x · perm◦

In our example, perm◦ = [ 3, 2, 0, 1 ]. The reason why we denote the permutation
with the converse symbol will become clear in the following analysis. Notice that, if
px were non-decreasing and permp were the identity, perm◦ would be the identity
permutation and we had x′ == x.

Of course, we can always choose permp to be the identity. However, px is obtained,
in SCDRC, from Metis or from other graph partitioning algorithms: it is not possible
to require px to be non-decreasing.

We can keep our conceptual representation of distributed functions and relations
and allow for arbitrary partition functions px if we modify steps 1)-4). To understand
how this has to be done, consider equation (8). This can be interpreted in two different



20 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

ways. On one hand, one can think of x′(i) as of the “new” position of the i-th vertex
under the (musical chairs like) motion described by perm. On the other hand, one can
think of perm as of a renumbering of the vertex set. Under such renumbering, the i-th
vertex stays at its own position but gets a “new” index perm(i). Conversely, perm◦

takes a new index argument of x′ into an old index argument of x. This motivates
the converse symbol used with equation (8).

The second interpretation of equation (8) suggests how to allow for arbitrary par-
tition functions while keeping our simple conceptual representation of distributed
arrays. If equation (8) represents a renumbering of the source of x, then we have to
account for this renumbering in vt as well because the target of vt coincides with the
source of x. This means that we have to replace the “old” indexes of vt′ with the
“new” indexes:

vt′(j)(i)← perm(vt′(j)(i))

If we do this replacement in equation (7) we obtain (with perm == [ 2, 3, 1, 0 ] , perm ·
perm◦ == id[ 0...4 )):

0 1

2 3

1

0

(9)
( x′

0, x
′

1 ) == ([ [ 0.0, 1.0 ] , [ 1.0, 1.0 ] ] , [ [ 0.0, 0.0 ] , [ 1.0, 0.0 ] ])

( vt′0, vt′1 ) == ([ [ 3, 1, 0 ] ] , [ [ 2, 3, 0 ] ])

The new triangulation is now, up to a renumbering of the vertexes and of the triangles,
identical to the original one. Notice that the triangle set has been renumbered as well
(pvt is not, in our example, non-decreasing).

It is now easy to see how steps 1)-4) have to be modified to allow for arbitrary
partition functions px, pvt while keeping the conceptual representation of distributed
functions and relations introduced in section 3.2. What we have to do is compute
permutations permx◦

0, permvt◦0 of the sources of x0, vt0 such that px0 · permx◦

0

and pvt0 · permvt◦0 are non-decreasing and modify x0 and vt0 accordingly. Then,
we redistribute the modified representations with implementations that fulfill our
problem 1 and problem 2 specifications and with permd equal to the identity. The
modified procedure can be described as follows:

(1) on all partitions, do: initialize an empty vertex coordinates array xp and an
empty vertex-triangles relation vtp.

(2) on partition 0, do: read a vertex coordinates array x and a vertex-triangles
relation vt from some file into x0, vt0.

(3) on partition 0, do: compute suitable partition functions px0, pvt0 of the
sources of x0, vt0.

(4) on partition 0, do: compute permx◦

0, permvt◦0 such that px0 · permx◦

0, pvt0 ·
permvt◦0 are non-decreasing.

(5) on partition 0, do: replace x0, px0, vt0, pvt0 with x0 · permx◦

0, px0 · permx◦

0,
vt0 · permvt◦0 and pvt0 · permvt◦0, respectively. Renumber the elements of vt0
according to the rule

vt0(j)(i)← permvt0(vt0(j)(i))

(6) on all partitions, do: redistribute (x0 . . . xnp−1), (vt0 . . . vtnp−1) according to
(px0 . . . pxnp−1), (pvt0 . . . pvtnp−1) and to the specifications of problem 1 and
problem 2 with permd == id.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 21

An algorithm for computing a permutation perm◦ such that part · perm◦ is non-
decreasing for arbitrary partition functions part can be easily written in terms of
relational operations:

Algorithm 7 : order preserving permutation

1: perm◦ = breadth(converse(part))
Ensure: is non decreasing(compose(part, perm◦))

At line 1 we first compute part◦ = converse(part). This is, in general, a relation. It as-
sociates to each partition p in [ 0 . . . np ) those indexes i in [ 0 . . . size(part) ) for which
part(i) == p. Notice that the breadth of part◦ – the concatenation of part◦(0),
. . . part◦(np − 1) – is a permutation of [ 0 . . . size(part) )8. Because of the order of
concatenation i < j ⇒ part(perm◦(i)) ≤ part(perm◦(j)) that is part · perm◦ is non-
decreasing. If we apply steps 1)-6) to our simple triangulation 5 with the partition
functions given by 6, we obtain “the” following distributed triangulation9:

(10)
(x′

0, x
′

1 ) == ([ [ 1.0, 1.0 ] , [ 0.0, 1.0 ] ] , [ [ 0.0, 0.0 ] , [ 1.0, 0.0 ] ])

( vt′0, vt′1 ) == ([ [ 3, 0, 1 ] ] , [ [ 2, 3, 1 ] ])

2 3

1

0

01

Steps 1)-6) raise a question and a remark. The question is: how to proceed in
case x and vt are already non-trivially distributed (that is, xp, vtp are not empty for
p > 0, for instance as a result of a previous application of steps 1)-6)) and non-trivial
distributed partitionings are computed, for instance with ParMetis?

The remark is that, after step 5, one can in fact redistribute (x0 . . . xnp−1),
(vt0 . . . vtnp−1) according to an offset-based representation of (px0 . . . pxnp−1),
(pvt0 . . . pvtnp−1) and therefore to a less general specifications of problem 1 and prob-
lem 2.

We are not going to answer the above question in this report. We point out, how-
ever, that for solving the problem of redistributing non-trivially distributed functions
and relations, the specifications of problem 1 and problem 2 presented in this section

8this is because part is a function.
9We have not provided a specification of converse that unambiguously defines part◦ from part.

Up to this ambiguity, however, the outcome of steps 1)-6) is unique. Here we detail the steps of the
computation. Using algorithm (7) and with an implementation of converse with ordered sub-arrays,
step 4 yields the following permutations:

permx◦0 = [ 2, 3, 0, 1 ]

permvt◦0 = [ 1, 0 ]

In the first part of step 5, we account for the renumbering of the vertex set in x0, px0 and of the
triangle set in vt0, pvt0. This yields:

x0 = [ [ 1.0, 1.0 ] , [ 0.0, 1.0 ] , [ 0.0, 0.0 ] , [ 1.0, 0.0 ] ]

px0 = [ 0, 0, 1, 1 ]

vt0 = [ [ 1, 2, 3 ] , [ 0, 1, 3 ] ]

pvt0 = [ 0, 1 ]

In the second part of step 5, we account for the renumbering of the vertex set in vt0. This yields,
with permx == permx◦ == [ 2, 3, 0, 1 ]:

vt0 = [ [ 3, 0, 1 ] , [ 2, 3, 1 ] ]



22 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

play an important role. This partially answers question Q1. For the purpose of im-
plementing steps 1)-6), it is indeed meaningful to introduce less general specifications.
This is what we are going to do next, thereby answering question Q2.

One can think of steps 1)-5) as of pre-processing steps that generate some triangu-
lation file. This file contains a vertex coordinates array x, a vertex-triangles relation
vt and two offsets arrays ox and ovt. Steps 1)-6) can be then rephrased as follows:

(1) on all partitions p in [ 0 . . . np ), initialize an empty vertex coordinates array
xp, an empty vertex-triangles relation vtp and empty offsets arrays oxp and
ovtp.

(2) on partition 0, read a vertex coordinates array x, a vertex-triangles relation
vt and offsets arrays ox and ovt from some file into x0, vt0, ox0 and ovt0.

(3) on all partitions, redistribute (x0 . . . xnp−1), (vt0 . . . vtnp−1) according to
(ox0 . . . oxnp−1), (ovt0 . . . ovtnp−1).

Implementations of Step 3) are now required to fulfill the following specifications:

3.3.3. Problem 1’. Given a distributed representation of a function f and given a
partitioning of its source, compute a new distributed representation of f consistent
with the given partitioning.

Given:
(f0 . . . fnp−1), fp :: A(X)
(o0 . . . onp−1), op :: A(Nat)

such that:
i) is offsets(op)
ii) size(op) == np + 1
iii) size(fp) == op(np)

find:
(

f ′

0 . . . f ′

np−1

)

, f ′

p :: A(X)
such that:

iv) f ′

p == concat
(

f ′′

p,0 . . . f ′′

p,np−1

)

where

f ′′

p,q = [ fq(i) | i in [ oq(p) . . . oq(p + 1) ) ]

3.3.4. Problem 2’. Given a distributed representation of a relation R and given a par-
titioning of its source, compute a new distributed representation of R consistent with
the given partitioning.

Given:
(R0 . . . Rnp−1), Rp :: A(A(Nat))
(o0 . . . onp−1), op :: A(Nat)

such that:
i) is offsets(op)
ii) size(op) == np + 1
iii) source size(Rp) == op(np)

find:
(

R′

0 . . . R′

np−1

)

, R′

p :: A(A(Nat))
such that:

iv) R′

p == concat
(

R′′

p,0 . . . R′′

p,np−1

)



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 23

where

R′′

p,q = [ Rq(i) | i in [ oq(p) . . . oq(p + 1) ) ]

The problem specifications introduced so far allow one to distribute array-based repre-
sentations of functions and relations to set up efficient SPMD parallel computations
of relation-based algorithms. For our triangle centers example, for instance, as in
steps 1-6 above.

We now turn the attention to the problem of actually applying relation-based algo-
rithms and to the specification of the third problem introduced at the end of section
2. Again, we consider our triangle centers computation and the simple triangulation
of equation (5). For its distributed representation (10) obtained with steps 1)-6,) we
want to compute the centers of the (two) triangles in parallel on partition 0 and on
partition 1.

Although we have a distributed representation of (5), we cannot directly apply the
relation-based algorithm 2 in parallel on the two partitions. This is because of two
reasons. The first reason is that, in order to access the vertex coordinates, we have
to re-scale the indexes of vt′p according to the partition number p. The second reason
is that, on a given partition, we usually need to access vertex coordinates which are
stored in other partitions: in our example these coordinates are, on partition 0, x′(3)
and, on partition 1, x′(0). Notice that x′(0) is stored on partition 0 as x′

0(0) and x′(3)
is stored on partition 1 as x′

1(1).
Obviously, the indexes of vt′p have to be rescaled according to the offsets associated

with the distributed representation (x′

0, x
′

1 ) of x′. This means that algorithm 2 has
to be modified as follows:

Algorithm 8 : SPMD triangle centers

for j in
[

0 . . . size(vt′p)
)

do

compute center(x′

p(vt′p(j)(0)− ofs(p)),
x′

p(vt′p(j)(1)− ofs(p)),
x′

p(vt′p(j)(2)− ofs(p)))
end for

A few remarks are appropriate here: first, notice that the above SPMD version of
the triangle centers algorithm 2 is parameterized on the partition number p. This
is, in fact, the sense in which the “single program” in the SPMD acronym has to be
understood. As the informal descriptions of SPMD parallel computations 1-6 and 1-3
suggest, a SPMD program is not really a “single” program but a family of programs,
one for each value of p.

Second, it is clear that, before algorithm 8 can actually be applied, data exchange
between partitions has to take place to obtain those vertex coordinates which are
needed for the local computation of the center and stored on non-local partitions and
to compute the offsets ofs. Obviously, ofs has to be the same on all partitions. In our
example we have ofs(0) == 0, ofs(1) == 2 and ofs(2) == 4. Consider the following
specification of problem 3:

3.3.5. Problem 3. Given a distributed representation of a function f and given, on
each partition, a subset d of dom(f), compute, on each partition, the values of f in
d.



24 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

Given:
(f0 . . . fnp−1), fp :: A(X)
(d0 . . . dnp−1), dp :: A(Nat)

such that:
i) max elem(dp) < ofs(np)

where

ofs = offsets(map(size, (f0 . . . fnp−1)))
find:

(fd0 . . . fdnp−1), fdp :: A(X)
such that:

ii) size(fdp) == size(dp)
iii) fdp(i) == f(dp(i))

Here, the generic function offsets and the function map fulfill:

offsets :: A(Nat)←− Natn

ofs == offsets(s0 . . . sn−1)
≡
size(ofs) == n + 1 ∧ ofs(0) == 0 ∧ ofs(p + 1) ==

∑k<p+1
k=0 sk

map :: A(X) ←− (X←− Y)×Yn

ax == map (f, (y0 . . . yn−1))
≡
ax(k) == f(yk), k = [ 0 . . . n )

With a dom complete program implementing the above specification of problem 3
and with an implementation of algorithm 8, it is easy to write a SPMD program to
compute the triangle centers. All we have to do is to:

(1) Apply dom complete and complete the data
(

x′

0 . . . x′

np−1

)

on
(

breadth(vt′0) . . .breadth(vt′np−1)
)

. This yields the arrays
(

x′′

0 . . . x′′

np−1

)

.
(2) Apply algorithm 8 with x′′

p(3 ∗ j + i) in place of x′

p(vt′p(j)(i) − ofs(p)).

