


## PIK PEP1.5 Final Symposium

Archetypes of decarbonization pathways and climate policy entry points to raise ambition

Demand-led transition scenario for France & EU Sufficiency in the négaWatt 2017-2050 scenario and beyond

**Yves MARIGNAC** Spokesperson, Association négaWatt

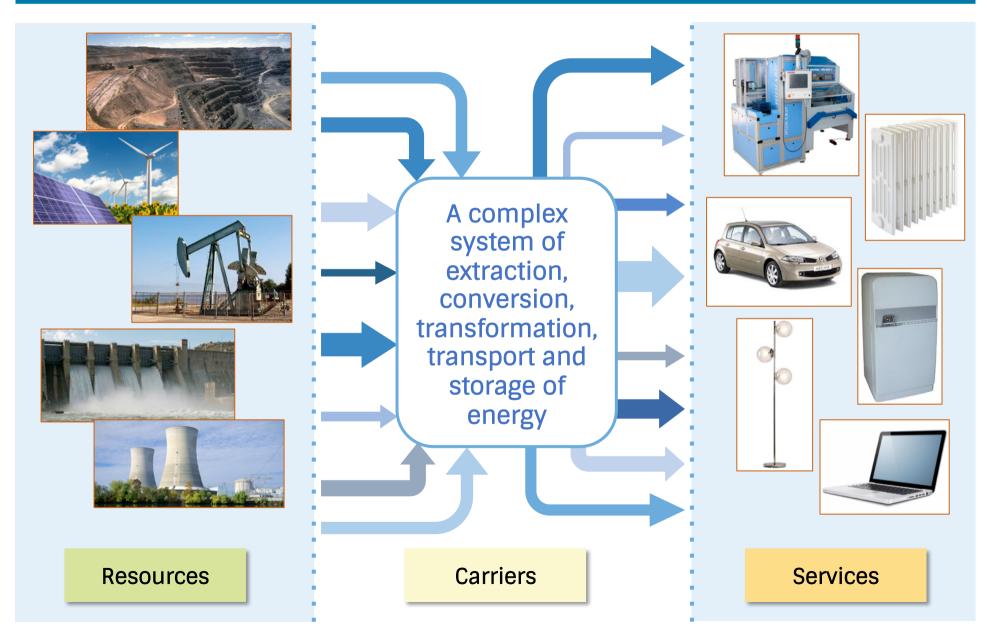
Building A56, Telegrafenberg – Potsdam 4 September 2019

## The négaWatt association



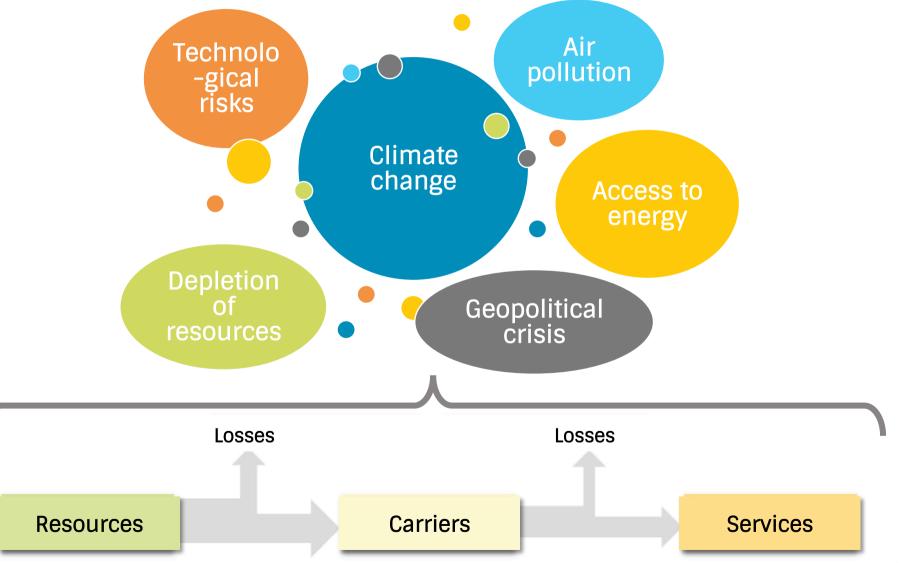


- A think tank on energy created in 2001
- A non-profit, independent group of experts and field-practitioners
- A core of 25 "companions" + 25 "ambassadors", 1200 members
- Producing sustainable energy scenarios (latest in 2017) and proposing systemic policies and measures



