

PEP1.5 – Potsdam, September 2019

Deep decarbonisation scenarios and their vulnerability to *bottlenecks*

Perspectives from the *Rapid Switch* Project A research network exploring barriers, bottlenecks and unintended consequences of rapid, deep decarbonization

Greig (cgreig@princeton.edu) nger Visiting Fellow in Energy & Environment, Princeton University Chair & Director for Sustainable Engineering Innovation, The University of Queensland

- eep decarbonization scenarios = rapid change & enormous isruption across the global energy economy
- ottlenecks are inevitable anticipating them will be critical
- separate but connected examples
 - Scenarios modeled with high coordination & foresight; versus Investing under uncertainty;
 - Binary risk associated with large pre-FID capital requirements;
 - Cross-sectorial risk exposure
 - Unintended / indirect consequences / feedbacks.
- ase studies (used for illustrative purposes):
- RE + Hydrogen (electrolysis) / CCS / Coal plant closures

Idea 1 – **Modelling** with high levels of coordination and/or foresight vs **Investing under high levels of uncertainty**

AM's (and many other decarbonization models) produce scenarios which benefit from high levels of **coordination** (across sectors) and/or **foresight**.

On the other hand investors participating in decarbonization make decisions unde high levels of uncertainty with limited cross sectoral insight, e.g. evolving:

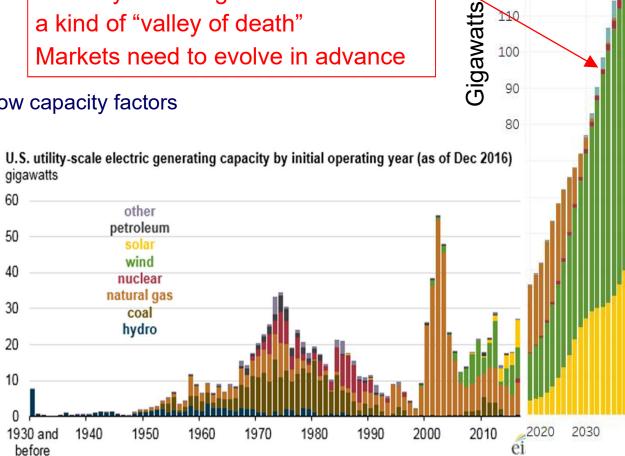
- Technology cost and performance
- Competition
- Policy
- Market design

Disconnect between model projections and transition drivers (e.g. market designation)

se-study: decarbonizing the US grid by 2050

gh RE scenario)

- y scenarios involve:
- ncreased electrification
- ery high penetration of VRE (wind & solar)
- ncreasing curtailment of VRE
- Reducing VRE capex increases tolerance for low capacity factors


ates system <u>NEEDS</u>

(ariability (battery storage) & eriodic *scarcity* (flexible demand / back-up)

also system <u>OPPORTUNITIES</u>

- ncreasing periods of *zero*-cost electricity
- \rightarrow Electrolysis for H₂ production
- Dual boiler systems (electricity / gas) for industrial heat

In practice, rising curtailment kills the market driver for new VRE additions **before** the market signal for electrolysis emerges... a kind of "valley of death" Markets need to evolve in advance