In our example, step 1 yields x′′

0 = [ [ 1.0, 0.0 ] , [ 1.0, 1.0 ] , [ 0.0, 1.0 ] ] and
x′′

1 = [ [ 0.0, 0.0 ] , [ 1.0, 0.0 ] , [ 0.0, 1.0 ] ]. Step 2) provides the centers [ 2/3, 2/3 ], [ 1/3, 1/3 ]
on partitions 0 and 1, respectively. These are indeed the coordinates of the centers of
the triangles 0 and 1 of the figure on the left of equation (10).

There are two major problems with the approach outlined above. The first problem
is that we are duplicating too much data. Remember that, if we accept to duplicate a

lot of data, the problem of structuring SPMD parallel computations becomes trivial10:
we simply store the whole x′ on all partitions. Here we increase the memory allocation
costs for x′ by a factor size(vt′)) instead of np∗size(x′). On large, plane triangulations,
however, the number of triangles is about twice the number of nodes and we store
three x′-values per triangle. Thus, the ratio between np ∗ size(x′) and size(vt′)) is
about np/6. This means that we need at least 6 partitions for our scheme to be
competitive with the simple minded, full duplication approach: this is not good.

Notice that, in many applications, the ratio between the memory required to store
an x′ element and the memory required to store a Nat can be quite large. In our

10if we let apart the problem of ensuring the consistency of the duplicated data.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 25

example, x′ elements are arrays of 2 doubles. The ratio between sizeof(double) and
sizeof(Nat) is, e.g., on my computing architecture, equal to four. This ratio would
be six if the triangulation were embedded in a three-dimensional space.

Also notice that, if we have been able to partition the original triangulations “well”,
the number of x′-values which are needed for the local triangle centers computation
but which are stored on remote partitions will be much smaller than the number of
x′-values which are stored locally.

The above remarks suggest a more efficient scheme for storing and accessing the
x′-values retrieved from remote partitions. What we want to do is:

(1) Extend x′

p with those values of x′ which are needed for the local triangle
centers computation but which are stored on remote partitions.

(2) Construct an auxiliary access table vt′′p such that

x′

p(vt′′p(j)(k)) == x′(vt′(j)(k))

This approach has been originally proposed in the Janus framework and has been
adopted in SCDRC. The second problem that affects triangle centers computations
based on the specification of problem 3 given above is more subtle. Although we have
not discussed how a dom complete program could be implemented, it is obvious that,
in order to compute a tuple (fd0 . . . fdnp−1), the following steps have to be done:

a) on each partition p, do: compute the indexes of dp (in our example dp =
breadth(vt′p)) which are in [ ofs(q) . . . ofs(q + 1) ) for partitions q 6= p.

b) On each partition p, do: compute the indexes of [ ofs(p) . . . ofs(p) + size(fp) )
which are in dq for partitions q 6= p.

While the first table can be computed without additional data exchange between
partitions11, the computation of the second table certainly requires communication
between partitions. It is only after each partition p knows, for any partition q 6=
p, which are the indexes whose correspondent f -values have to be sent that such
values can actually be exchanged. The cost of computing such exchange tables can
significantly exceed the cost of exchanging the f -values themselves. The same is true
for the cost of computing access tables like the auxiliary relation vt′′p discussed above.

These exchange and access tables do not depend on the data to be actually ex-
changed but only on the set of indexes on which f has to be evaluated on a given
partition and, of course, on the partitioning of f itself.

In many practical cases, the parallel computation of relation-based algorithms is
required at each step of some iterative procedure in which the values of f change
from step to step but the exchange and access tables do not. In our triangle centers
example, for instance, the vertex coordinates could change from step to step (e.g.
because of forces acting on the triangulation) while the vertex triangle relation and
the partitioning of the vertex coordinates stay the same. In the iterative solution of
implicit problems (e.g. linear systems of equations) relation-based algorithms that
represent the action of some discrete operator on a “vector of unknowns” might be
evaluated thousands of times. At each time the values of the “unknowns” would
change but the relation and the partitioning scheme for such values would not.

Thus, for many practical cases, it would be very inefficient to recompute, at each
iteration step, the tables needed to exchange data between partitions and to efficiently

11w.r.t. the data exchange required to compute ofs.



26 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

access the local data. Therefore it is particularly important to decouple the computa-
tion of the exchange and access tables from the actual data exchange. This motivates
the specification of the following problem:

3.3.6. Problem 3’.

Given:
(R0 . . . Rnp−1), Rp :: A(A(Nat))
( ofs . . . ofs ) , ofs :: A(Nat)

such that:
i) is offsets(ofs) == true
ii) max elem(Rp(j)) < ofs(np)

find:
(

at′0 . . . at′np−1

)

, at′p :: A(A(Nat))
(

et′0 . . . et′np−1

)

, et′p :: A(A(Nat))
such that:

iii) ∀ (f0 . . . fnp−1), fp :: A(X)
such that:

offsets(map(size, (f0 . . . fnp−1))) == ofs
the tuple

(

f ′

0 . . . f ′

np−1

)

obtained with SPMD algorithm 9 satisfies:
f ′

p(at′p(j)(k)) == f(Rp(j)(k))

Algorithm 9 : complete f

Require: ofs(p) ≤ et′p(q)(k) ∧ et′p(q)(k) < ofs(p + 1)
1: et′′p = map(sf ′

p, et
′

p)
2: where

3: sf ′

p(a) = map(sfp, a)
4: sfp(i) = fp(i− ofs(p))
5: f ′

p = concat
(

fp, breadth(exchange
(

et′′0 . . . et′′np−1

)

(p))
)

The input data of problem 3’ are, on each partition, a relation Rp and an array of
offsets ofs. We omit the index p in ofs to indicate that the array of offsets is is the
same on all partitions.

We require ofs to be an offsets array i.e. to satisfy equation (2). Moreover, the
largest index appearing in Rp(j) shall not exceed ofs(np). This means that the indexes
of Rp(j) are in the source of functions which have been distributed according to ofs.

What is sought in problem 3’ are, on each partition, an access table at′p and an
exchange table et′p. For any functions f distributed according to ofs, at′p(j) is required
to provide, on partition p, access to the values of f at the indexes of Rp(j) through
a suitable extension f ′

p of fp.
Algorithm 9 describes how such an extension will be constructed from fp and from

the exchange table et′p. This represents the table mentioned in step b) on page 22: the
array et′p(q) contains those indexes of Rq which are in [ ofs(p) . . . ofs(p + 1) ). Since
the values of f corresponding to these indexes are stored in partition p (in fp), we
say that et′p(q) is the “table of requests” issued from partition q.

In the first step of algorithm 9 we compute, for each index of et′p, the corresponding
f -value in et′′p . The pre-condition guarantees that this can be done. In the second



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 27

step we exchange the table of f values et′′p between partitions. The function exchange
plays an outstanding role in SCDRC. Although SCDRC users will almost never call
exchange directly, most SCDRC algorithms that require data communication between
partitions are designed around this communication primitive. We will come back to
the implementation of exchange in section 4. Here we provide its specification:

exchange :: A(A(X))np ←− A(A(X))np
(

et′0 . . . et′np−1

)

== exchange(et0 . . . etnp−1)
≡
is in(x, et′p(q)) == is in(x, etq(p))

We read the specification in the following way: x is an element that partition p receives
from partition q iff x is an element that partition q sends to partition p.

After having exchanged et′′p between partitions, we obtain, in line 4 of algorithm
9 a tuple of arrays of arrays of elements of the same type of the elements of f . On
partition p, the p-th array of the tuple is flattened and concatenated with fp.

If we have an exchange program that implements the specification of exchange, it
is easy to write a complete program that implements algorithm 9. Also implementing
a program access exch table that fulfills 3’ is not difficult if exchange is available:
tables of requests etp can be computed locally by sorting the elements of Rp whose
f -values are stored on remote partitions according to their correspondent partition
number. A call to exchange yields then the exchange tables et′p. The computation
of the access tables at′p is a little bit less straightforward.

Equipped with access exch table and with complete, it is now easy to write a
SPMD program for the parallel computation of our triangle centers. In fact, we are
now ready to make a further abstraction step and outline a program that, given dis-
tributed representations (f0 . . . fnp−1), (R0 . . . Rnp−1) of matching f and R and given
some “reduction” operator h, implements a SPMD parallel version of our relation-
based algorithm 3.

(1) Compute the offsets ofs of (f0 . . . fnp−1).
(2) Compute at′p, et′p with access exch table and (R0 . . . Rnp−1), ( ofs . . . ofs ).
(3) Compute f ′

p with complete and fp, ofs and et′p.
(4) Compute algorithm 10.

Algorithm 10 : SPMD distributed RBA evaluation

for j in [ 0 . . . source size(Rp) ) do

compute h(
[

f ′

p(i) | i in at′p(j)
]

)
end for

Here we have assumed that the RBA is to be evaluated on the whole source of R. Of
course, this assumption can be easily weakened. Notice that steps 2-3 could now be
embedded in some iteration in which the values of f change from step to step, e.g., as
a result of the iteration itself. At each step, only complete would be called to extend
and synchronize the local partial representations fp. The computationally expensive
and communication intensive computation of the access and exchange tables could be
done only once before entering the iteration.



28 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

The algorithm outlined above shows how parallel SPMD computations of rela-
tion based algorithms can be structured using software components provided by SC-
DRC. As mentioned in the introduction, these components – e.g. access exch table,
complete and components representing RBAs themselves – are designed to support
structured user control over communication steps. They allow to distinguish between
the kind of communication that takes place in steps 1 and 2 from the communica-
tion needed to exchange f -values. However, developers of SCDRC do not need to
care about message passing level communication and related synchronization, mutual
exclusion, deadlock or race condition problems.

Of course, developers of SCDRC-based, application dependent software are free to
hide some of these communication steps and aggregate functionalities in more spe-
cific components. For instance, a software component representing a vertex-centered
Laplace operator on triangulations could be defined in terms of RBAs in which R and
h are fixed. Users could be enabled to construct concrete instances of such Laplace
operator by simply passing a distributed function f of the vertexes of the triangulation
to suitable constructors. These, in turn, could automatically call RBA constructors
and access exch table functionalities to set up a parallel evaluation of the Laplace
operator without further user intervention.

In section 2, we have mentioned the problem of combining grid relations for com-
puting neighborhood relationships and motivated the implementation of simple basic
relational operations. We close this section with the specifications of the problems of
parallel conversing a distributed relation and of composing two distributed relations.

3.3.7. Problem 4. Given a distributed representation of a relation R and of a parti-
tioning of its target, compute a distributed representation of R◦ consistent with the
given partitioning.

Given:
(R0 . . . Rnp−1), Rp :: A(A(Nat))
( ofs . . . ofs ) , ofs :: A(Nat)

such that:
i) is offsets(ofs) == true
ii) max elem(Rp(j)) < ofs(np)

find:
(

R◦

0 . . . R◦

np−1

)

, R◦

p :: A(A(Nat))
such that:

iii) offsets
(

size(R◦

0) . . . size(R◦

np−1)
)

iv) iRj ≡ jR◦i

3.3.8. Problem 5. Given consistent, distributed representations of relations S and T ,
compute a consistent, distributed representation of S · T .

Given:
(S0 . . . Snp−1), Sp :: A(A(Nat))
(T0 . . . Tnp−1), Tp :: A(A(Nat))

such that:
i) max elem(Tp(j)) < offsets(map(source size, (S0 . . . Snp−1)))(np)

find:



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 29

(R0 . . . Rnp−1), Rp :: A(A(Nat))
such that:

ii) source size(Rp) == source size(Tp)
iii) iSk ∧ kRj ≡ iRj

4. Implementation dependent elements

In this section we present and discuss implementation dependent aspects of SC-
DRC. In the first part we outline the architecture of SCDRC. In particular, we explain
the approach used to represent the two computational environments of SCDRC, we
describe the file system structure and the most important SCDRC components and
we explain how SCDRC is documented.

In the second part we discuss a small number of data structures and functions in
some detail. These functionalities are going to be used in the next and last section
to set up a simple SPMD parallel application. As you might have guessed this is
the relation-based algorithm example we have been using throughout this report: the
computation of the centers of the triangles of a distributed triangulation.

4.1. Computational environments and namespaces. In the previous section we
have discussed formal specifications for the problems introduced at the end of section
2. The specifications are based on the conceptual model of distributed functions and
relations discussed in section 3.2: in this model, distributed functions and relations are
represented by tuples of arrays. Accordingly, functions acting on distributed functions
and relations take arguments which are tuples of arrays. In general, functions acting
of distributed data take tuple arguments.

This is clearly visible in the signature of exchange and has been implicitly assumed
for functions like offsets, complete etc. Let us have a closer look at offsets. A specifi-
cation for this function can be expressed as follows:

offsets :: A(Nat)np ←− Natnp

(ofs0 . . . ofsnp−1) == offsets(s0 . . . snp−1)
≡
is offsets(ofsp) == true
∧
ofsp == ofsq

∧
ofs(p + 1) ==

∑k<p+1
k=0 sk, p in [ 0 . . . np )

With a function exchange fulfilling the specification given in section 4, it is easy to
write a SPMD algorithm that implements the above specification:
As usual, the algorithm is parameterized on the partition number p. At line 1 we
construct an array etp of np elements. Each element of etp is itself an array of Nats
of size one and contains the single value sp. Therefore etp(q)(0) == sp independently
of q. That is, each partition sends its local size sp to all other partitions. After
exchange, et′p contains np arrays of Nats of size one. According to the specification of
exchange, et′p(q)(0) == sq independently of p. This means that et′p is the same table
on all partitions. Thus, in the loop at lines 4-6, the same offset array is computed on
all partitions.