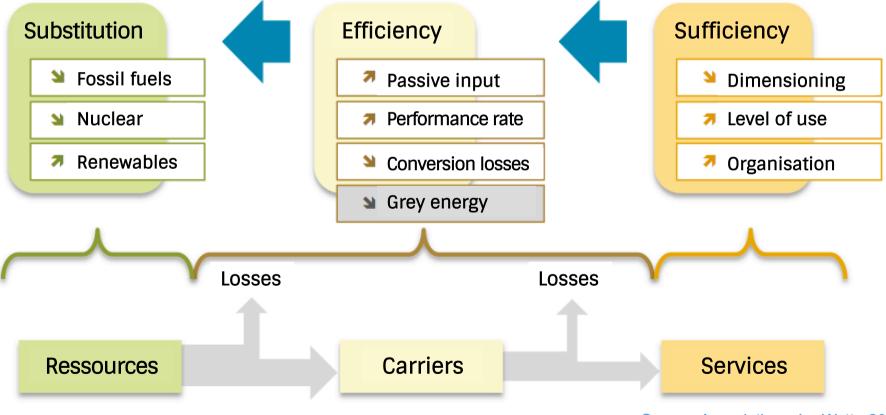



- Subsidiary created in 2009
- Operational branch of the association


## **Energy is a system framing our society**






## This system is not sustainable





## A systemic response to unsustainability





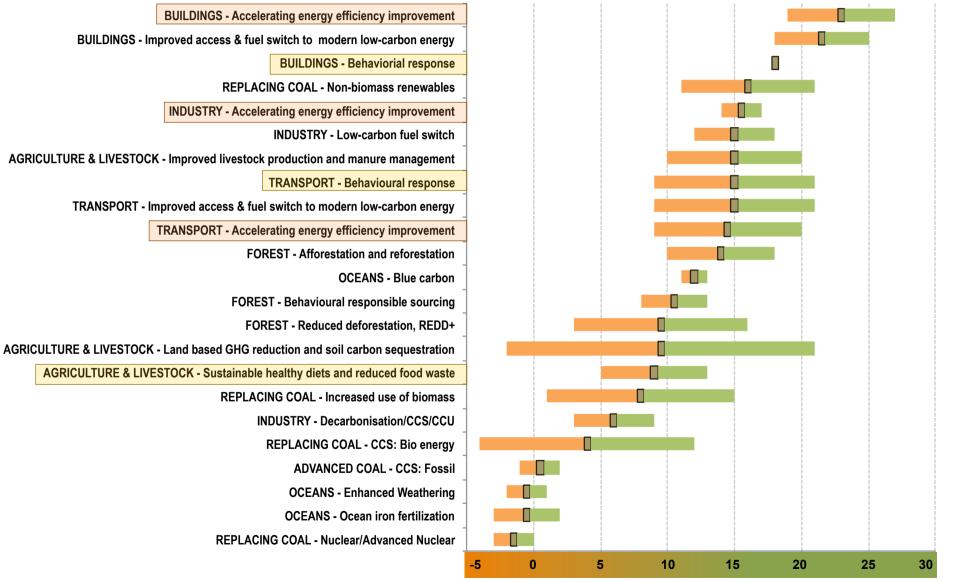
Source: Association négaWatt - 2018



| Readiness of new technologies |  |
|-------------------------------|--|
|-------------------------------|--|

|    | Technological (TRL)                                    | Industrial (MRL)                                                  | Environnemental<br>and social (ESRL)                                             |
|----|--------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 7  | System demonstration                                   | Prototype in operational conditions                               | <i>Modelisation of generic<br/>impacts</i>                                       |
| 8  | Validation by tests and demonstrations                 | Development and<br>demonstration of complete<br>real scale system | Impact assessment based on real data of a prototype                              |
| 9  | Proven real system<br>through successful<br>operations | Implementation and manufacturing of system                        | <i>Systemic and multi-scale assessment</i>                                       |
| 10 | Optimized system                                       | Full scale production                                             | Impacts measured through real operation                                          |
|    |                                                        | <i>Massive deployment,<br/>system integration</i>                 | <i>Social and environmental<br/>acceptability, indirect<br/>effects measured</i> |

