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Net-zero emissions & carbon dioxide removal
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CO2 emissions pathways
from the scenario literature

Net-zero has shifted the
debate:
we will NEED CDR
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Fuss et al. (2018), Negative Emissions — Part 2: Costs, potential and side-effects, Environ
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From discussions of individual CDR options towards portfolios
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Matured clusters of scientific research around the various CDR

options
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Assessing the CDR space — linking bottom-up and top-down

o Identify literature i
I 6,596 documents
o Preliminary scoping II- “Core" NETs
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While 1.5°C fundamentally depend on CO, removal, this is not the
case for 2°C scenarios

I ted negative COz emissions
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NDC trajectory leads to similar dependence on CO, removal in 2030
like for 1.5°C limit today
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Role of NETs varies in
2°C scenarios,
but can still be limited:

o Full tech, immediate
action scenarios
feature large-scale
NETs deployment

 There are scenarios
without or limited NETs
deployment

 Low energy demand
pathway provide
additional flexibility for
NETs deployment
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While the recent discussions have mainly focussed on BECCS, the
spectrum of options is large
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Costs (USS/ton CO2 in 2050)
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Non-additive potentials (Gt CO2/year in 2050)
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Most CDR options show relevant potentials, but all have limits
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modest scales can hedge
risks and seem more
realistic

Important differences in
development status and
secure CO, storage n

UNIVERSITY OF LEEDS

Priestley International
Centre for Climate



Evidence synthesis is a lot of work - but it is worth it!
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e Prominently picked up by
recent climate change
assessments

o A seri
publif'

. Large Need to organise synthesis process for
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German NGOs, etc.

The Emissions Gap Report 2017
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Weigh the ethics of plans to
mop up carbon dioxide
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» Wide media-coverage

 Triggered German Roundtable
on Negative Emissions
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Technological transitions often take time! Urgency in developing
CDR portfolios
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Nemet et al. (2018), Negative Emissions — Part 3: Innovation and upscaling, Environ Res

Lett.

The scale-up
challenge

The current focus
of research

We need
more work
here
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The need for acceleration in innovation and diffusion of CDR
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Requirement to spell out development paths

Innovation

archetype

High-tech,
iterative
disruptive

Low-tech,
small,
distributed

Large,
system
Integration
intensive
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Efficient BECCS plants are powered by very high yield  Considerable innovation in DACCS leads to reduce
. biomass with limited land footprint and algae investment cost, and higher potential in low-cost
G ree n SO' I Carbo n options. Competition with food and/or biodiversity is  locations/logistics. The energy demand of DACCS can be
avoided, via synthetic food routes, high-yield C4 plants, matched by a low-cost energy system based on PV and
revo I UtIO n Se q u eStratl O and/or humanity giving up on biodiversity. storage technologies for electricity and/or heat.
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Chemical BECCS .
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Land Energy
The technological development of BECCS remains slow DACCS innovation ramps up only slowly, and so does
because of the high costs of land and logistics. Land demand for this technology. Logistical issues, high and
competition with food, biodiversity and human costly energy demand and technological costs prevent
settlements emerges as a key barrier, resulting in high  DACCS from falling below $200 even after many
land prices. innovation phases.
| n
Nemet (2019), How solar energy became cheap, Routledge; Creutzig et al. (2019), The
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Major avenues for research
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Closing the innovation gap —
accelerating development and diffusion
* Models of innovation for CDR
» Public perceptions
e Policy design & instruments

Learning about the CDR policies &
governance

» Evidence synthesis

* EX-post policy assessments

» Policy design & instruments

e Governance

CDR portfolios & pathways and their
risks
» Scenario analysis from differ
« Political economy & socio-
technical transitions
« Evidence synthesis: co-benefits &ﬂ
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Take away messages

« CDR has arrived in policy - growing understanding that CDR is
essential for meeting climate goals — net zero fundamental

* There are more technologies available than BECCS with relevant
potentials.

« Potentials are all constrained by bio-physical or economic limits.

« Any single CDR option unlikely to provide the potentials observed in many
scenarios sustainably: Portfolios of multiple NETs, each deployed at modest
scales seem more realistic.

* There is a large gap between CDR upscaling in scenarios and in
reality.

 Limiting dependence on CDR through a rapid scale-up of short-term action

e Concerted, community driven research agenda needed around
policy, governance and innovation and linkage to scenarios work
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Thanks!

COzremoval.org

! ! ASSESSING THE TECHNOLOGIES
Contact: Jan Minx

Mercator Research Institute on

Global Commons and Climate Change gGmbH
Torgauer Str. 12-15 | 10829 Berlin | Germany
tel +49 (0) 30 338 55 37 - 250

mail minx@mcc-berlin.net

web www.mcc-berlin.net

MCC was founded jointly by Stiftung Mercator and
the Potsdam Institute for Climate Impact Research
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Things to work towards in AR6

Clear home for CDR synthesis & common approach across
chapters (sound top-down/ bottom-up link)

Clear conceptual framing around net-zero that takes into
account related discourses such as committed carbon
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Insufficient ethical discussion around CO, removal

THREE-FOLD FOLLY on
oooo

Technologies that capture carbon dioxide on a planetary scale might help to avert dangerous EEEE
levels of climate warming, but they are risky. oooo
oooo

COULD DELAY CUTS REQUIRES STEEP SCALE-UP B00g

Paolicymakers and industry could delay the reduction of emissions in the belief

that these can be clawed back later with negative emissions.

40

Designing climate policy around technologies that
might never sufficiently scale up is a gamble.

With negative emissions
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DEMANDS UNPRECEDENTED SINK

The scale of negative emissions reguired in many scenarios would mean controlling a
massive carbon sink (purple bar) — larger than the entire current natural land sink.
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