30 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

Algorithm 11 : offsets

1: etp = make array(np, make array(1, sp))
2: et′p = exchange(et0 . . . etnp−1)(p)
3: ofsp = make array(np + 1, 0)
4: for k in [ 0 . . . np ) do

5: ofs(k + 1) = ofs(k) + et′p(k)(0)
6: end for

Ensure: is offsets(ofsp) == true
Ensure: ofsp == ofsq

Ensure: ofs(p + 1) ==
∑k<p+1

k=0 sk, p in [ 0 . . . np )

Notice that steps 2 and the testing of the last two post-conditions requires com-
munication between remote partitions. This is formally indicated by the presence
of non-local variables. These are variables with a “partition index” q which is, in
general, different from p. Let us consider a SCDRC function exchange that imple-
ments exchange. As mentioned in the introduction, SCDRC components are C++
programs. Therefore exchange is a C++ function.

In the second part of this section we will discuss how exchange is actually im-
plemented. For the moment, it is important to understand that the signature of
exchange is quite different from the signature of the exchange function it implements:

template<typename X>

void

exchange(CRS<X>& t, const CRS<X>& s) /*{

using local::size;

using local::pos;

REQUIRE(size(pos(s)) == n_p() + 1);

...

*/};

As exchange, the exchange function is generic w.r.t. the type of the data to be
exchanged X. The SCDRC type CRS<X> is a compact raw storage representation of
arrays of arrays of type X. For the purpose of this discussion you can think of an object
of type CRS<X> as of an object of type Array<Array<X>>12. In contrast to exchange,
however, exchange does not take as arguments tuples of arrays of arrays and does not
“return” a tuple objects. Instead, exchange simply takes a “local” array of arrays s
and returns a “local” array of arrays t.

The apparent contradiction between the signature of exchange and the signature
of the correspondent implementation exchange is typical in the SPMD distributed
computational model. In this model, np copies of a program are executed in parallel.
Each copy has an associated local memory space and local data. The program is
parameterized on a program id p and there is a computational environment that
associates to each copy of the program a different value of p in [ 0 . . . np ).

In the SPMD computational model, only local data – data in the local memory
space – appear in function signatures. This makes the signature of SPMD functions

12In C++, expressions involving text like Array<Array<X>> yield syntax errors because the double
closing angular brackets are interpreted as the “right-shift” operator. In this report we do not care
about this problem and freely write Array<Array<X>> to denote the type of arrays of arrays of some
type X.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 31

similar to their SPSD (single program single data) sequential counterpart. In the
SPMD computational model, the visibility of local data is controlled by the same
scoping rules as in the SPSD model. SPMD functions, however, can also access non-
local data via communication between remote partitions. This can be done because
the computational environment provides, beside the local program id p, the total
number of program copies np and suitable communication primitives.

The absence of explicit representation of non-local argument data in the signa-
ture of SPMD functions is often a source of ambiguity and confusion. It makes it
challenging to design software which is easily understandable.

Consider a simple size function that computes the size of an array. In a SPSD
computational environment size has the following signature:

(11) size :: Nat←− A(X)

In a SPMD computational environment one can think of two size functions. One with
signature as in 11 and one with signature

(12) size :: Nat←− A(X)np

The latter function is understood to take a distributed array argument and to compute
its size. This is the sum of the sizes of the tuple elements. SPMD implementations of
12 obviously require data exchange between partitions and are different from imple-
mentations of 11. As explained above, however, SPMD implementations of 12 would
have exactly the same signature as SPMD implementations of 11, namely:

template<typename X>

Nat

size(Array<X>& a);

Thus, one of the first problems a design has to face is that of developing an unam-
biguous naming scheme for functions that appear both in the SPSD and, possibly
in two flavors, in the SPMD computational environment. A related problem is that
of representing the computational environment itself and of avoiding the erroneous
usage of SPMD features in a SPSD program and vice-versa.

To understand the possible consequences of mixing up SPSD and SPMD func-
tions in the same program consider the role of pre- and post-conditions. In SC-
DRC, pre- and post-conditions play an important role in code-level documentation.
A pre-condition example can be seen in the signature of exchange given above:
REQUIRE(size(pos(s)) == n p() + 1);. Here s is an object of type CRS<X>. For
such objects, size(pos(s)) returns a natural number equal to the size of the array
of arrays s represents. In SCDRC and in the SPMD computational environment,
REQUIRE(expr) checks, on partition 0, that the value of expr is true on all parti-
tions13. A necessary condition for REQUIRE to work is that it is called on all partitions.
Obviously it would be a mistake to call a SPMD REQUIRE in a SPSD program. It also
would be a mistake to use REQUIRE, in a SPMD program, to check a pre-condition of
a function that is not called on all partitions !

Because of the fact that even simple functions like size and pre- and post con-
ditions have implementations that depend on the computational environment (and,
in the SPMD environment possibly come in two flavors), all or almost all SCDRC
components depend on the computational environment.

13What happens on other partitions and why REQUIRE has “tuple-semantics” on partition 0 is not
relevant for the present discussion.



32 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

Thus, if the computational environment were represented by some type, possibly
a singleton, all SCDRC types and functions would be parameterized on such type
or take an extra “environment” argument. Beside being very cumbersome, this ap-
proach would be of little help in preventing inconsistent mixtures of SPSD and SPMD
features.

In SCDRC, we represent computational environments by means of C++ names-
paces. In contrast to (static) classes, C++ namespaces can be defined and extended
in files which can be compiled separately. Thus, namespaces are very suitable for
accounting for dependencies that affect all software components. This can be done
through embedding: a given component – for instance our size function – can be made
behave in two different ways – for instance according to two different definitions of
pre- and post-conditions – by embedding it into two different namespaces.

The SPSD and the SPMD distributed computational environment are represented
by the namespaces SPSD and SPMD Distributed14. A namespace SPMD Shared might
be added as a further development to represent a SPMD shared computational en-
vironment. Programs that use SCDRC usually include either SPSD or SPMD Distr

components. These are accessed via standard using declarations like in the following
example:

1 #include <numeric_types/src_cc/Nat.h>

2 #include <spmd_distr/src_cc/SPMD_Distr.h>

3 #include <spmd_distr_ops/src_cc/SPMD_Distr_ops.h>

4 #include <spmd_distr_array/src_cc/SPMD_Distr_Array.h>

5 #include <spmd_distr_array/src_cc/SPMD_Distr_Array_ops.h>

6 #include <spmd_distr_iter/src_cc/SPMD_Distr_Interval_Iter.h>

7 #include <spmd_distr_iter/src_cc/SPMD_Distr_Interval_Iter_ops.h>

8

9 using namespace SPMD_Distr;

10

11 int main(int argc, char **argv) {

12

13 initialize(argc, argv);

14 const Nat sz = p() + 1;

15 Array<Nat> ofs;

16 offsets(ofs, sz);

17 VERIFY(local::is_offsets(ofs));

18 VERIFY(ofs[n_p()] == local::sum(local::interval_iter(n_p())));

19 finalize();

20 return 0;

21 }

At lines 1-7 we include standard SCDRC components. The file Nat.h provides a type
for positive integer numbers. SPMD Distr.h, SPMD Distr ops.h,
SPMD Distr Array.h and SPMD Distr Array ops.h provide the SPMD distributed
computational environment, a set of related operations – in this case offsets – ar-
rays and array operations. The last two header files provide iterators over zero-based
integer intervals and related operations.

14In order to avoid ugly line breaking in code listings, in the remaining of this report we use
Distr, distr, Tri, Rect, Coord, Sys, iter instead of Distributed, distributed, Triangulation,
Rectangular, Coordinate, System, iterator respectively.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 33

With the using declaration at line 9 we bring the names of SPMD Distr in the
local scope. These are, among others: initialize, p, Array, offsets, n p and
finalize and local. The latter is the name of a namespace embedded in SPMD Distr.
Most of the names in SPMD Distr::local are function names. The correspondent
functions do not have “tuple semantics” and only act on the local arguments. Thus,
in the SPMD Distr namespace, there is a function size implementing (12) and a
function local::size that implements (11). If we were in the SPSD computational
environment, there would be only a size function.

The functions initialize, p, n p and finalize are all declared in SPMD Distr.h.
The call to initialize at line 13 initializes the computational environment. From
line 13 and up to the end of finalize at line 19, np copies of the program are running
in parallel on np partitions. Program copies and partitions have id numbers from zero
to np−1. The local id number is provided by the function p. The value of np depends
on how the program has been started and is provided, by n p.

At line 14 we store p()+1 in sz. Thus, sz is equal to 1 on partition 0, 2 on
partition 1 and so on. An empty array of Nats ofs is initialized at line 15. The
SCDRC type Array is declared in SPMD Distr Array.h. Array is essentially an STL
(Standard Template Library) vector with overridden element access operators for
bounds checking. Of course, bounds checking is implemented with pre-conditions and,
as seen above, the implementation of pre-conditions depends on the computational
environment. Therefore we have, in SCDRC, SPSD and SPMD Distr arrays.

At line 16, ofs and sz are passed as arguments to a function offsets. This is
declared in SPMD Distr ops.h and is a C++ implementation of algorithm 11. At
line 17 we verify that the local result ofs is actually an offsets array. The function
local::is offsets is defined in SPMD Distr Array ops.h and is particularly simple:

template<typename A>

inline

bool

is_offsets(const Array<Nat, A>& a) {

using local::size;

using local::is_non_decreasing;

return (size(a) > 0 && a[0] == 0 && is_non_decreasing(a));

}

Notice that, if offsets is an implementation of algorithm 11, the assertion at line 17
should always evaluate to true since it corresponds to the first post-condition of the
algorithm. At line 18 we check that the value of the last component of ofs is in fact
the sum of the sizes which have been passed to the offsets function. We compute
this sum by first constructing an object of type Interval Iter. This type is provided
by SPMD Distr Interval Iter.h. The correspondent “ops” header file provides the
factory function interval iter.

Factory functions are “global” functions that return an object of a given type X by
simply calling a constructor of X. They can be effectively used to avoid complicated
type declaration where lightweight objects can be constructed “on the fly” and passed
by value to functions like sum. In SCDRC this is often the case when working with
iterators. To appreciate the gains in readability that can be achieved by systematic
usage of factory functions, compare the program fragments:

1 return sum(filter_iter(e8, map_iter(f, array_iter(a))));

1 Array_Iter<int> ia(a);



34 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

2 Map_Iter<F, Array_Iter<Nat> > ifa(f, ia);

3 Filter_Iter<Eq, Map_Iter<F, Array_Iter<int> > > iffa(e8, ifa);

4 return sum(iffa);

1 return sum(Filter_Iter<Eq, Map_Iter<F, Array_Iter<int> > >

2 (e8, Map_Iter<F, Array_Iter<int> >

3 (f, Array_Iter<int>(a))));

While the first fragment is both terse and readable the same can hardly be said
of the other two15. The interval iter factory function takes a natural number n
and constructs an object of type Interval Iter. Iterator objects can be advanced
with a next command, queried with is end and dereferenced with the standard
star operator. sum is a generic function that adds the values visited by its itera-
tor argument to the value of an initial default argument. sum is implemented in
SPMD Distr Iter ops.h:

template<class Iter>

inline

typename Iter::value_type

sum(Iter iter, typename Iter::value_type initial = 0) {

using local::begin;

using local::is_end;

using local::next;

typename Iter::value_type result = initial;

begin(iter);

while(!is_end(iter)) {

result += *iter;

next(iter);

}

return result;

}

4.2. Components, files, directories. While the two computational environments
supported by SCDRC are implemented through C++ namespaces, most software
components are implemented as classes or collections of functions.

In SCDRC names for variables, functions, namespaces, classes, files and directories,
single words are separated by underscores. Variable, function and directory names are
written in lower case like in is non decreasing. In names of namespaces and classes,
the first character of single words starts in uppercase like in Nat. The other characters
are usually written in lowercase. Exceptions are class and namespace names which
contain acronyms. They are written as in CRS Rel where CRS means “compact row
storage”.

As explained above, most SCDRC names are embedded either in the SPSD or in the
SPMD Distr namespace. As you can see from the code examples, the namespace name
appears as a prefix of both file and of the directory names. Thus, a relation based
on a compact row storage representation is implemented, in the SPSD computational
environment, in the class SPSD::CRS Rel. This is declared in the file SPSD CRS Rel.h

which is found in the spsd relation/src/ directory.