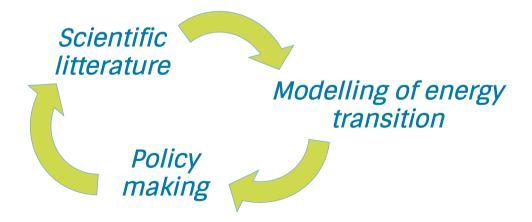





|                                                                |                                                                | Social     |             |                                | Social 2          |                 |                       | Environmental                          |                            |                               | Economic                                |                  |              |                                |                                    | Cumulative                                 |                                        |                |         |                    |         |
|----------------------------------------------------------------|----------------------------------------------------------------|------------|-------------|--------------------------------|-------------------|-----------------|-----------------------|----------------------------------------|----------------------------|-------------------------------|-----------------------------------------|------------------|--------------|--------------------------------|------------------------------------|--------------------------------------------|----------------------------------------|----------------|---------|--------------------|---------|
|                                                                | United Nations<br>sustainable development                      | 1          | 2           | 3                              | 4                 | 5               | 10                    | 16                                     | 17                         | 6                             | 12                                      | 14               | 15           | 7                              | 8                                  | 9                                          | 11                                     | 13             |         | score              |         |
| Options for climate action<br>(reduction of net GHG emissions) |                                                                | No Poverty | Zero hunger | Good health and well-<br>being | Quality education | Gender equality | Reduced in equalities | Peace, justice and strong institutions | Partnerships for the goals | Clean water and<br>sanitation | Responsable<br>consumption / production | Life below water | Life on land | Affordable and<br>clean energy | Decent work and<br>economic growth | Industry, innovation<br>and infrastructure | Substainable cities<br>and communities | Climate action | Maximum | Total (mean value) | Minimum |
|                                                                | Accelerating energy efficiency<br>improvement                  | +2         | $\ge$       | +2                             | +1                | $\ge$           | +1                    | $\times$                               | +2                         | +2 -1                         | +1                                      | $\times$         | $\geq$       | +2                             | +1                                 | +1                                         | +2                                     | n.d.           | 17      | 15,5               | 14      |
| Industry                                                       | Low-carbon fuel switch                                         | imes       | $\ge$       | +2                             | +1                | $\geq$          | $\ge$                 | $\geq$                                 | +2                         | +2 -2                         | +2                                      | $\ge$            | +1 -1        | +2                             | +2                                 | +2                                         | +2                                     | n.d.           | 18      | 15                 | 12      |
|                                                                | Decarbonisation/CCS/CCU                                        | imes       | $\ge$       | -1                             | $\ge$             | $\geq$          | $\ge$                 | $\ge$                                  | +2                         | +1 -1                         | +2                                      | -1               | $\geq$       | +2 -2                          | +2                                 | +2                                         | imes                                   | n.d.           | 9       | 6                  | 3       |
|                                                                | Behaviorial response                                           | +2         | $\times$    | +2                             | $\times$          | $\ge$           | $\times$              | +2                                     | $\times$                   | +2                            | +2                                      | $\ge$            | $\ge$        | +2                             | +2                                 | +2                                         | +2                                     | n.d.           | 18      | 18                 | 18      |
| Buildings                                                      | Accelerating energy efficiency<br>improvement                  | +2 -1      | +2          | +2                             | +2                | +1              | +1 -1                 | +2                                     | +2                         | +2                            | +1                                      | X                | +2           | +2                             | +2 -1                              | +2                                         | +2                                     | n.d.           | 27      | 23                 | 19      |
|                                                                | Improved access & fuel switch<br>to modern low-carbon energy   | +2         | 0 -1        | +2                             | +1                | +1              | $\times$              | +2                                     | +2                         | +2 -1                         | +2 -1                                   | $\ge$            | +2           | +2                             | +2                                 | +2                                         | +3                                     | n.d.           | 25      | 21,5               | 18      |
|                                                                | Behavioural response                                           | +2 -1      | +2          | +2 -1                          | +1                | +1              | +2                    | +1 -1                                  | +2                         | +2                            | +2                                      | X                | X            | +2                             | -2                                 | +2 -2                                      | +2                                     | n.d.           | 21      | 15                 | 9       |
| Transport                                                      | Accelerating energy efficiency<br>improvement                  | +2 -1      | $\ge$       | +2                             | $\ge$             | X               | $\times$              | +2                                     | +2                         | +2                            | +2                                      | $\ge$            | $\ge$        | +2                             | +2 -2                              | +2 -2                                      | +2                                     | n.d.           | 20      | 14,5               | 9       |
|                                                                | Improved access & fuel switch to<br>modern low-carbon energy   | +2 -1      | 0           | +2                             | $\ge$             | $\ge$           | +2                    | +1 -1                                  | +2                         | +2 -1                         | +2                                      | $\times$         | $\times$     | +2                             | +2 -2                              | +2                                         | +2                                     | n.d.           | 21      | 15                 | 9       |