170

160

150

140

130

120

110

other

gas

nuclear

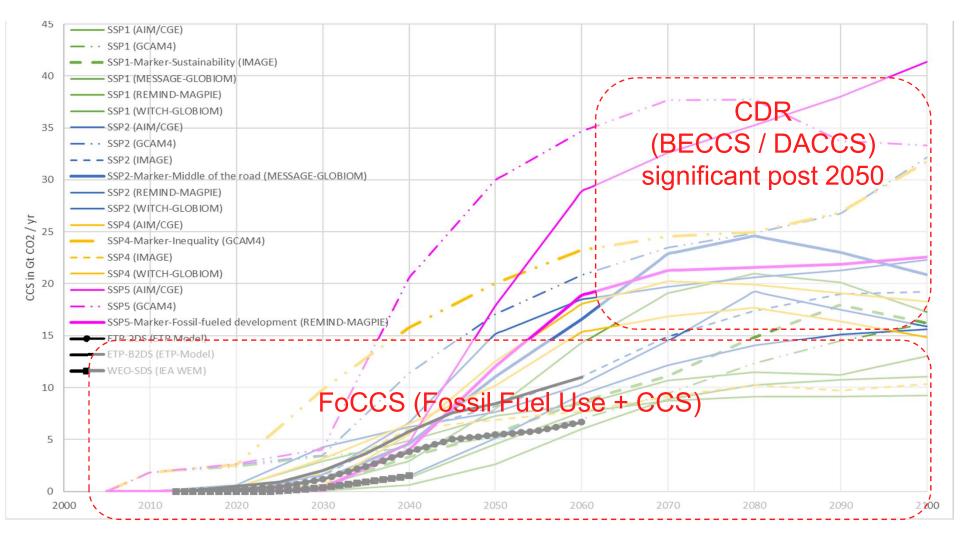
wind

solar

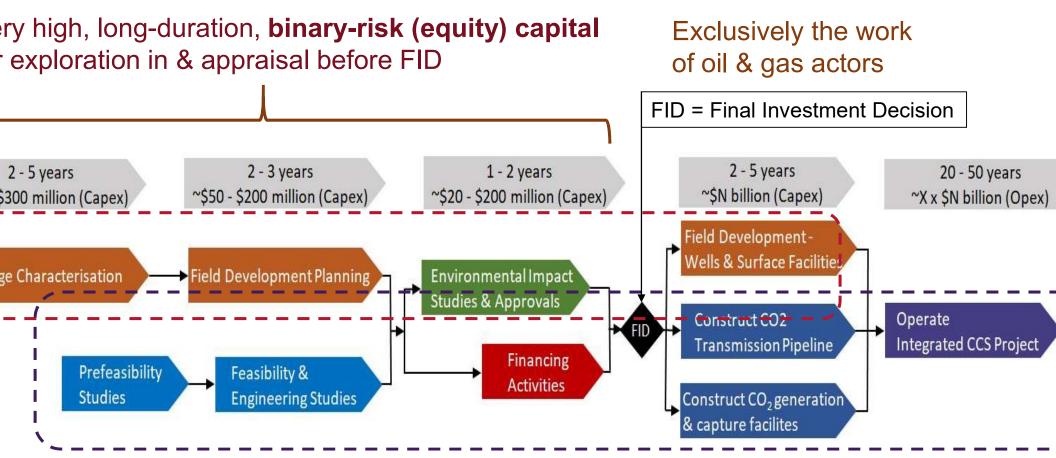
energy storag

Idea 2 – *binary risk* nature of pre-FID capital investment

- Deep decarbonization scenarios involve extraordinary levels of capital investment.
- Certain modular and distributed low-carbon assets involve minimal pre-investment capital.
- But deep decarbonization can also involve very large, resource-dependent assets with high pre-investment capital.
- Such pre-investment capital is characteristically <u>binary-risk</u> success / failure
- Practitioner perspective prudent to <u>hasten slowly</u> with such pre-investment studies But, IAMs do not recognize (a) the cost; (b) the time; or (c) the binary risk nature