15We are thankful to Dr. Andreas Priesnitz for suggesting the usage of factory functions in
SCDRC.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 35

Header files usually contain the declaration of a single class or of a set of func-
tions. In the second case, such functions are often operations involving a particular
type. Then, the corresponding file is named after the involved type and carries the
ops extension as in SPSD CRS Rel ops.h. Directories usually contains more than
one file. In spsd relation/src/, for instance, you will also find SPSD Reg Rel.h,
SPSD CRS Rel ops.h and SPSD Reg Rel ops.h. The following scheme shows the most
important components and the file structure of SCDRC:

math/ numeric_types/ run_time_error/

src/ src/ src/

math.h Nat.h Real.h run_time_error.h

spsd/ spmd_distr/

src/ src/

SPSD.h SPMD_Distr.h

SPSD.cc SPMD_Distr.cc

SPMD_Distr_MPI.h

spsd_array/ SPMD_Distr_MPI.cc

src/

SPSD_Array.h spmd_distr_array/

SPSD_Array_ops.h src/

SPMD_Distr_Array.h

SPMD_Distr_Array_ops.h

spsd_iter/ spmd_distr_iter/

src/ src/

SPSD_Iter_ops.h SPMD_Distr_Iter_ops.h

SPSD_Array_Iter.h SPMD_Distr_Array_Iter.h

SPSD_Array_Iter_ops.h SPMD_Distr_Array_Iter_ops.h

SPSD_Filter_Iter.h SPMD_Distr_Filter_Iter.h

SPSD_Filter_Iter_ops.h SPMD_Distr_Filter_Iter_ops.h

SPSD_Interval_Iter.h SPMD_Distr_Interval_Iter.h

SPSD_Interval_Iter_ops.h SPMD_Distr_Interval_Iter_ops.h

SPSD_Map_Iter.h SPMD_Distr_Map_Iter.h

SPSD_Map_Iter_ops.h SPMD_Distr_Map_Iter_ops.h

SPSD_Slist_Iter.h SPMD_Distr_Slist_Iter.h

SPSD_Slist_Iter_ops.h SPMD_Distr_Slist_Iter_ops.h

spsd_metis/ spmd_distr_metis/

src/ src/

SPSD_metis.h SPMD_Distr_metis.h

spsd_ops/ spmd_distr_ops/

src/ src/

SPSD_ops.h SPMD_Distr_exch.h

SPMD_Distr_ops.h

SPMD_Distr_ops.cc

spsd_rba/ spmd_distr_rba/



36 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

src/ src/

SPSD_RBA.h SPMD_Distr_RBA.h

SPMD_Distr_RBA_ops.h

spsd_relation/ spmd_distr_relation/

src/ src/

SPSD_CRS_Rel.h SPMD_Distr_CRS_Rel.h

SPSD_CRS_Rel_ops.h SPMD_Distr_CRS_Rel_ops.h

SPSD_Reg_Rel.h SPMD_Distr_Reg_Rel.h

SPSD_Reg_Rel_ops.h SPMD_Distr_Reg_Rel_ops.h

spsd_slist/ spmd_distr_slist/

src/ src/

SPSD_Slist.h SPMD_Distr_Slist.h

SPSD_Slist_ops.h SPMD_Distr_Slist_ops.h

spsd_vector/ spmd_distr_vector/

src/ src/

SPSD_Vector.h SPMD_Distr_Vector.h

4.3. Interfaces, class operations, contracts and documentation. The SCDRC
components listed above have been conceived on the basis of the formal specifications
presented in section 3. Those specification are part of the documentation of SCDRC.

In the process of designing and implementing such components, we had to make
choices that cannot be motivated on the basis of the specifications alone. In section 4.1
we have discussed one such choices: how to represent computational environments in
implementations. From that discussion it is obvious that the motivation for selecting
namespace-based representations instead of singleton parameterization was motivated
by language specific considerations.

4.3.1. Interfaces. Another choice that has a deep impact on how SCDRC components
look like is that of how interfaces are designed. There are, in C++, essentially two
possibilities.

One possibility is to represent interfaces explicitly by means of abstract classes.
Concrete classes that implement that interface – in Haskell, types that are instances

of that type class, see [17] – inherit from the abstract (interface) class. This ap-
proach is often called, in C++, dynamic polymorphism, see [15]. In this context,
dynamic polymorphism means that objects of (the types of) concrete classes can be
manipulated through pointers or references of (the type of) the interface class. Using
dynamic polymorphism, a single program, e.g. to converse relations, can be used to
compute the converse of a number of concrete relation types. This approach allows
one to write generic programs and to avoid code duplication. This, in turn, improves
code correctness, documentation and maintainability. In this approach, a function f

that takes as argument an object of type (castable to a) reference to an abstract class
Rel can be read as a generic rule of the kind: “for all types which are instances of
Rel, f does . . . ”.

Dynamic polymorphism has two main drawbacks. The first one is efficiency. The
second one is fragility. The possibility to manipulate concrete objects via references
to abstract classes implies some extra storage requirements. Moreover, the access



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 37

to concrete objects necessarily takes place via a (virtual) pointer (table). This fact
together with limitation in compiler implementation effectively prevent inlining of
function calls. Extra storage and potentially slower access are negligible if the data
structures and the function call they affect are not atomic. Otherwise they are unac-
ceptable. In our examples it would be unacceptable if, in a concrete implementation
of a relation, the access to the indexes which are in relation with a given source index
would take place via virtual pointer table.

The second drawback of dynamic polymorphism is that it leads to deep and possibly
stiff class hierarchies. It also tends to lead to “fat” interfaces if multiple inheritance
is not systematically used. Systematic use of multiple inheritance is not, in turn,
without problems, see [15].

Another possibility of representing interfaces in C++ is implicitly by means of
parameterization. This approach is called static (or compile-time) polymorphism. In
this approach, any parameterized data structure implicitly defines a set of require-
ments. For instance, the template function sum listed at page 31 implicitly defines
the following set of requirements for the type Iter of argument object:

(1) Iter must export the type value type.
(2) A void function local::begin must be defined for objects of type Iter.
(3) A function local::is end of type castable to boolmust be defined for objects

of type Iter.
(4) A void function local::next must be defined for objects of type Iter.
(5) A (dereferencing) operator* of type Iter::value type must be defined for

objects of type Iter.
(6) operator+= must be defined for objects of type Iter::value type.

The above set of requirement could be interpreted as a refinement of an iterator
concept in the STL sense. In general, however, sets of requirements implicitly defined
by parameterized data structures cannot be easily re-conducted to useful concepts.
Implicit interfaces tend to reflect more the way types are actually used than the
concepts they represent.

Implicit interfaces are more efficient and more flexible than explicit ones but they
also have serious drawbacks. Some drawbacks are of practical nature and reflect the
state of the art in C++ compiler technology: error messages after failures in instanti-
ations of heavily parameterized data structures are known for their poor readability.
Other drawbacks are typical of the C++ implementation of templates: constrained
genericity – expressing conditions like “for all types Iter such that . . . ” – is not
directly supported in C++. Complex schemes for mimicking “type-class instance re-
lationships” with static polymorphism in C++ have been proposed, among other, by
Barton-Nackman [2] and Kothari and Sulzmann [13]. A more systematic approach is
proposed in [16].

In SCDRC, all interfaces are represented statically and are therefore implicit. We
have tried to document the intended usage of parameterizes data structures with
careful choices of template argument (type) names. The above definition of sum, for
instance, suggests that the first argument is expected to be an iterator. Of course,
every type fulfilling the requirements 1-6 can be used as an argument of sum. We have
not been able to systematically apply Barton-Nackman or “enable if”-like approaches
to constrain generic template parameters in SCDRC.



38 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

4.3.2. Class operations. For a given SCDRC type, a certain number of operations are
declared in the corresponding ops files. Some operations are implemented for almost
all SCDRC types. These are those operations that correspond to the type’s member
functions and output operations. Examples of operations corresponding to a type’s
member functions are the already seen factory functions. They correspond to calls of
a type’s constructor. The map iter function used above, for instance, is defined as
follows:

template<class Fun, class Forward_Iter>

inline

Map_Iter<Fun, Forward_Iter>

map_iter(const Fun& f, const Forward_Iter iter) {

return Map_Iter<Fun, Forward_Iter>(f, iter);

}

Other standard functions corresponding to a type’s member functions are size,
is empty, begin, end for arrays and lists and is end, next for iterators. A ver-
sion of operator<< to output an object’s value is implemented for almost all SCDRC
types. Notice that the names standard functions corresponding to some type’s mem-
ber functions are necessarily heavily overloaded. Of course, heavily overloaded names
negatively affect compile time. On the other hand, they allow to achieve a higher
uniformity of notation than the more conventional mixture of member and global
functions. A comparison of the following code fragments shows that uniformity of
notation can, in fact, significantly improve readability:

REQUIRE(target_size(t) <= back(offsets(source_size(s))));

REQUIRE(t.target_size() <= offsets(s.source_size()).back());

4.3.3. pre- and post-conditions and documentation. An important aspect of the design
of SCDRC is the systematic usage of contracts as a documentation element. Consider,
for instance, the following code fragment:

template<typename A>

inline

Array<Nat>

invert_permutation(const Array<Nat, A>& p) {

using local::require;

using local::ran_size;

using local::source_size;

using local::is_in_normal_form;

using local::compose;

using local::ensure;

REQUIRE(ran_size(p) == source_size(p));

REQUIRE(is_in_normal_form(p));

const Nat sz = source_size(p);

Array<Nat> result(sz);

for(Nat i = 0; i < sz; i++)

result[p[i]] = i;

ENSURE(compose(result, p) == id(sz));

ENSURE(compose(p, result) == id(sz));

return result;

}



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 39

The function invert permutation takes an array of natural numbers p and returns
an array of natural number result. p is understood to represent a permutation of
[ 0 . . . size(p) ). Therefore the first pre-condition of invert permutation requires the
size of the range of p to coincide with the size of p16. The second pre-condition
requires p to be in normal form. The query function is in normal form is declared
as follows:

template<class A>

inline

bool

is_in_normal_form(const Array<Nat, A>& a) /*{

using local::is_empty;

using local::min_max_elem;

using local::ran_size;

using local::target_size;

using local::ensure;

...

ENSURE(result == (ran_size(a) == target_size(a)));

return result;

}*/

The post-condition of is in normal form shows that the pre-conditions of
invert permutation actually require:

target size(p) == ran size(p) == source size(p)

For non empty arrays of natural numbers, the size of the target is defined to be equal
to one plus the maximal element of the array. Thus, the first equality implies that p is
surjective on [ 0 . . .max elem(p) ). The second equality guarantees that p is bijective:
if there were distinct indexes i and j in [ 0 . . .source size(p) ) with p(i) == p(j),
the size of the range of p could be, at most, equal to source size(p) − 1. Thus,
the pre-conditions of invert permutation require p to be a permutation. The post-
conditions require the result of invert permutation to be the inverse permutation
of p: composition of result with p (and of p with result) shall yield the identity.
The SCDRC function id is another example of a factory function.

The discussion above shows that consistent usage of contracts and sensible nam-
ing schemes can significantly improve code understandability and documentation. Of
course, contracts cannot, in general, express full problem specifications and for many
SCDRC we have not been able to derive suitably implementable post-conditions.
Contracts and pre-conditions in particular, however, can be extremely useful in docu-
menting the intended usage of functions. As an example we list the pre-conditions on
the “in” arguments of partition recursive, a subset of the the SCDRC interface to
Metis for partitioning the source of symmetric, anti-reflexive relations with minimal
edge cut:

template<class Rel>

void

partition_recursive(Array<Nat>& part,

Nat& n_cuts,

16In SCDRC, size and source size are, for arrays, the same function. Both return the length

(the number of elements) of the array. We use size and source size for container and function
arguments, respectively.



40 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

const Rel& r,

const Nat n_partitions,

const Array<Nat>& elem_weights = Array<Nat>(0),

const Array<Nat>& pair_weights = Array<Nat>(0),

const Array<Nat>& options = Array<Nat>(0)) {

...

REQUIRE(is_symmetric(r));

REQUIRE(is_anti_reflexive(r));

REQUIRE(n_partitions <= source_size(r));

REQUIRE(size(elem_weights) == 0 ||

size(elem_weights) % source_size(r) == 0);

REQUIRE(size(pair_weights) == 0 ||

size(pair_weights) == size(r));

REQUIRE(size(pair_weights) == 0 ||

is_symmetric_weights(pair_weights, r));

REQUIRE(size(options) == 0 || size(options) == 5);

REQUIRE(size(options) == 0 || options[0] == 0 || options[0] == 1);

REQUIRE(size(options) == 0 ||

(options[0] == 1 &&

(options[1] == 1 || options[1] == 2 || options[1] == 3)));

REQUIRE(size(options) == 0 ||

(options[0] == 1 && options[2] == 1));

REQUIRE(size(options) == 0 ||

(options[0] == 1 && options[3] == 1));

REQUIRE(size(options) == 0 ||

(options[0] == 1 && options[4] == 0));

...

}

At the present state of development, the SCDRC approach towards source-level doc-
umentation is based on contracts and on a set of naming rules. In addition to the
rules discussed in section 4.2, we have used the following conventions:

• Function names:
– Boolean queries start with is or are followed by the queried feature as

in is empty, is initialized, are subarrays nubbed.
– Feature queries are named after the queried feature, usually a noun as

in size, breadth, back.
– Commands use imperative forms as in invert permutation, compose,

converse.
• Variable names:

– Cardinalities (the number of dimensions, the number of partitions) are
prefixed with n as in n dims, n partitions, n triangles.

– Function arguments, in particular constructor arguments, are spelled
in length as in CRS(const Array<T>& breadth, const Array<Nat>&

pos).

4.4. Iterators. Iterators play an important role in SCDRC. As we will see in the
next section, all SCDRC relations implement a common interface. This interface



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 41

essentially consists of five iterators. Examples of SCDRC functions acting on iterators
or producing iterators are the factory functions discussed in section 4.1.

As in the standard template library, SCDRC iterators act as a link between generic
algorithms and a variety of traversable data structures. However, SCDRC iterators
are different from STL iterators in many ways, being more similar to Boost ranges.
In SCDRC, a type Iter represents an iterator if:

• Iter exports the type value type. This means that Iter contains a pub-
lic typedef declaration where value type appears as the second argument of
typedef as in typedef Nat value type; in the SCDRC class Interval Iter.
• Iters can be dereferenced with operator*.
• Iters can be queried with is end.
• Iters can be incremented with next.