|                                                                | Non-biomass renewables                                         | +2         | $\ge$       | +2                             | +1                | +1              | +1                    | +2                                     | +2 0                       | +2 -2                         | +2                                      | +2 -1            | -1           | +3                             | 0                                  | 0 -1                                       | +2                                     | n.d.           | 21      | 16                 | 11      |
| Replacing coal                                                 | Increased use of biomass                                       | +2 -2      | +2 -2       | +2                             | $\ge$             | $\geq$          | $\ge$                 | $\ge$                                  | $\geq$                     | +1 -2                         | +2                                      | $\ge$            | +1 -2        | +3                             | +1                                 | +1                                         | $\ge$                                  | n.d.           | 15      | 8                  | 1       |
|                                                                | Nuclear/Advanced Nuclear                                       | $\times$   | $\times$    | -1                             | $\ge$             | $\ge$           | $\ge$                 | -1                                     | $\ge$                      | +2 -1                         | $\times$                                | $\ge$            | -1           | +1                             | +1                                 | -1                                         | $\ge$                                  | n.d.           | 0       | -1,5               | -3      |
|                                                                | CCS: Bio energy                                                | +2 -2      | +1 -2       | +2 -1                          | $\ge$             | $\ge$           | $\ge$                 | $\ge$                                  | $\geq$                     | +1 -2                         | +1                                      | $\ge$            | +1 -2        | +2                             | +1                                 | +1                                         | $\ge$                                  | n.d.           | 12      | 4                  | -4      |
| Advanced coal                                                  | CCS: Fossil                                                    | $\ge$      | $\times$    | -1                             | $\ge$             | $\leq$          | $\ge$                 | $\ge$                                  | $\times$                   | +1 -2                         | $\ge$                                   | $\geq$           | $\ge$        | +2                             | -1                                 | +1                                         | $\ge$                                  | n.d.           | 2       | 0,5                | -1      |
|                                                                | Sustainable healthy diets and<br>reduced food waste            | 0 -1       | +2          | +1                             | $\times$          | $\ge$           | $\times$              | +1 -1                                  | +1 -1                      | +2 -1                         | +2                                      | $\ge$            | +1           | +1                             | +1                                 | +1                                         | $\ge$                                  | n.d.           | 13      | 9                  | 5       |
| Agriculture &<br>livestock                                     | Land based GHG reduction and soil<br>carbon sequestration      | +2         | +2          | +2 -2                          | +2 -2             | +2 0            | +1 0                  | 0 -1                                   | +2                         | +1 -1                         | +1                                      | X                | +1 -1        | +1                             | +2 -1                              | +2 -2                                      | $\ge$                                  | n.d.           | 21      | 9,5                | -2      |
| Forest                                                         | Improved livestock production and<br>manure management systems | +2         | +2          | +2 -2                          | $\ge$             | +2 0            | +1 0                  | +1                                     | +2                         | +2 -1                         | +1                                      | $\ge$            | +1           | +1                             | +1                                 | +2                                         | X                                      | n.d.           | 20      | 15                 | 10      |
|                                                                | Reduced deforestation, REDD+                                   | +2         | +1 -2       | $\ge$                          | +1                | +1 -1           | +2                    | +2                                     | +1 -1                      | +1 -1                         | +1                                      | $\times$         | +1           | +1 -1                          | +1                                 | +1 -1                                      | $\times$                               | n.d.           | 16      | 9,5                | 3       |
|                                                                | Afforestation and reforestation                                | +2 -2      | +1 -1       | +1                             | -1                | +1              | +1                    | +1                                     | +2                         | +2 -1                         | $\ge$                                   | +2               | +2           | +1                             | +2                                 | $\times$                                   | +2                                     | n.d.           | 18      | 14                 | 10      |
|                                                                | Behavioural responsible sourcing                               | $\ge$      | $\times$    | $\ge$                          | $\ge$             | 0               | 0                     | +1                                     | +1                         | +2 -1                         | +1                                      | $\times$         | +1 -1        | +1                             | +2                                 | +2                                         | +2                                     | n.d.           | 13      | 10,5               | 8       |
|                                                                | Ocean iron fertilization                                       | $\times$   | +1 -1       | $\leq$                         | $\ge$             | $\leq$          | $\ge$                 | $\ge$                                  | $\geq$                     | $\times$                      | $\leq$                                  | +1 -2            | $\times$     | $\ge$                          | $ \ge $                            | $\ge$                                      | $ \ge $                                | n.d.           | 2       | -0,5               | -3      |
| Oceans                                                         | Blue carbon                                                    | +3         | +3          | $\ge$                          | $\ge$             | $\leq$          | $\ge$                 | $\ge$                                  | $\geq$                     | +2                            | $\geq$                                  | +2 0             | +3           | $\ge$                          | $\ge$                              | $\ge$                                      | $\ge$                                  | n.d.           | 13      | 12                 | 11      |
|                                                                | Enhanced Weathering                                            | imes       | imes        | $\ge$                          | ${	imes}$         | $\ge$           | imes                  | $\ge$                                  | $\times$                   | $\ge$                         | $\ge$                                   | +2 -1            | -1           | imes                           | $\ge$                              | imes                                       | $\ge$                                  | n.d.           | 1       | -0,5               | -2      |

