

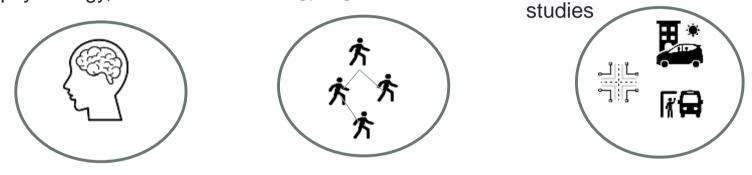
Mercator Research Institute on Global Commons and Climate Change gGmbH

Determinants of low-carbon transport mode adoption

Evidence from systematic review of reviews

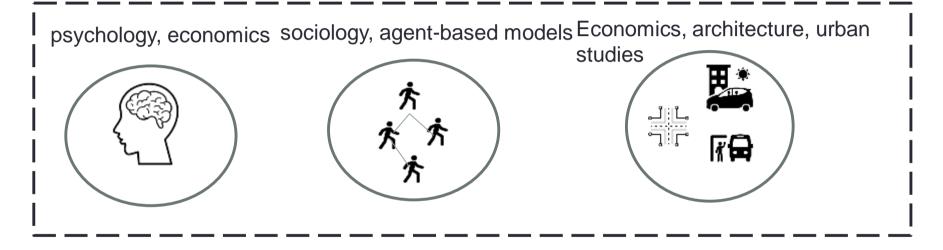
Aneeque Javaid¹, Felix Creutzig¹, Sebastian Bamberg²

(Work in progress)


¹ Mercator Research Institute on Global Commons and Climate Change (MCC) 10829 Berlin, Germany

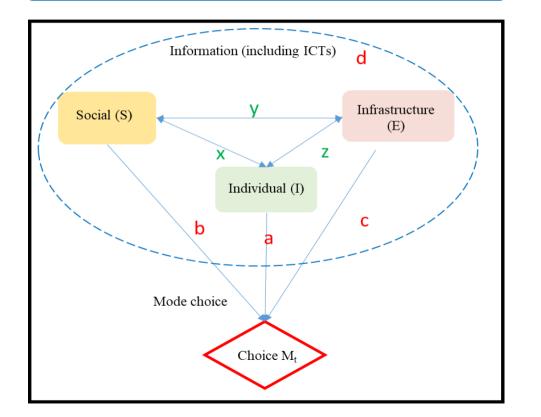
² Department of Social Sciences, University of Applied Science Bielefeld, Germany

Research on Low-carbon transport behavioral patterns


psychology, economics sociology, agent-based models Economics, architecture, urban

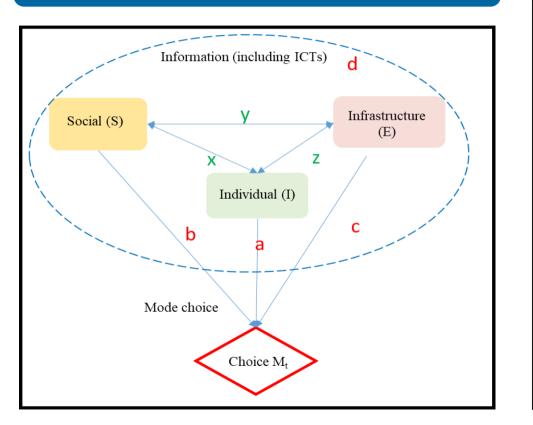
Large literature distributed across disciplines, methods, approaches This creates issues regarding the relative importance of different factors.

Research on Low-carbon transport behavioral patterns



Understand the relative importance of different factors and put them together under one framework

Mittwoch, 18. September 2019


Framework

Direct effects:
[a]
[b]
[C]
Conditional effects
(a S); (a E); (b E); (S E)
Interactions effects
x, y, z

Framework results

Direct effects:

[a] :

(non-habit) individual factors can explain **20-30%** of variation in travel mode choice.

[b] :

social factors can explain **10-20 %** of variation in travel mode choice.