Because the state of SCDRC iterators can be queried with is end, traversable data
structures can be visited with a single iterator and there is no need to operate with
“begin” and “end” iterator pairs as in STL. A second important difference between
STL and SCDRC iterators is that SCDRC iterators can be used to represent lazily
evaluated computational rules. Consider, for instance, the program fragment:

Map_Iter<F, Array_Iter<Nat> > ifa(f, ia);

Here ifa is an object of type Map Iter. It is constructed with a function f of type
F and with an iterator over arrays of natural numbers. We can step through and
dereference ifa with the iterator interface, for instance as in:

while(!is_end(ifa)) {

if(is_odd(*ia))

cout << *ifa << endl;

next(ia);

next(ifa);

}

VERIFY(is_end(ia));

The program fragment prints the values of f at the odd elements of the array iterated
by ia. The evaluation of f takes place where ifa is dereferenced. This means that
ifa represents the mapping of f on ia lazily: if the natural numbers visited by ia

are all even, f is never evaluated.
A small set of basic iterator classes is implemented, in SCDRC, in spsd iter and

spmd distr iter: Interval Iter, Array Iter, Slist Iter, Map Iter and Filter Iter.
These operators extend the above interface with the command begin, the query size

and with the random access operator operator[].

4.5. Relations. As explained in 4.3.1, SCDRC interfaces are implicit. As for itera-
tors, there is no abstract class from which concrete relation classes are derived and
we use the expression relation interface to denote a set of functionalities that any
concrete SCDRC relation Rel has to implement. These are:

• Public definitions of five nested iterator classes:
– Lambdas Iter

– Lambda Sizes Iter

– Lambda Offsets Iter

– Graph Ran Iter

– Graph Dom Iter

Each class implements the basic iterator functionalities of the previous section.



42 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

• Public definition of five void constant Rel member functions:
lambdas, lambda sizes, lambda offsets, graph ran and graph dom. The
return types of these functions correspond with the types of the nested classes.
• Definition of five factory functions lambdas, lambda sizes, lambda offsets,
graph ran and graph dom. These functions take (constant references) Rel

arguments and return types correspondent to those of the nested classes.
They simply call the correspondent member function on the argument. For
instance, lambdas is defined as follows:

inline

Rel::Lambdas_Iter

lambdas(const Rel& r) {

return r.lambdas();

}

In Lambdas Iter, the value of value type is Array Iter<const Nat>: this is the
type of the objects which are obtained by dereferencing the output of lambdas. If r
is a SCDRC object representing some relation R, lambdas(r)[j] returns an iterator
over the indexes of R(j).

In the other nested classes, the value of value type is Nat. lambda sizes(r)[j]

and lambda offsets(r)[j] provide access to the size and to the offset associated to
R(j). For j in [ 0 . . .source size(r) ), they fulfill:

size(lambda sizes(r)) == source size(r)

∧
size(lambda offsets(r)) == source size(r) + 1

∧
lambda offsets(r)[0] == 0

∧
lambda offsets(r)[j+ 1] == lambda offsets(r)[j] + lambda sizes(r)[j]

The iterators returned by graph ran and by graph dom allow traversing a relation as a
set of pairs. This is particularly useful in the implementation of relational operations
like converse and compose.

At the present stage, SCDRC provides two data structures for relations: CRS Rel

and Reg Rel<n>. The first class is useful for irregular relations i.e. for relations
for which the size of R(j) is not constant. The second class is useful for regular

relations such as the vertex-triangle relation of our example. The template Nat value
n represents the size of the R(j).

Both CRS Rel and Reg Rel<n> use, internally, arrays of Nats to store the elements
of R(j) and guarantee access to these elements in asymptotically constant time. As
mentioned in section 2, efficient access to R(j) is crucial for the implementation of
relation-based algorithms.

In many important applications, however, implementations of R(j) in terms of
arrays are sub-optimal. For neighborhood relations on structured grids, for instance,
functions like R(j) can be written in terms of simple analytical expression. In this case,
it would be computationally inefficient to represent such relations with Reg Rel<n>s
or with CRS Rels. Using the examples of CRS Rel and Reg Rel<n>, it is easy to extend
SCDRC with lightweight types which are optimized for particular classes of relations.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 43

As far as the new types implement the interface described above, they can be used in
relation-based computations in the same way as CRS Rel and Reg Rel<n>. We plan
to provide such extensions upon user’s demand.

4.6. Relation-based algorithms. In section 2 we have introduced relation-based
algorithms as generic computational rules defined in terms of a relation R, of a func-
tions f taking values in the target of R and of a “reduction” operator h. In section 4
we have seen that, in order to apply parallel SPMD relation-based algorithms, auxil-
iary data structures and functionalities are in general needed. These can be described
in terms of suitable exchange and access tables and in terms of functionalities to
complete local array-based partial representations of f .

In SCDRC, relation-based algorithms are implemented as specializations of a generic
type RBA:

template<class H,

class F,

class R,

Nat h_arity = H::arity,

Nat f_arity = F::arity>

class

RBA;

Objects of type RBA can be easily constructed by passing objects of type H, F and R

to the RBA constructor as in

RBA<H, F, R> tca(triangle_center,

vertex_coordinates(tri),

vertex_triangle(tri));

H is, in general, a user-defined type. It is required to export the type return type,
the constant Nat value arity and to implement a generic function call operator
operator(). For the case arity == 1, operator() is required to have the following
signature:

template<class Random_Access_Data>

return_type

operator()(Random_Access_Data& x) const;

In most practical cases, H is a user defined wrapper of some specific, problem depen-
dent computational rule. In the example given above, for instance, H represents a rule
for computing the triangle centers. As mentioned in section 2, this rule depends on
application specific aspects like the kind of triangles (plane, spherical), the coordinate
system associated with the triangle vertexes etc. In our triangle centers example, for
instance, H is defined as follows:

typedef Triangle_Area<Coordinate_System> H;

template<class Coordinate_System>

class Triangle_Center {

public:

typedef Vector<Real, Coordinate_System::n_crds> return_type;

static const Nat arity = 1;

template<class Random_Access_Data>

Vector<Real, Coordinate_System::n_crds>

operator()(Random_Access_Data& x) const {



44 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

return Coordinate_System::triangle_center(x[0], x[1], x[2]);

}

};

In many practical cases, F is an array of a type matching the type of the arguments
of the specific rule wrapped by H, in our example triangle center. However, F

could be an RBA itself. This allows relation-based algorithms to be composed to
express complex computational patterns. The type R is an SCDRC relation. As
discussed above, SCDRC provides, at the present stage, two relation types: CRS Rel

and Reg Rel<n>.
In the SPSD computational environment, relation-based algorithms can be evalu-

ated right after construction. The triangle center algorithm object tca of out example,
for instance, could be evaluated on the triangles of tri with the simple loop:

for(Nat i = 0; i < source_size(vertex_triangle(tri)); i++)

cout << tca(i) << endl;

In the SPMD distributed computational environment, and for the case in which F is
an array, the auxiliary access and exchange tables have to be computed and the local
arrays f have to be completed before relation based algorithms can be evaluated. The
SPMD distributed computational environment supports these computations with two
functions. They can be called with relation-based algorithm arguments as follows:

init_access_exch_tables(tca);

complete_f(tca);

As discussed in section 3.3, these functions allow users to set up parallel computations
of distributed relation-based algorithms without having to care about message passing
level communication and related synchronization, mutual exclusion, deadlock or race
condition problems. At the same time, init access exch tables and complete f

support the optimization of computational procedures in which complete f has to be
called at each step of some iteration, init access exch tables, however, only once
at the beginning of the iteration. In scientific computing, such iterative procedures
are found, e.g. in the numerical integration of (partial) differential equations, in linear
algebra and in the solution of optimization problems.

4.7. Communication primitives, exchange and MPI interface. In the next
and last section of this report, we show how to setup a parallel computation of
the centers of the triangles of a distributed triangulation. We are going to use
some of the SCDRC data structures discusses in this section, functionalities like
init access exch tables and complete f and primitives for redistributing distributed
arrays and relations.

As mentioned in section 3, all SCDRC functionalities that require data communi-
cation between partitions have been designed on the top of a single communication
primitive called exchange. An implementation of exchange is provided, in the SPMD
distributed computational environment by the function SPMD Distr::exch. This
function is implemented, internally, in terms of the MPI primitive MPI Alltoallv.
This is one of the few MPI functionalities used by SCDRC. In SCDRC, most MPI
entities are accessed via a small interface. This is implemented as a MPI namespace
embedded in SPMD Distr. SPMD Distr::MPI contains:

• The type Comm (MPI Comm).
• The constant values:

– INT (MPI INT).



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 45

– CHAR (MPI CHAR).
– communicator (MPI COMM WORLD).

• The functions:
– initialize, implemented in terms of MPI Init.
– is initialized, implemented in terms of MPI Initialized.
– finalize, implemented in terms of MPI Finalize.
– is finalized, implemented in terms of MPI Finalized.
– get rank, implemented in terms of MPI Comm rank.
– get size, implemented in terms of MPI Comm size.

Other MPI entities used in SCDRC are the already mentioned MPI Alltoallv and
MPI Abort and MPI Allgather. MPI Alltoallv is used only in the implementation of
exch. The other two MPI primitives are used only in the implementation of contracts
in the SPMD distributed environment. Thus, the dependency of SCDRC on MPI is
limited to a few primitives and confined to very few files.

5. Preliminary results, outlook

In this section we show how SCDRC can be used to set up a parallel computation
of the center of the areas of a triangulation and present some preliminary results. We
close this report with an outlook on future activities.

5.1. Center of area computations. In this example we set up a parallel computa-
tion of the center of the areas of a triangulation. The computation is embedded in a
time stepping procedure. On each partition and at each iteration step, the coordinates
of the vertexes of the triangulation are displaced according to a simple rule and a new
center is computed. The computation of the center is based on two relation-based
algorithms, one for computing the centers and one for computing the areas of the
triangles. The coordinates of the center of the triangulation and of its total area are
accumulated in local variables c and a. At the end of the iteration, the average center
coordinates and the average areas are collected, together with simple computation
metrics, on partition zero. Here the average center is computed and the results are
sent to the standard output.

Beside the SCDRC functionalities discussed in section 4, we use simple components
for representing surface triangulations and basic rules for geometrical computations
in a three-dimensional Cartesian coordinate system. These components are not part
of SCDRC. The type Tri, in particular, just wraps a vertex-triangle relation and a
vertex coordinates array in a data structure. For this data structure, basic input-
output functionalities are provided in different data formats, e.g. for visualization.

In setting up the computation, we assume, as discussed at the end of the specifi-
cation of problem 2 in section 3, that the triangulation, together with correspondent
offsets for the vertex coordinates and for the vertex-triangle relation, are stored in
files which are given as arguments on the command line. This is consistent with
steps 1-3 of page 18. This means that, in a pre-processing step, we have already
computed a partitioning of the triangles and of the vertexes of the triangulation and
we have renumbered the original vertex-triangle relation and the vertex coordinates
array accordingly. The output of these computations, a “new” triangulation and the
correspondent offsets arrays, is the input of our example. We interleave the listing of
the program with remarks.

1 #include <numeric_types/src_cc/Nat.h>



46 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

2 #include <run_time_error/src_cc/run_time_error.h>

3 #include <spmd_distr/src_cc/SPMD_Distr.h>

4 #include <spmd_distr_ops/src_cc/SPMD_Distr_ops.h>

5 #include <spmd_distr_array/src_cc/SPMD_Distr_Array.h>

6 #include <spmd_distr_array/src_cc/SPMD_Distr_Array_ops.h>

7 #include <spmd_distr_relation/src_cc/SPMD_Distr_Reg_Rel.h>

8 #include <spmd_distr_relation/src_cc/SPMD_Distr_Reg_Rel_ops.h>

9 #include <spmd_distr_iter/src_cc/SPMD_Distr_Interval_Iter.h>

10 #include <spmd_distr_iter/src_cc/SPMD_Distr_Interval_Iter_ops.h>

11 #include <spmd_distr_iter/src_cc/SPMD_Distr_Map_Iter.h>

12 #include <spmd_distr_iter/src_cc/SPMD_Distr_Map_Iter_ops.h>

13 #include <spmd_distr_rba/src_cc/SPMD_Distr_RBA.h>

14 #include <spmd_distr_rba/src_cc/SPMD_Distr_RBA_ops.h>

At lines 1-2, we include the header files for natural numbers and contracts. These do
not depend on the computational environment. Subsequently, we include the SPMD
distributed computational environment, its operations, distributed arrays, relations,
iterators and relation-based algorithms with the respective operations.

15 #include <spmd_distr_geometry/src_cc/SPMD_Distr_Rect_Coord_Sys.h>

16 #include <spmd_distr_triangulation/src_cc/SPMD_Distr_Tri.h>

17 #include <spmd_distr_triangulation/src_cc/SPMD_Distr_Tri_ops.h>

18 #include <spmd_distr_geometry/src_cc/SPMD_Distr_Triangle.h>

19 #include <spmd_distr_io_ascii/src_cc/SPMD_Distr_io_ascii.h>

20 #include <fstream>

21 #include <iostream>

22 #include <string>

23

24 using namespace SPMD_Distr;

25 using namespace std;

26 using local::operator<<;

Next, we include non-SCDRC components for geometrical rules, triangulations and
IO in ASCII format. This is the format in which the triangulation and the offset
arrays are stored in the input files. At line 24, we bring all the names of the SPMD
distributed computational environment in the global scope. At line 26, we inject
local::operator<< in the global scope. As mentioned earlier, most SCDRC data
structures can be processed by operator<<. At the present, we have not implemented
any version of operator<<with “tuple-semantics”. The implemented operator<< act
on local data and are therefore embedded, in the SPMD distributed computational
environment, in the local namespace. Since there is no ambiguity in the usage of
these operators, we make them available in the global scope.