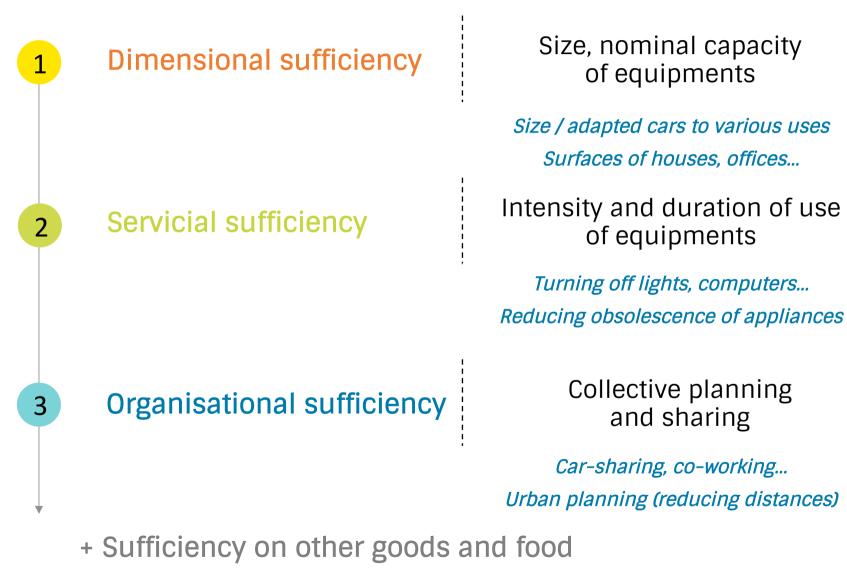
Source: négaWatt, from IPCC (2018) Special report 1.5°C