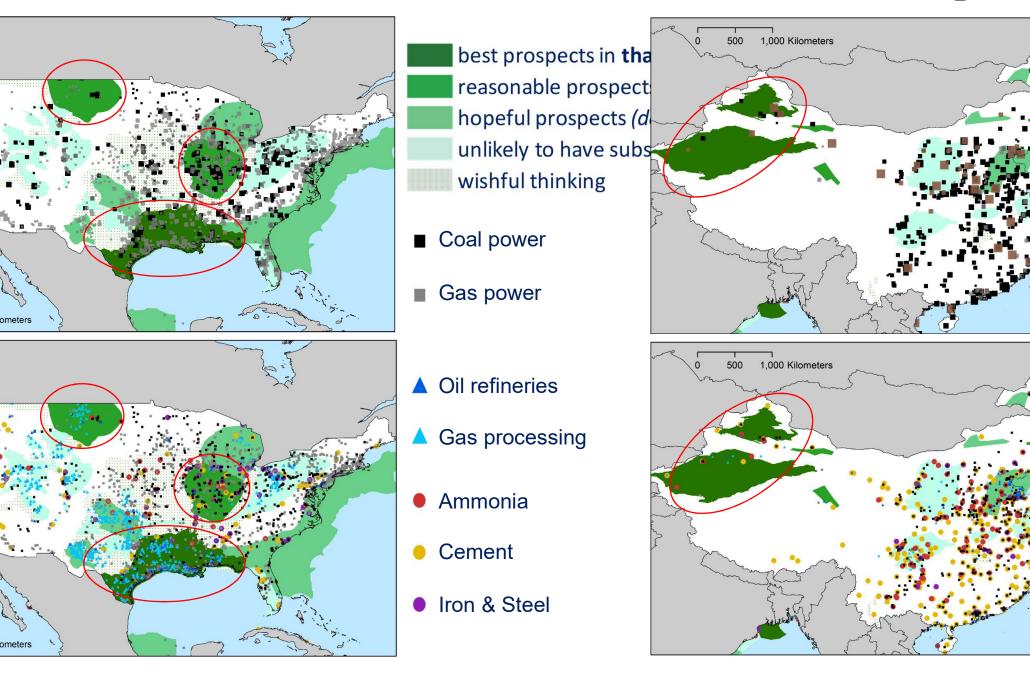

ldea 3 – cross-sectoral risk exposure

- Rapid deep decarbonization is enhanced by cross-sectoral integration But, in the context of:
- Rapid technological change
- Changing demographics and demand for products & services
- Shifting policy & incentives for specific technologies
- Changing market designs


Actors in specific sectors are likely to resist risk exposure to other sectors?

se Study – CCS ost IPPC RCP2.6 (2°C or less) scenarios also rely heavily on CCS

nitigate emissions from **fossil power generation** and **industrial processes** (petrochemic nent, steel, ammonia, etc.) but also for atmospheric Carbon Dioxide Removal (CDR)


resting in CO₂ storage assets to serve utilities & industry critical bottleneck – especially in China and India

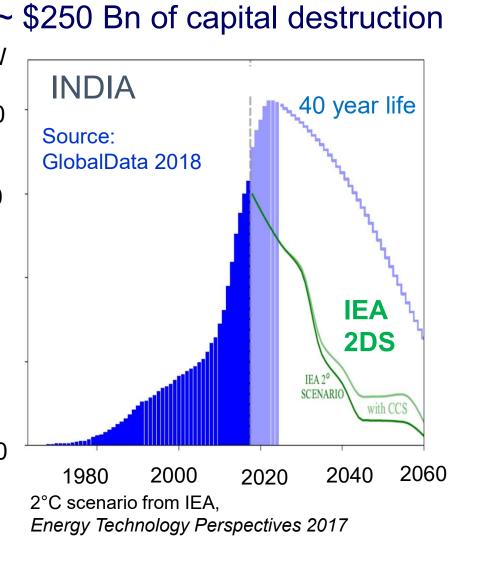
Cross-sectoral risk barriers

Developers of storage sites (& pipeline owners) exposed to risk that capture projects (power, industry, etc) will either not proceed or remain viable in the longer term

oration prioritises best (lowest risk) storage close to many CO₂ sour

Idea 4 - Unintended consequences & feedbacks (direct & indirect) need to be considered.

Rapid deep decarbonization scenarios can be highly disruptive.


Direct consequences include - incumbent actors' revenue erosion & stranded assets.

But **indirect, unintended consequences** for other dependent actors might present a greater risk to sustained mitigation.

- Value chain participants
- Institutions
- Communities
- etc.

dea 4 – unintended (direct & indirect) consequences & feedbacks Case study: Early withdrawal of coal generation in India

But, implications run much deeper: What we've seen so far – reduced dispatch of coal plan

- \rightarrow Declining coal generator revenues
- \rightarrow Underperforming assets
- \rightarrow Banks viability beginning to be impacted
- \rightarrow Finance for new renewables reducing

Still to play out (?)

- \rightarrow Early decommissioning of coal generators
- \rightarrow Socio-economic unrest in coal states
- \rightarrow Indian railways revenue dramatically impacted
- \rightarrow Broad political opposition to transition

ecap 1. Scenarios modeled with foresight & coordination; versus Investing under uncer

- 2. Binary risk associated with large pre-FID capital requirements;
- 3. Cross-sectorial risk exposure
- 4. Unintended (direct & indirect) **consequences & feedback**

bid Switch contribution – a polycentric researcher network aiming to contribute:

- ep-dive analyses of transition scenarios (outside models) to explore bottlenecks:
- Interdisciplinary teams engineering / economics / business / social / behavioural / political scienc
- Sector by sector analyses but exploring cross-sector dependencies
- Regional focus (currently focused on US, India and China but aiming beyond)
- Grounded with deep stakeholder engagement to ensure respect for local values & conditions
- Identify signals and signposts to anticipate bottlenecks
- Explore options to overcome / avoid bottlenecks interventions / alternative pathways

PEP1.5 – Potsdam, September 2019

Deep decarbonisation scenarios and their vulnerability to *bottlenecks*

Perspectives from the *Rapid Switch* Project A research network exploring barriers, bottlenecks and unintended consequences of rapid, deep decarbonization

Greig (cgreig@princeton.edu) nger Visiting Fellow in Energy & Environment, Princeton University Chair & Director for Sustainable Engineering Innovation, The University of Queensland