27 int

28 main(int argc, char** argv) {

29

30 if(argc < 4) {

31 cerr << "Usage: "

32 << argv[0]

33 << " tri vofs tofs"

34 << endl;

35 exit(0);



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 47

36 }

37

38 initialize(argc, argv);

At line 38, after the number of command line arguments check, we issue the first
SPMD function call: initialize starts the SPMD distributed computational envi-
ronment. From line 38 and up to the call to finalize at line 135, n p() copies of
the program are running in parallel on n p() partitions.

39 Reg_Rel<3> vt;

40 Array<Vector<Real, 3> > vx;

41 Array<Nat> vtofs(n_p() + 1, 0);

42 Array<Nat> vxofs(n_p() + 1, 0);

43

44 if(p() == 0) {

45 typedef Rect_Coord_Sys<3> Coord_Sys;

46 typedef Tri<Coord_Sys> T;

47 T tri;

48 string tri_file = argv[1];

49 local::read_ascii(tri, tri_file);

50 vt = tri.vertex_triangle();

51 vx = tri.vertex_coordinates();

52 string vofs_file = argv[2];

53 local::read_ascii(vxofs, vofs_file);

54 string tofs_file = argv[3];

55 local::read_ascii(vtofs, tofs_file);

56 local::VERIFY(local::is_offsets(vxofs));

57 local::VERIFY(local::size(vxofs) == n_p() + 1);

58 local::VERIFY(local::target_size(vt) == local::back(vxofs));

59 local::VERIFY(local::is_offsets(vtofs));

60 local::VERIFY(local::size(vtofs) == n_p() + 1);

61 local::VERIFY(local::source_size(vt) == local::back(vtofs));

62 }

First we initialize, on each partition, an empty vertex-triangle regular relation vt, an
empty array of vertex coordinates vx and trivial partitioning offsets vtofs and vxofs

for the source of vt and for the source of vx, respectively. These variables correspond
to vtp, xp, ovtp and oxp of steps 1-3 of page 18.

Then, on partition 0, we initialize an empty triangulation tri in a three-dimensional
rectangular (Cartesian) coordinate system (lines 45-47), we read tri from the file
given on the command line (lines 48-49) and we initialize vt and vx with the vertex-
triangle relation and with the vertex coordinates array of tri.

At lines 52-61, we read the offsets arrays and we verify the consistency of the
input data. In particular, we check that vtofs and vxofs are indeed offsets arrays of
proper size and that they represent non-decreasing partitioning functions for vt and
vx, respectively. Notice the local qualifier in front of the VERIFY macros and in their
argument expressions.

63 Reg_Rel<3> vtp;

64 redistribute_after_offsets(vtp, vt, vtofs);

65 Array<Vector<Real, 3> > vxp;

66 redistribute_after_offsets(vxp, vx, vxofs);



48 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

67 Array<Nat> ofs;

68 offsets(ofs, vxp.size());

69 typedef Rect_Coord_Sys<3> Coord_Sys;

70 typedef Triangle_Area<Coord_Sys> TA;

71 typedef Triangle_Center<Coord_Sys> TC;

72 typedef Array<Vector<Real, 3> > F;

73 typedef Reg_Rel<3> R;

74 TA triangle_area;

75 TC triangle_center;

76 RBA<TA, F, R> taa(triangle_area, vxp, vtp, ofs);

77 RBA<TC, F, R> tca(triangle_center, vxp, vtp, ofs);

At this point, we are ready to set up a parallel computation of the center of the areas
of tri. We first redistribute vt and vx according to vtofs, vxofs. This is done at
lines 64-67 and yields, on each partition, a new distributed vertex-triangle relation
vtp and a new vertex coordinates array vxp.

Notice the usage of redistribute after offsets: this is an overloaded function
(it is used, at lines 65 to redistribute a Reg Rel<3> relation and, at line 67, to redis-
tribute an array) which implements the specifications of problem 2’ and 1’ of section
3.3. Therefore, redistribute after offsets has “tuple-semantics” although, as
explained in section 4.1, only local data formally appear as “function” arguments.

redistribute after offsets is an example of how SCDRC supports structuring
parallel computations by providing communication primitives that relieve the user
from the burden of low-level data transferring. As explained in the introduction,
however, SCDRC does not attempt to hide the underlying distributed data model
to the user. This model is visible in the offsets array arguments that “high-level”
SCDRC primitives like redistribute after offsets require.

The offsets arrays vtofs and vxofs describe, on each partition, which chunks of
vt and vx have to be sent to which partition. In order to efficiently initialize the
relation-based algorithms, it is useful to compute, on each partition, the offsets that
describe how the new distributed vertex coordinates array vxp is actually distributed.
This is done at lines 67 and 68.

Lines 69 to 77 is where the relation-based algorithms taa and tca for triangle
areas and centers are actually constructed. The typedefs instructions just introduce
convenient type synonyms; the RBA constructors are called in the last two lines.
Notice that both taa and tac use the same “f” function vxp and the same “R” relation
vtp. The “h” functions of taa and tca are triangle area and triangle center,
respectively. These rules are provided by non-SCDRC components. As the example
shows, RBAs are quite flexible generic types: users can define their own “h” functions
to construct ad hoc RBA objects.

78 init_access_exch_tables(taa);

79 init_access_exch_tables(tca);

80 const Nat n_iter = 10000;

81 const Real alpha = 0.1;

82 const Real omega = 1.0;

83 Array<Vector<Real, 3> > vx0(vxp);

84 Real a = 0.0;

85 Vector<Real, 3> c = Vector<Real, 3>(0.0);

86 for(Nat iter = 0; iter < n_iter; iter++) {



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 49

87 const Real t = 2.0 * Real_PI * Real(iter) / Real(n_iter - 1);

88 for(Nat i = 0; i < vx0.size(); i++)

89 vxp[i] = vx0[i] * (1.0 + alpha * sin(omega * t));

90 complete_f(taa);

91 complete_f(tca);

92 for(Nat j = 0; j < local::source_size(vtp); j++) {

93 const Real area = taa(j);

94 const Vector<Real, 3> center = tca(j);

95 a += area;

96 c += area * center;

97 }

98 }

99 a /= Real(n_iter);

100 c /= Real(n_iter);

Since we are in the SPMD computational environment and the “f” function of taa

and tca is represented by a distributed array, the auxiliary access and exchange tables
have to be computed and the local arrays f have to be completed before taa and tca

can actually be evaluated.
The computation of the access and exchange tables is done at lines 78 and 79.

This is outside the main iteration (lines 86 to 98) because the tables only depend
on the vertex-triangle relation and on the offsets of the vertex coordinate arrays. In
contrast to the vertex coordinates, the relation and the offsets do not change during
the iteration. As explained in section 3.3, the computation of the access and exchange
table is computationally demanding and it would be very inefficient to recompute such
tables every time we need to complete the local vertex coordinates arrays.

At lines 80-82 we initialize the number of iterations n iter, the amplitude alpha

and the frequency omega. Amplitude and the frequency are used at line 89 to impose
a simple periodic motion on the vertexes of the triangulation. At lines 83-85 we
initialize an auxiliary array of vertex coordinates vx0 and the variable a and c. We
use a and c to accumulate the sums of the areas and of the centers of the triangulation.

Inside the iteration we first compute an “iteration time” t and move the vertexes
of the triangulation. Then, at lines 90-91, we complete the local vertex coordinate
array with the “new” values. As for the access and exchange table computations
discussed above, SCDRC users are supposed to know that, at each iteration step,
vertex coordinates have to be exchanged between partitions. However, SCDRC users
do not need to know the details of which data have to be exchanged and of how this
can be done. They simply call the SCDRC primitives init access exch tables and
complete f. After these calls, all partitions have enough data to compute the areas
and the centers of the triangles independently of each other: the loop at lines 92-97
can be done in parallel. This loop is where the computational work is actually done:
for each triangle, we compute the triangle area with taa and the triangle center with
tca. These results are stored in the loop variables area and center. These are used
to increment a and c at lines 95 and 96. At lines 99-100, a and c are divided by the
number of iteration thus yielding the average area and triangulation center.

135 finalize();

136 return 0;

137 }



50 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

Figure 1. Earth surface triangulation

We do not list program lines 101-134. These contain instructions for collecting the
partial results on partition zero and for printing global results and are not relevant
for the present discussion. The last interesting SCDRC function call is at line 135:
here we finalize the SPMD distributed computational environment. From here on,
only one copy of the program is left running. We terminate the computation at line
136.

5.2. Preliminary results. We have used the center of areas program discussed
above to set up a test parallel computation. In spite of its simplicity, the parallel
computation of the center of areas is representative in terms of computational com-
plexity for an important set of applications, for example matrix-vector multiplications
and approximation of integrals of fluxes in FVMs.

As source data, we used the earth surface triangulation shown in figure 1.
This triangulation has been computed by 8 adaptive refinement steps starting from

a simple icosahedron. We have used a version of the red-green local mesh adaptation
algorithm developed by D. Hempel and described in [11]. At each step, we have
marked for refinement those triangles which are cut by the level set z = 0. Here
z represents the altitude above or below the mean sea-level. All triangles are plane

triangles. All vertexes lie in a piecewise bilinear approximation to the earth surface.
This is computed with the etopo20 earth surface dataset17.

The triangulations have been partitioned into 2, 4, 8, 16, 32 and 64 subtriangula-
tions using the SCDRC interface to Metis described in section 2.2.

17http://ferret.wrc.noaa.gov/cgi-bin/dods/nph-dods/data/alh/etopo20.cdf.html



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 51

Figure 2. Partitioning of the triangulation into 32 subpartitions.

2 part. 4 part. 8 part. 16 part. 32 part. 64 part.

total num. triangles 86750 86750 86750 86750 86750 86750
min. triangles per part. 43311 21344 10527 5226 2629 1307
max. triangles per part. 43439 22020 11153 5583 2794 1398

tot. comm. volume 187 406 638 1138 1745 2538
min. comm. volume 77 77 56 53 34 23
max. comm. volume 110 112 92 128 84 65

Table 1. Parallel triangulation center computation metrics.

Figure 2 shows the result of this partitioning into 32 subpartitions and some im-
portant metrics associated with different partitionings are summarized in table 1.

In particular, the communication volume for a given partition (table 1) is defined
as the number of elements (of the type of the elements of vx, Vector<Real, 3>) that
that partition has to send in a single complete f call.

After init access exch tables has been called on a relation-based algorithm,
this number and the number of partitions the data have to be sent to (the number of
communication peers) can be queried with a SCDRC function.

The computations have been run on an IBM p655 cluster consisting of 30 nodes
with 8 Power4 1.1GHz CPUs per node. For computations involving 8 partitions and
above, we have used a blocking factor of 8. The blocking factor specifies the way in
which processes will be assigned to a node. For a blocking factor of 8, entire nodes



52 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

2 proc. 4 proc. 8 proc. 16 proc. 32 proc. 64 proc.

time (n = 1) 1866 944 485 321 385 784
speedup 1 1.98 3.84 5.81 4.84 2.38

time (n = 10) 1854 919 466 247 144 139
speedup 1 2.01 3.98 7.51 12.88 13.34

time (n = 100) 1890 976 480 241 129 67
speedup 1 1.93 3.94 7.84 14.65 28.21

time (no comm.) 1878 926 458 229 114 57
speedup 1 2.02 4.1 8.2 16.47 32.95

Table 2. Parallel triangulation center computation times.

are reserved for the application. For 2 or 4 tasks and a blocking factor of 2 or 4
respectively, it is guaranteed that the tasks will run on the same node.

Execution times were recorded for several sets of runs and speedup values calculated
accordingly. Each run had a fixed number of iterations (N = 100000). Speedup is
defined here as the ratio between the time taken to run on np processors relative to the
time taken with 2 processors. Times have been calculated by calling the MPI Wtime()
function - which returns current wall-clock time - before and after the main execution
loop. All processes are synchronized before measurements are taken by calling the
MPI Barrier() function.

We also modified the code to investigate the effect of changing the ratio between
computation and communication costs. This was done by changing how often the
communication was carried out during a run while keeping the number of computation
steps constant. Specifically, this was carried out by changing how often complete f

was called inside the main execution loop. Table 2 shows the execution times (in
seconds) and speedup values for communication at every step (n = 1) and at every
10th (n = 10) and 100th (n = 100) step and for the case of no communication (n = 0).

With the partitioning scheme described above and with no communication, we
expect the total run time to halve with each doubling of the number of processors.

Table 2 shows that this is indeed the case. As the frequency of communication
increases, and with a greater number of processors, it can be seen that we get much
less than this ideal speedup. In the extreme case of 64 processors and communication
at every iteration (n = 1), the performance is only marginally better than when using
just 2 processors.

We will now try to explain the results in table 2 by means of a simple computational
cost model. The time taken for a run is the sum of two components, computation
time and communication time: t = tcomp + tcomm. As can be seen from table 2
computation time is inversely proportional to the number of processors being used in
the no-communication case. We expect this to hold for all communication frequency
cases: tcomp = k1/np.