## Towards a systemic merit order



Source: négaWatt, from IPCC (2018) Special report 1.5°C 8



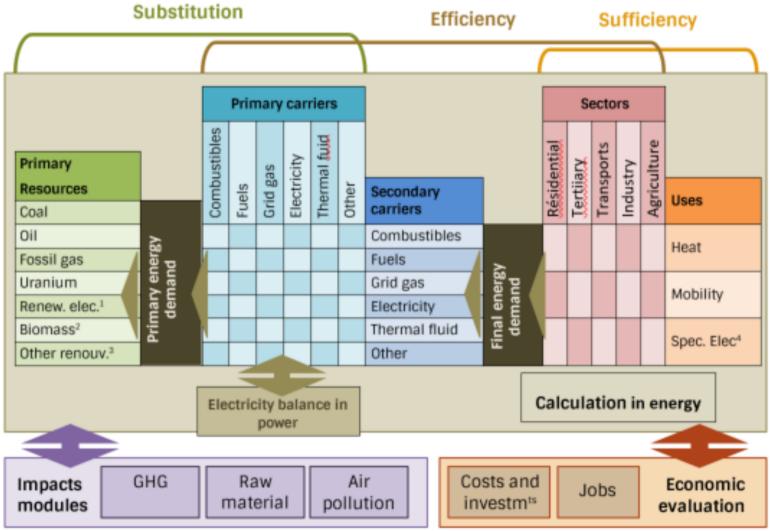

- Growing recognition of the need for questioning energy services
- The sufficiency concept: Rethinking and redesigning individual and collective practices to favour activities and services that are intrinsically low on energy use
- Sufficiency does not receive a similar amount of attention/credit, compared to efficiency and renewables



 Lack of trust in the feasibility and applicability of sufficiency approaches that needs to be discussed and overcome



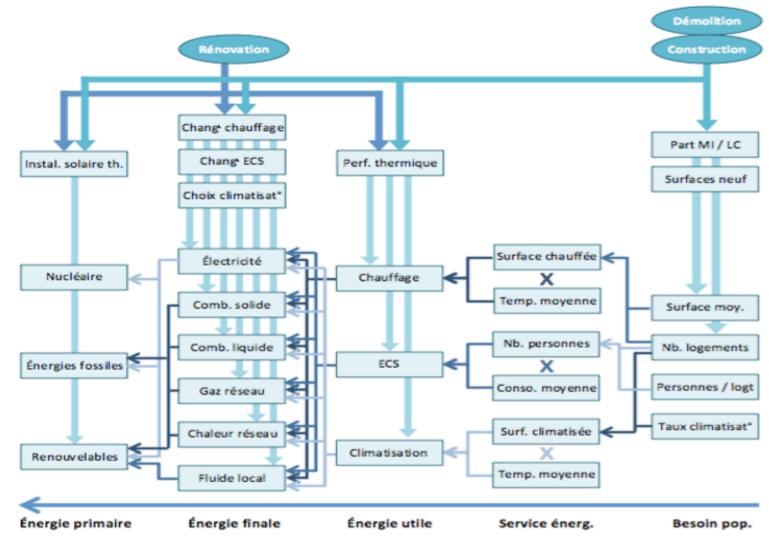







| 1      | Efficiency of<br>building and<br>manufacturing | Grey energy    | Life-cycle energy optimisation,<br>upfront and after use                           |
|--------|------------------------------------------------|----------------|------------------------------------------------------------------------------------|
|        |                                                |                | Recycling, use of biomaterials<br>Building with wood                               |
| 2      | Efficiency<br>in using and<br>adaptating       | Useful energy  | Insulation, passive gains,<br>optimisation of energy<br>exchanges with environment |
|        |                                                |                | Thermal retrofitting of existing buidings                                          |
| 3      | Efficiency of equipments                       | Final energy   | Reduction of losses,<br>conversion performance<br>of end-use equipments            |
|        |                                                | I              | Efficient lights, appliances,<br>vehicles                                          |
| 4      | Efficiency of production                       | Primary energy | Conversion performance of production, reuse of energy                              |
| ↓<br>↓ |                                                |                | Combined heat and power (CHP)                                                      |

