

P I K

Towards net zero energy systems:

Decarbonization bottlenecks and new opportunities in a rapidly changing world

Gunnar Luderer

Member of

PEP 1.5 Final Symposium September 3-4, 2019

The transition to CO₂-neutral energy systems

Feasibility of Paris targets and scale of carbon dioxide removal (CDR) ultimately determined by residual fossil emissions

1.5°C decarbonization scenarios

P I K

Based on Luderer et al. (2018), *Nature Clim. Chnage Bertram et al. (2018), ERL*

Indicators of the system transformation

Electricity System Demand side CO2 Emissions Final energy Total demand Non-electric CO2-intensity \sim Fossil carbon intensity Х Х consumption energy demand of fuels side emissions Models of electricity [EJ] [Gt CO2] [%] [kg/GJ] [Gt CO2] max 84th 60 2015: 0 median 527 g/kWh 16th 150 $\overline{\diamond}$ 600 min ₽ ₽ ₽ 60 - \diamond **F** 20 \diamond Scenario 40-Ð Vx € 100 -Med-2C 0 400 -含 40 - \diamond λ d. WB-2C 10 -20-X 1.5C-2100 50 . 200 -20 -Reference 84th 0 0 0 0 0 median 16th Abatement Decarbonization Reduction of Energy efficiency & of fuels fuel use strategies: demand reduction (Biomass, H2, (Electrification) industry CCS,

Luderer et al., Nature Clim. Ch. (2018)

synthetic fuels)

Phasing out fossil electricity

WB-2C

1.5C-2100

How quickly can coal be phased out?

4

The long legacy of policy choices

The long legacy of policy choices

K

Ρ

- 80 GtCO2 of excess emissions in INDCs until 2030
- Growing to 250 GtCO2 until 2050 due to carbon lock-in

min

The long legacy of policy choices

Ρ

Κ

Rapid growth of solar PV

Energy efficiency: Huge theoretical potential

K

Ρ

9

Low energy demand lifestyles: Major benefits

What are policy approaches to achieve transition to low energy demand pathways?

The role of bioenergy...

...and its environmental impacts

Coupling Life-Cycle-Assessment with IAM Luderer et al., in review

Can we limit the reliance on bioenergy for deep decarbonization?

What is the potential for deep electrification?

Progress in battery technology

Schmidt et al., 2017, Nat. Energy

Energy prices [€/MWh]

Making renewable energy tradable?

- Regional imbalance between highest wind and solar potentials and energy demands
- Trade as
- **Electricity** via high voltage direct current transmission grid
- Synthetic renewable fuels (H2, methane, methanol,...)
- Energy intensive bulk materials (steel, aluminum, chemicals,...)

Policy implications

- Transformation of industry and transport sector determine bioenergy and CDR requirements
- How do transition speeds differ across sectors and technologies? What are crucial lock-ins and lock-outs, and how can they be avoided?
- Sector coupling: How can electrification of end-uses and e-fuel production facilitate the integration of variable renewable electricity?
- What policies to achieve low energy growth?