The communication time for N iterations is proportional to the number of commu-
nication steps, i.e. N/n.

tcomm = t1 ·
N

n



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 53

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70

sp
ee

du
p

number of processors

Frequency 1/1
Frequency 1/10

Frequency 1/100
No communication

Ideal case

Figure 3. Speedup figures with communication at varying fre-
quency

The time for one communication step t1 depends of course on the amount of data
to be communicated. As can be seen from Table 1, this increases with an increasing
number of partitions. The relationship between t1 and np can be estimated as follows:

t1 = c1 · np · pbsnp(13)

where pbsnp is the average partition boundary size for the case of np partitions.
Because the perimeter is proportional to the square root of the surface area:

pbsnp = c2 ·
√

psnp(14)

As seen from Table 1 we have subdivided the triangulation into roughly equally-sized
subtriangulations and therefore

psnp =
c3

np
(15)

From 13, 14 and 15 it follows that

t1 = k2 ·
√

np

with k2 = c1 · c2 ·
√

c3. Thus

t =
k1

np
+ k2 ·

N

n
· √np(16)

This formula can be seen to be similar to the BSP cost model presented in (see [6],
section 1.2).

The least-squares method was used determine the parameters k1 and k2 from the
entire data set in table 2. It can be seen from figure 4 that equation 16 fits well with
the observed results for moderate communication frequencies (bottom).

In the case of communication occuring at every step, the fit is rather poorer (figure
4, top left).



54 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

Figure 4. Modelling speedup figures

The constants k1 and k2 were also determined for each frequency case indepen-
dently, but there was no improvement in the fit of the curve. This suggests that
the relationship between k2 and np is perhaps not as simple as hypothesized above or
that the times taken for computation and communication are not independent of each
other. It may be that the high frequency communication has passed some threshold,
for example a network buffer is more quickly reaching its maximum capacity when
the number of processors is higher.

The experiments showed that it is not necessarily beneficial to increase the number
of processors in a parallel computation and therefore it is important, when setting
up a parallel computation for a given practical application, to run some preliminary
tests to ascertain what a sensible value for np might be. As our experiments show,
this will depend dramatically on the computing architecture and the ratio between
computation and communication costs.

Despite the limitation of this simple model at high communication frequencies, it
can be applied to this preliminary analysis and can guide the design of a parallel
application in terms of the number of processors which can be effectively applied to
a problem while still achieving a reasonable speedup.

Of course, practical applications might require, at each step of some iterative pro-
cedure (e.g. for iteratively solving systems of equations) more or less operations and
greater or lesser communication volume than our example. These factors will also
play a role in designing the overall structure of a parallel application.

Our model fits well for low numbers of processors at low communication frequen-
cies. Further work would need to be carried out to determine if a greater number of
processors at low frequency also display the poor speedup figures we have observed
at high frequencies.



STRUCTURING DISTRIBUTED RELATION-BASED COMPUTATIONS WITH SCDRC 55

5.3. Outlook. We have presented a prototype version of SCDRC, a small set of
software components for distributed relation-based computations. As explained in
the introduction, SCDRC is a thin software layer above message passing libraries and
is not meant to be directly used by applications. Applications are expected to use
SCDRC indirectly via application dependent components.

The triangulation and geometry components used to write the parallel program
for computing the center of a triangulation are simple examples of an application
dependent software layer built upon SCDRC. In fact, SCDRC has been written in the
framework of a project for developing software components for distributed adaptive
finite volume computations18. In finite volume computations, relation-based algo-
rithms and relation-based computations play an outstanding role.

Relation-based algorithms and relation-based computations, however, are found in
different research areas at the core of many computationally demanding procedures:
adaptive stochastic sequential decision processes and Bayesian network inference are
two examples.

We plan to use SCDRC to develop prototype application dependent software com-
ponents for one or more such applications domains. This will provide a natural testbed
for our prototype and lead to a stable version of SCDRC, possibly extended with new
functionalities for basic relational operations.

Acknowledgements

The authors thank the reviewers, whose comments have triggered various nontrivial
improvements of the paper. It is our pleasure to thank J. Gerlach and A. Priesnitz for
contributing to the development of SCDRC and for the many interesting discussions.
J. Gerlach (author of Janus, [10]) has partecipated to the early development phase of
SCDRC and has introduced us to the architecture of Janus. This work presented in
this report heavily relies on free software, among others on the libraries:

• Metis, http://www-users.cs.umn.edu/~karypis/metis.
• ParMetis, http://www-users.cs.umn.edu/~karypis/metis/parmetis.
• TVMET, http://tvmet.sourceforge.net.
• mpich, http://www-unix.mcs.anl.gov/mpi/mpich.
• NetCDF, http://www.unidata.ucar.edu/software/netcdf.
• Silo, http://www.llnl.gov/bdiv/meshtv.

In developing, testing and documenting SCDRC we have taken advantage of, among
others, the GCC compiler, Emacs, LATEX, gnuplot, MeshTV, and the Debian / GNU
Linux operating system. It is our pleasure to thank all developers of these excellent
products. This research was funded partly by R. Klein, Gottfried Wilhelm-Leibniz-
Preis 2003.

References

[1] G. Bader and G. Berti. Design Principles of Reusable Software Components for the Numerical
Solution of PDE Problems. In W. Hackbusch and G. Wittum, editors, Concepts of Numerical

Software. Vieweg Verlag, 1999.
[2] J. J. Barton and L. R. Nackman. Scientific and Engineering C++ : An Introduction with

Advanced Techniques and Examples. Addison-Wesley, 1994.

18Finite volumes is a technique for computing approximate solutions of partial differential equa-
tions. It is particularly suited for approximating discontinuous solutions of certain classes of partial
differential equations called conservation laws.



56 N. BOTTA, C. IONESCU, C. LINSTEAD, R. KLEIN

[3] G. Berti. Concepts for parallel numerical solution of PDEs. In Proceedings of FVCA-II , Duis-

burg, Germany, July 1999. Hermes, 1999.
[4] G. Berti. Generic software components for scientific computing. PhD thesis, TU Cottbus, 2000.
[5] G. Berti. A calculus for stencils on arbitrary grids with applications to parallel PDE solution.

In T. Sonar and I. Thomas, editors, Proceedings of GAMM Workshop “Discrete Modelling and

discrete Algorithms in Continuum Mechanics”, Braunschweig, Germany, Nov. 24–25, 2000,
pages 37–46. Logos Verlag Berlin, 2001.

[6] Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and MPI.
Oxford University Press, Oxford, UK, 2004.

[7] W. F. McColl D. B. Skillicorn, J. M. D. Hill. Questions and answers about BSP. Scientific

Programming, 6(3):249–274, 1997.
[8] K. Schloegel G. Karypis and V. Kumar. Parallel Graph Partitioning and Sparse Matrix Ordering

Library. http://www-users.cs.umn.edu/ karypis/metis/parmetis/files/manual.pdf, 2003.
[9] J. Gerlach. Domain Engineering and Generic Programming for Parallel Scientific Computing.

PhD thesis, TU Berlin, 2002.
[10] J. Gerlach. Generic Programming of Parallel Applications with Janus. Parallel Processing Letter,

12(2):175–190, 2002.
[11] D. Hempel. Rekunstruktionsverfahren auf unstrukturierten Gittern zur numerischen Simulation

von Erhaltungsprinzipien. PhD thesis, Universität Hamburg, Fachbereich Mathematik, 1999.

[12] G. Karypis and V. Kumar. A Software Package for Partitioning Unstructured Graphs, Par-
titioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. http://www-
users.cs.umn.edu/ karypis/metis/metis/files/manual.pdf, 1998.

[13] S. Kothari and M. Sulzmann. C++ templates/traits versus haskell type classes. Technical report,
The National University of Singapore, 2005.

[14] H. Kuchen. A Skeleton Library. Technical report, Technical Report 6/02-I, Angewandte Math-
ematik und Informatik, University of Mnster., 2002.

[15] S. Meyers. More Effective C++: 35 new ways to improve your programs and designs. Addison-
Wesley, 1996.

[16] A. P. Priesnitz. Multistage Algorithms in C++. PhD thesis, University of Göttingen, 2005.
[17] B. Boutel F. W. Burton J. Fairbairn J. H. Fasel A. D. Gordon M. M. Guzmn K. Hammond

P. Hudak R. J. M. Hughes T. Johnsson M. P. Jones R. Kieburtz R. Nikhil W. D. Partain P.
L. Wadler S. L. Peyton Jones, L. Augustsson. Haskell 98 Language and Libraries: the Revised

Report. Cambridge University Press, 2003.



PIK Report-Reference:

No. 1 3. Deutsche Klimatagung, Potsdam 11.-14. April 1994
Tagungsband der Vorträge und Poster (April 1994)

No. 2 Extremer Nordsommer '92
Meteorologische Ausprägung, Wirkungen auf naturnahe und vom Menschen beeinflußte 
Ökosysteme, gesellschaftliche Perzeption und situationsbezogene politisch-administrative bzw. 
individuelle Maßnahmen (Vol. 1 - Vol. 4)
H.-J. Schellnhuber, W. Enke, M. Flechsig (Mai 1994)

No. 3 Using Plant Functional Types in a Global Vegetation Model
W. Cramer (September 1994)

No. 4 Interannual variability of Central European climate parameters and their relation to the large-
scale circulation
P. C. Werner (Oktober 1994)

No. 5 Coupling Global Models of Vegetation Structure and Ecosystem Processes - An Example from 
Arctic and Boreal Ecosystems
M. Plöchl, W. Cramer (Oktober 1994)

No. 6 The use of a European forest model in North America: A study of ecosystem response to 
climate gradients
H. Bugmann, A. Solomon (Mai 1995)

No. 7 A comparison of forest gap models: Model structure and behaviour
H. Bugmann, Y. Xiaodong, M. T. Sykes, Ph. Martin, M. Lindner, P. V. Desanker,
S. G. Cumming (Mai 1995)

No. 8 Simulating forest dynamics in complex topography using gridded climatic data
H. Bugmann, A. Fischlin (Mai 1995)

No. 9 Application of two forest succession models at sites in Northeast Germany
P. Lasch, M. Lindner (Juni 1995)

No. 10 Application of a forest succession model to a continentality gradient through Central Europe
M. Lindner, P. Lasch, W. Cramer (Juni 1995)

No. 11 Possible Impacts of global warming on tundra and boreal forest ecosystems - Comparison of 
some biogeochemical models
M. Plöchl, W. Cramer (Juni 1995)

No. 12 Wirkung von Klimaveränderungen auf Waldökosysteme
P. Lasch, M. Lindner (August 1995)

No. 13 MOSES - Modellierung und Simulation ökologischer Systeme - Eine Sprachbeschreibung mit 
Anwendungsbeispielen
V. Wenzel, M. Kücken, M. Flechsig (Dezember 1995)

No. 14 TOYS - Materials to the Brandenburg biosphere model / GAIA
Part 1 - Simple models of the "Climate + Biosphere" system
Yu. Svirezhev (ed.), A. Block, W. v. Bloh, V. Brovkin, A. Ganopolski, V. Petoukhov,
V. Razzhevaikin (Januar 1996)

No. 15 Änderung von Hochwassercharakteristiken im Zusammenhang mit Klimaänderungen - Stand 
der Forschung
A. Bronstert (April 1996)

No. 16 Entwicklung eines Instruments zur Unterstützung der klimapolitischen Entscheidungsfindung
M. Leimbach (Mai 1996)

No. 17 Hochwasser in Deutschland unter Aspekten globaler Veränderungen - Bericht über das DFG-
Rundgespräch am 9. Oktober 1995 in Potsdam
A. Bronstert (ed.) (Juni 1996)

No. 18 Integrated modelling of hydrology and water quality in mesoscale watersheds
V. Krysanova, D.-I. Müller-Wohlfeil, A. Becker (Juli 1996)

No. 19 Identification of vulnerable subregions in the Elbe drainage basin under global change impact
V. Krysanova, D.-I. Müller-Wohlfeil, W. Cramer, A. Becker (Juli 1996)

No. 20 Simulation of soil moisture patterns using a topography-based model at different scales
D.-I. Müller-Wohlfeil, W. Lahmer, W. Cramer, V. Krysanova (Juli 1996)

No. 21 International relations and global climate change
D. Sprinz, U. Luterbacher (1st ed. July, 2n ed. December 1996)

No. 22 Modelling the possible impact of climate change on broad-scale vegetation structure -
examples from Northern Europe
W. Cramer (August 1996)



No. 23 A methode to estimate the statistical security for cluster separation
F.-W. Gerstengarbe, P.C. Werner (Oktober 1996)

No. 24 Improving the behaviour of forest gap models along drought gradients
H. Bugmann, W. Cramer (Januar 1997)

No. 25 The development of climate scenarios
P.C. Werner, F.-W. Gerstengarbe (Januar 1997)

No. 26 On the Influence of Southern Hemisphere Winds on North Atlantic Deep Water Flow
S. Rahmstorf, M. H. England (Januar 1977)

No. 27 Integrated systems analysis at PIK: A brief epistemology
A. Bronstert, V. Brovkin, M. Krol, M. Lüdeke, G. Petschel-Held, Yu. Svirezhev, V. Wenzel
(März 1997)

No. 28 Implementing carbon mitigation measures in the forestry sector - A review
M. Lindner (Mai 1997)