## Modelling approach for the négaWatt scenario






Source: Association négaWatt - 2018

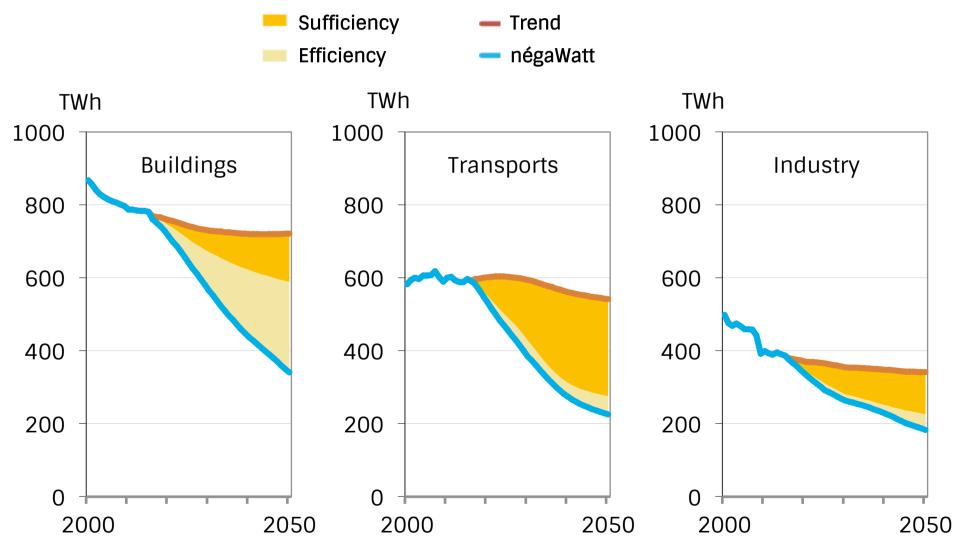
## Example: residential buildings





Source: Association négaWatt - 2018

# Sufficiency indicators

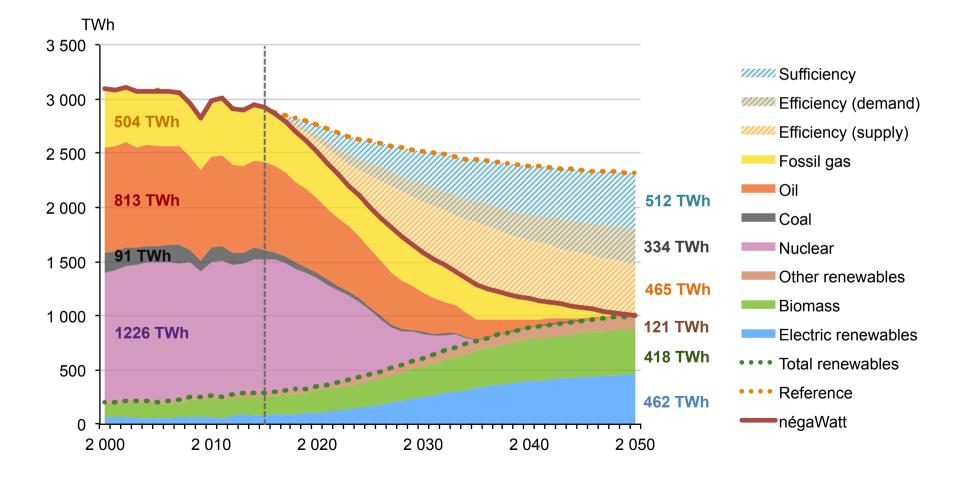



| Sector      | Area of need               | Parameter                  | Example of units                                                                              | Sufficiency measure                                                                                                 |
|-------------|----------------------------|----------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Transport   | Mobility                   | Registered cars            | Number per year;<br>Number of cars per household                                              | Less demand for individual transportation;<br>More use of public transport                                          |
|             | Mobility                   | Size of cars               | Cubic capacity;<br>Car model                                                                  | Use of smaller cars                                                                                                 |
|             | Mobility                   | Distance travelled         | Kilometres per person                                                                         | Reduction of kilometres travelled by car<br>(through urban planning, etc.)                                          |
|             | Mobility                   | Air travel                 | Number of short/medium/long<br>haul flights per year; number of<br>person kilometres per year | Reduction of private and business air-travel                                                                        |
| Buildings   | Dwelling &<br>construction | Heating<br>temperature     | °C room temperature                                                                           | Heat rooms less strongly                                                                                            |
|             | Dwelling &<br>construction | Floor space                | m <sup>2</sup> per person;<br>m <sup>2</sup> per unit of tertiary activity                    | Reduction of floor space per person;<br>sharing of space (coworking)                                                |
|             | Dwelling &<br>construction | Warm water use             | Liter per household and year                                                                  | Reduction of warm water temperature                                                                                 |
|             | Dwelling &<br>construction | Electric<br>appliances     | Number per household;<br>Size of appliances;<br>Usage rate per hour / day                     | Reduction of multiple equipment; sharing of<br>appliances; size reduction of appliances;<br>reduction of usage rate |
|             | Dwelling &<br>construction | Electricity<br>consumption | Kilowatt hours per household<br>and year                                                      | Reduction of most consuming activities<br>(e.g. electric drying)                                                    |
| Agriculture | Nutrition                  | Animal stock               | Number of animals per hectare;<br>Kg meat consumption per<br>person and year                  | Reduction of meat consumption                                                                                       |
|             | Nutrition                  | Food waste                 | Kg per household<br>and year                                                                  | Reduction of food waste; better meal<br>planning and adapted shopping                                               |