[c] :

Changes in infrastructure can lead to **20-30%** increase in alternate transport mode uptake.

Results summary

Individual			Social		Infrastructure		
Mode	Evidence summary for individual factors	vidence strength	Mode	Evidence summary for social factors Evidence strength	Mode	Evidence summary for infrastructure factors Evidence strength	
Ģ	High correlation between habits (r = 0.42) , past use (r = 0.69) on car use. PBC (r = 0.27) has a lower but also significant correlation.		ل	Subjective norms (r = 0.36) are related to car-use. Descriptive norms 000000000000000000000000000000000000	6	Car use reduces with population density (elasticity = -0.04), and diversity (elasticity = -0.09). The reduction in car use is highest for changes in street design (elasticity = -0.12), and destination accessibility (elasticity = -0.22)	
	peronsal values (r = 0.36) and alturistic value orientation (r = -0.32) are also related to car use. Personality related factors are more important in explaining intentions as compared to reported behavior	••••	B	Small but significant coorelation between identity (r = 0.08) and car- use Subjective norms have a mojor role in shaping non-car use as well as	ŕ	Walkability improves most with intersection density (elasticity = 0.39) and 000000000000000000000000000000000000	
ø	Even higher correlation between habits (r = 0.68) , past use (r = 0.85) on non-car use. PBC (r = 0.38) is more important for non-car use options.			intention to use non-car options (~30% variation in intentions can be explained by social norms). Descriptive norms have limited impact.	đō	Provision of Bike lanes can lead to 10% (range 6–21%) shift from other transport modes to bike use.	
			0±0	Social status is important predictor. More important "who is using bicycles" than "how many".		Integration of bike lanes with transprt network and better provision of services at destination can lead to further increase in bike-use (~ 5-10%).	
	percieved usefulness (r = 0.42) is also associated with non-car use.			Joint actvities and peer encouragement are important factors in higher bicycle useage.		Transit use increases with better street design (elasticity = 0.29) and destination accessibility (elasticity = 0.29)	
ŌŌ	60% of the studies find that age, gender and employment status are important predictors of bicycle use.	•••	Ĵ	Descriptive norms (knowing more people use Public transport) leads to higher proponsity to use Public transport.		Per capita ridership is positively associated with network coverage and infrastructure (around 5-30 % mode shift from cars). Only marginal gains with better service quality attributes (1-5% mode shift from cars).	

Mittwoch, 18. September 2019

Mode	Evidence summary for infrastructure factors	Evidence strength			
Ģ	Car use reduces with population density (elasticity = -0.04), and diversity (elasticity = -0.09). The reduction in car use is highest for changes in street design (elasticity = -0.12), and destination accessibility (elasticity = -0.22)		Car use	ture	2
东	Walkability improves most with intersection density (elasticity = 0.39) and job-housing balance (elasticity = 0.19)	••••	③心 Bike 六 Walking	factors	Evidence streng
\$	Provision of Bike lanes can lead to 10% (range 6–21%) shift from other transport modes to bike use.	•••••	PT or bus	= -0.04), and sticity = -0.12), = -0.22)	
	Integration of bike lanes with transprt network and better provision of services at destination can lead to further increase in bike-use (~ 5-10%).		<>	ity (elasticity =	
	Transit use increases with better street design (elasticity = 0.29) and destination accessibility (elasticity = 0.29)	••••	Meta-analysis Quantitative	21%) mode-shift Id better provision Pase bike-use (~ 5-	••••
	Per capita ridership is positively associated with network coverage and infrastructure (around 5-30 % mode shift from cars). Only marginal gains	•••	Qualitative	= 0.29) and	
	with better service quality attributes (1-5% mode shift from cars).			etwork coverage n cars). Only mode shift from	•••

Mode

0Ð

Policy implications

- Infrastructure factors are highly important for adoption of alternative transport modes (directly & indirectly)
- Social identity/status is important leverage for promoting bicycling and reducing car use