No. 29 Implementation of a Parallel Version of a Regional Climate Model
M. Kücken, U. Schättler (Oktober 1997)

No. 30 Comparing global models of terrestrial net primary productivity (NPP): Overview and key results
W. Cramer, D. W. Kicklighter, A. Bondeau, B. Moore III, G. Churkina, A. Ruimy, A. Schloss,
participants of "Potsdam '95" (Oktober 1997)

No. 31 Comparing global models of terrestrial net primary productivity (NPP): Analysis of the seasonal 
behaviour of NPP, LAI, FPAR along climatic gradients across ecotones
A. Bondeau, J. Kaduk, D. W. Kicklighter, participants of "Potsdam '95" (Oktober 1997)

No. 32 Evaluation of the physiologically-based forest growth model FORSANA
R. Grote, M. Erhard, F. Suckow (November 1997)

No. 33 Modelling the Global Carbon Cycle for the Past and Future Evolution of the Earth System
S. Franck, K. Kossacki, Ch. Bounama (Dezember 1997)

No. 34 Simulation of the global bio-geophysical interactions during the Last Glacial Maximum
C. Kubatzki, M. Claussen (Januar 1998)

No. 35 CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and 
performance for present climate
V. Petoukhov, A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, S. Rahmstorf
(Februar 1998)

No. 36 Geocybernetics: Controlling a rather complex dynamical system under uncertainty
H.-J. Schellnhuber, J. Kropp (Februar 1998)

No. 37 Untersuchung der Auswirkungen erhöhter atmosphärischer CO2-Konzentrationen auf Weizen-
bestände des Free-Air Carbondioxid Enrichment (FACE) - Experimentes Maricopa (USA)
T. Kartschall, S. Grossman, P. Michaelis, F. Wechsung, J. Gräfe, K. Waloszczyk,
G. Wechsung, E. Blum, M. Blum (Februar 1998)

No. 38 Die Berücksichtigung natürlicher Störungen in der Vegetationsdynamik verschiedener 
Klimagebiete
K. Thonicke (Februar 1998)

No. 39 Decadal Variability of the Thermohaline Ocean Circulation
S. Rahmstorf (März 1998)

No. 40 SANA-Project results and PIK contributions
K. Bellmann, M. Erhard, M. Flechsig, R. Grote, F. Suckow (März 1998)

No. 41 Umwelt und Sicherheit: Die Rolle von Umweltschwellenwerten in der empirisch-quantitativen 
Modellierung
D. F. Sprinz (März 1998)

No. 42 Reversing Course: Germany's Response to the Challenge of Transboundary Air Pollution
D. F. Sprinz, A. Wahl (März 1998)

No. 43 Modellierung des Wasser- und Stofftransportes in großen Einzugsgebieten. Zusammenstellung 
der Beiträge des Workshops am 15. Dezember 1997 in Potsdam
A. Bronstert, V. Krysanova, A. Schröder, A. Becker, H.-R. Bork (eds.) (April 1998)

No. 44 Capabilities and Limitations of Physically Based Hydrological Modelling on the Hillslope Scale
A. Bronstert (April 1998)

No. 45 Sensitivity Analysis of a Forest Gap Model Concerning Current and Future Climate Variability
P. Lasch, F. Suckow, G. Bürger, M. Lindner (Juli 1998)

No. 46 Wirkung von Klimaveränderungen in mitteleuropäischen Wirtschaftswäldern
M. Lindner (Juli 1998)

No. 47 SPRINT-S: A Parallelization Tool for Experiments with Simulation Models
M. Flechsig (Juli 1998)



No. 48 The Odra/Oder Flood in Summer 1997: Proceedings of the European Expert Meeting in
Potsdam, 18 May 1998
A. Bronstert, A. Ghazi, J. Hladny, Z. Kundzewicz, L. Menzel (eds.) (September 1998)

No. 49 Struktur, Aufbau und statistische Programmbibliothek der meteorologischen Datenbank am
Potsdam-Institut für Klimafolgenforschung
H. Österle, J. Glauer, M. Denhard (Januar 1999)

No. 50 The complete non-hierarchical cluster analysis
F.-W. Gerstengarbe, P. C. Werner (Januar 1999)

No. 51 Struktur der Amplitudengleichung des Klimas
A. Hauschild (April 1999)

No. 52 Measuring the Effectiveness of International Environmental Regimes
C. Helm, D. F. Sprinz (Mai 1999)

No. 53 Untersuchung der Auswirkungen erhöhter atmosphärischer CO2-Konzentrationen innerhalb des 
Free-Air Carbon Dioxide Enrichment-Experimentes: Ableitung allgemeiner Modellösungen
T. Kartschall, J. Gräfe, P. Michaelis, K. Waloszczyk, S. Grossman-Clarke (Juni 1999)

No. 54 Flächenhafte Modellierung der Evapotranspiration mit TRAIN
L. Menzel (August 1999)

No. 55 Dry atmosphere asymptotics
N. Botta, R. Klein, A. Almgren (September 1999)

No. 56 Wachstum von Kiefern-Ökosystemen in Abhängigkeit von Klima und Stoffeintrag - Eine
regionale Fallstudie auf Landschaftsebene
M. Erhard (Dezember 1999)

No. 57 Response of a River Catchment to Climatic Change: Application of Expanded Downscaling to 
Northern Germany
D.-I. Müller-Wohlfeil, G. Bürger, W. Lahmer (Januar 2000)

No. 58 Der "Index of Sustainable Economic Welfare" und die Neuen Bundesländer in der 
Übergangsphase
V. Wenzel, N. Herrmann (Februar 2000)

No. 59 Weather Impacts on Natural, Social and Economic Systems (WISE, ENV4-CT97-0448)
German report
M. Flechsig, K. Gerlinger, N. Herrmann, R. J. T. Klein, M. Schneider, H. Sterr, H.-J. Schellnhuber 
(Mai 2000)

No. 60 The Need for De-Aliasing in a Chebyshev Pseudo-Spectral Method
M. Uhlmann (Juni 2000)

No. 61 National and Regional Climate Change Impact Assessments in the Forestry Sector
- Workshop Summary and Abstracts of Oral and Poster Presentations
M. Lindner (ed.) (Juli 2000)

No. 62 Bewertung ausgewählter Waldfunktionen unter Klimaänderung in Brandenburg
A. Wenzel (August 2000)

No. 63 Eine Methode zur Validierung von Klimamodellen für die Klimawirkungsforschung hinsichtlich 
der Wiedergabe extremer Ereignisse
U. Böhm (September 2000)

No. 64 Die Wirkung von erhöhten atmosphärischen CO2-Konzentrationen auf die Transpiration eines 
Weizenbestandes unter Berücksichtigung von Wasser- und Stickstofflimitierung
S. Grossman-Clarke (September 2000)

No. 65 European Conference on Advances in Flood Research, Proceedings, (Vol. 1 - Vol. 2)
A. Bronstert, Ch. Bismuth, L. Menzel (eds.) (November 2000)

No. 66 The Rising Tide of Green Unilateralism in World Trade Law - Options for Reconciling the 
Emerging North-South Conflict
F. Biermann (Dezember 2000)

No. 67 Coupling Distributed Fortran Applications Using C++ Wrappers and the CORBA Sequence 
Type
T. Slawig (Dezember 2000)

No. 68 A Parallel Algorithm for the Discrete Orthogonal Wavelet Transform
M. Uhlmann (Dezember 2000)

No. 69 SWIM (Soil and Water Integrated Model), User Manual
V. Krysanova, F. Wechsung, J. Arnold, R. Srinivasan, J. Williams (Dezember 2000)

No. 70 Stakeholder Successes in Global Environmental Management, Report of Workshop,
Potsdam, 8 December 2000
M. Welp (ed.) (April 2001)



No. 71 GIS-gestützte Analyse globaler Muster anthropogener Waldschädigung - Eine sektorale 
Anwendung des Syndromkonzepts
M. Cassel-Gintz (Juni 2001)

No. 72 Wavelets Based on Legendre Polynomials
J. Fröhlich, M. Uhlmann (Juli 2001)

No. 73 Der Einfluß der Landnutzung auf Verdunstung und Grundwasserneubildung - Modellierungen 
und Folgerungen für das Einzugsgebiet des Glan
D. Reichert (Juli 2001)

No. 74 Weltumweltpolitik - Global Change als Herausforderung für die deutsche Politikwissenschaft
F. Biermann, K. Dingwerth (Dezember 2001)

No. 75 Angewandte Statistik - PIK-Weiterbildungsseminar 2000/2001
F.-W. Gerstengarbe (Hrsg.) (März 2002)

No. 76 Zur Klimatologie der Station Jena
B. Orlowsky (September 2002)

No. 77 Large-Scale Hydrological Modelling in the Semi-Arid North-East of Brazil
A. Güntner (September 2002)

No. 78 Phenology in Germany in the 20th Century: Methods, Analyses and Models
J. Schaber (November 2002)

No. 79 Modelling of Global Vegetation Diversity Pattern
I. Venevskaia, S. Venevsky (Dezember 2002)

No. 80 Proceedings of the 2001 Berlin Conference on the Human Dimensions of Global Environmental 
Change “Global Environmental Change and the Nation State”
F. Biermann, R. Brohm, K. Dingwerth (eds.) (Dezember 2002)

No. 81 POTSDAM - A Set of Atmosphere Statistical-Dynamical Models: Theoretical Background
V. Petoukhov, A. Ganopolski, M. Claussen (März 2003)

No. 82 Simulation der Siedlungsflächenentwicklung als Teil des Globalen Wandels und ihr Einfluß auf 
den Wasserhaushalt im Großraum Berlin
B. Ströbl, V. Wenzel, B. Pfützner (April 2003)

No. 83 Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen 
auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie die Ableitung erster Perspektiven
F.-W. Gerstengarbe, F. Badeck, F. Hattermann, V. Krysanova, W. Lahmer, P. Lasch, M. Stock, 
F. Suckow, F. Wechsung, P. C. Werner (Juni 2003)

No. 84 Well Balanced Finite Volume Methods for Nearly Hydrostatic Flows
N. Botta, R. Klein, S. Langenberg, S. Lützenkirchen (August 2003)

No. 85 Orts- und zeitdiskrete Ermittlung der Sickerwassermenge im Land Brandenburg auf der Basis 
flächendeckender Wasserhaushaltsberechnungen
W. Lahmer, B. Pfützner (September 2003)

No. 86 A Note on Domains of Discourse - Logical Know-How for Integrated Environmental Modelling, 
Version of October 15, 2003
C. C. Jaeger (Oktober 2003)

No. 87 Hochwasserrisiko im mittleren Neckarraum - Charakterisierung unter Berücksichtigung 
regionaler Klimaszenarien sowie dessen Wahrnehmung durch befragte Anwohner
M. Wolff (Dezember 2003)

No. 88 Abflußentwicklung in Teileinzugsgebieten des Rheins - Simulationen für den Ist-Zustand und für 
Klimaszenarien
D. Schwandt (April 2004)

No. 89 Regionale Integrierte Modellierung der Auswirkungen von Klimaänderungen am Beispiel des 
semi-ariden Nordostens von Brasilien
A. Jaeger (April 2004)

No. 90 Lebensstile und globaler Energieverbrauch - Analyse und Strategieansätze zu einer 
nachhaltigen Energiestruktur
F. Reusswig, K. Gerlinger, O. Edenhofer (Juli 2004)

No. 91 Conceptual Frameworks of Adaptation to Climate Change and their Applicability to Human 
Health
H.-M. Füssel, R. J. T. Klein (August 2004)

No. 92 Double Impact - The Climate Blockbuster ’The Day After Tomorrow’ and its Impact on the 
German Cinema Public
F. Reusswig, J. Schwarzkopf, P. Polenz (Oktober 2004) 

No. 93 How Much Warming are we Committed to and How Much Can be Avoided?
B. Hare, M. Meinshausen (Oktober 2004)



No. 94 Urbanised Territories as a Specific Component of the Global Carbon Cycle
A. Svirejeva-Hopkins, H.-J. Schellnhuber (Januar 2005)

No. 95 GLOWA-Elbe I - Integrierte Analyse der Auswirkungen des globalen Wandels auf Wasser, 
Umwelt und Gesellschaft im Elbegebiet
F. Wechsung, A. Becker, P. Gräfe (Hrsg.) (April 2005)

No. 96 The Time Scales of the Climate-Economy Feedback and the Climatic Cost of Growth
S. Hallegatte (April 2005)

No. 97 A New Projection Method for the Zero Froude Number Shallow Water Equations
S. Vater (Juni 2005)

No. 98 Table of EMICs - Earth System Models of Intermediate Complexity
M. Claussen (ed.) (Juli 2005)

No. 99 KLARA - Klimawandel - Auswirkungen, Risiken, Anpassung
M. Stock (Hrsg.) (Juli 2005)

No. 100 Katalog der Großwetterlagen Europas (1881-2004) nach Paul Hess und Helmut Brezowsky
6., verbesserte und ergänzte Auflage
F.-W. Gerstengarbe, P. C. Werner (September 2005)

No. 101 An Asymptotic, Nonlinear Model for Anisotropic, Large-Scale Flows in the Tropics
S. Dolaptchiev (September 2005)

No. 102 A Long-Term Model of the German Economy: lagomd_sim

C. C. Jaeger (Oktober 2005)
No. 103 Structuring Distributed Relation-Based Computations with SCDRC

N. Botta, C. Ionescu, C. Linstead, R. Klein (Oktober 2006)