Source: based on UBA (2018): Mit Suffizienz mehr Klimaschutz modellieren

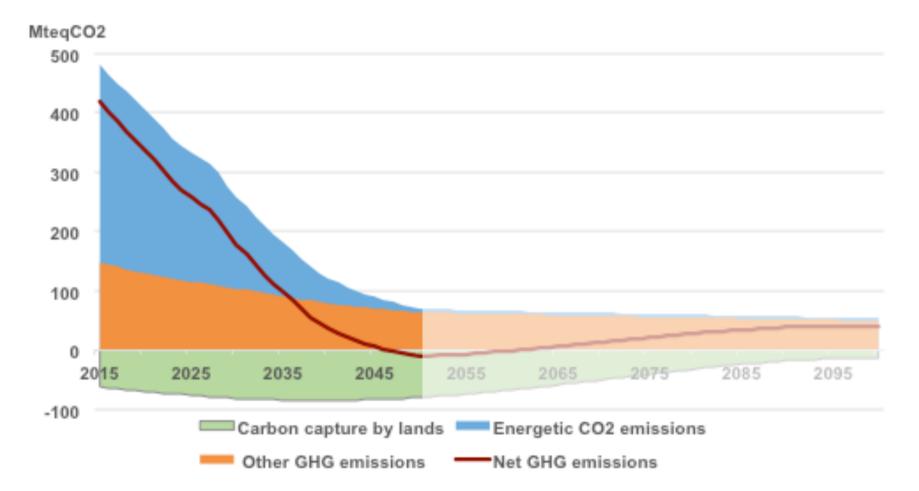
## Change in energy demand






Evolution of final energy consumption in the négaWatt scenario

## > Primary energy consumption




### Primary energy consumption in the négaWatt scenario 2017-2050 for France



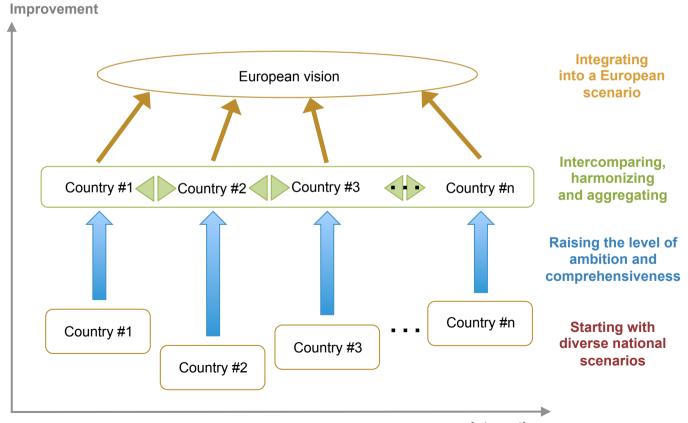
## Reduction of net GHG emissions





Evolution of raw and net GHG emissions by 2050 (and extension to 2100)





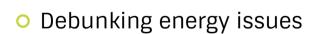

- Energy sufficiency has a key role to play as part of a demand-side policy in deep decarbonization pathways
- It has multiple systemic co-benefits, and reduces the burden on / risk of scaling up technological options
- Changes in lifestyle at stake are not necessarily radical (and not heavier than those experienced in the past 30 years)
- Behaviour change is not an individual issue, and can only come through appropriate collective frameworks
- Appropriate policies and measures can deliver on sufficiency the same way they can do on energy efficiency and fuel switch





- Building a similar systemic, bottom-up approach on the European level
- Discussing the balance of sufficiency, efficiency and substitution in different national contexts
- Integrating into a cooperative European vision








#### Contact : contact@negawatt.org

- Technical and synthetic reports
- Graphics and data
- O Videos
- Press coverage 0
- o négaWatt news







## www.decrypterlenergie.org

#### 0 Books

