REMIND: The Equations

Nico Bauer Lavinia Baumstark Markus Haller Gunnar Luderer Jérôme Hilaire Marian Leimbach^{*} Michael Lueken Robert Pietzcker Jessica Streffer Sylvie Ludig Alexander Koerner Anastasis Giannousakis David Klein Michaja Pehl Christoph Bertram Anselm Schultes

September 12, 2017

This document describes the equations of the Integrated Assessment Model REMIND and represents a complement to the non-technical model description in Luderer et al. (2015). REMIND is developed as a modular framework of a multi-region energy-economy-climate model. The current framework provides a number of features that allows the representation of energy carriers and conversion technologies with various techno-economic characteristics. Moreover, the macroeconomic part contains a nested CES function that can have any structure. The regional models are solved as optimal growth models with equilibrium at the energy and capital markets. The present documentation introduces, jointly with the mathematical presentation of model equations, the *GAMS* notation of the model code. It gives an introduction to the abstract structure of the model and the modeling possibilities. The present documentation does not introduce the particular realization of a model version. Hence, the documentation opens up the possibility to implement individual model realizations.

*Editorial responsibility

Contents

1	Prel	iminary remarks	4
	1.1	Model Versions	4
	1.2	Notation convention	4
	1.3	Sets: The 'lattice' of the equations	4
	1.4	Mappings: combining set elements	5
	1.5	Equations and symbols used in the equations $\ldots \ldots \ldots$	5
2	Eco	nomy module	6
	2.1	The Intertemporal Social Welfare Function	
		$(q_welfareGlob, q_welfare)$	6
	2.2	Budget equation (qm_budget)	6
	2.3	The Production Function $(qcesIO)$	8
	2.4	Capital stocks (q_kapMo,q_kapMo0)	9
	2.5	Labor (q_balLab)	10
	2.6	Final Energy balance (q_balfE, q_esm2macro, q_transFE2es)	10
	2.7	Trade balances $(q80_tradebal)$	10
	2.8	Emissions permit allocation (q41_perm_alloc_cap)	11
	2.9	Tax mechanism $(q21_taxrev)$	12
3	Ene	rgy System Module	14
	3.1	Energy system costs	14
		3.1.1 Fuel costs (q_costfu)	14
		3.1.2 Investment Costs (q_costInv)	14
		3.1.3 Operation and Maintenance Costs (q_costom)	15
	3.2	Energy Balance Equations	16
		3.2.1 Primary Energy Balance (q_balPe)	16
		3.2.2 Secondary Energy Balance (q_balSe)	16
	3.3	Energy Transformation Equations	19
		3.3.1 Primary Energy to Secondary Energy (q_transPe2Se)	19
		3.3.2 Secondary Energy to Final Energy (q_se2fetrans)	21
		3.3.3 Secondary Energy to Secondary Energy (q_se2setrans)	21
		3.3.4 Final Energy to Energy Services (q_fe2estrans)	21
	3.4	Treatment of VRE technologies (storage & grid requirements,	
		resource competition)	22
		3.4.1 Usable electricity	22
		3.4.2 Calculate storage losses and requirements	24
		3.4.3 Required long-distance transmission grid	25
		3.4.4 Competition for resources for renewable energies	~
		(q_limitGeopot)	25
	3.5	Capacities	27
	0.0	3.5.1 Capacity constraints for energy transformations	27
			- ·

logies
29
nNet) 30
31
31
sources 32
32
etail) 32
33
34
34
35
36
36 36
36 38
36 38 38
36 38 38 39
36 38 39 rtemp) 40
36 38 39 rtemp) 40
36 38 39 rtemp) 40 Nash) 40

1 Preliminary remarks

1.1 Model Versions

The REMIND model comprises different model versions. The model is designed in a multi-regional structure. The versions differ with respect to the number of regions, module specifications and the climate module used to run climate policy scenarios.

This documentation covers the technical details of the major module specifications.

1.2 Notation convention

We use the following convention on notation:

- Variables are mostly written in a long form (to provide first intuition) starting with an upper case Latin letter.
- **Parameters** are represented by a single Greek letter. Exception: scenario parameters, initial values and boundary conditions on variables. They are denoted as the associated variable plus a particular marking (e.g.: K^0 is the initial value associated with the variable "capital" K). Another exception are parameters that are updated between iterations. They follow the notation of variables with an additional overhead bar.
- Sets and Subsets are written as upper case Latin letters plus single number. A single lower case latin letter is used for indices running over these sets. Indices (also the time and region index) are represented by comma separated subscripts.
- Mappings are written as *M* with single or multi-letter subscript. Mappings are used in GAMS to identify certain combinations of members of more than one set. The concept of mappings is explained in sec. 1.4.

Additional symbols denote special cases which may occur in any of the four types defined above:

• Temporal changes of items are symbolized by " Δ ". (E.g.: ΔS is the change in the amount of a stockable quantity.) The time step length is symbolized by Δt .

1.3 Sets: The 'lattice' of the equations

Sets and subsets form the 'lattice' on which the equations are defined.

- t is the set of time steps from the initial point t_0 to the end point t_{end} .
- r is the set of regions.
- Energy types e: Various energy types like coal, electricity, natural gas for household use are defined and grouped into subsets according to

their characteristics (for example: primary, secondary, and final energy types p, s, f).

- **Technologies** *c*: This group covers all transformation technologies in the energy transformation or CCS chain. Again, there are subsets according to different characteristics.
- Grade levels g: Some items are characterized by different levels of quality.

1.4 Mappings: combining set elements

Mappings are used in GAMS to define combinations of set elements in order to avoid redundancy in the code. Consider the following example:

In the secondary to final energy transformation equation (cf. sec. 3.3.2, eq. 26), the variables "demand for secondary energy" (DemSe) and "production of final energy" (ProdFe) are indexed by time step, region, secondary energy type (s), final energy type (f), and transformation technology (c).

The equation is evaluated for all time steps and all regions $(\forall t, r)$ and all defined combinations of secondary energy type, final energy type and technology $(\forall M_{s2f})$. The definition of the mapping contains the desired combinations $s \times f \times c$. This reduces the number of single equations generated in the compilation process, as "meaningless" combinations can be avoided.

Mappings can also be used in a summation index.

1.5 Equations and symbols used in the equations

The model equations are documented in the following chapters. The variables, parameters, sets/subsets and mappings are explained in tables at the end of each section sorted by these four groups. GAMS code notations are marked by a **special font**. The basic sets (r and t) and subsets named above in sec. 1.3 are not included in the tables again due to their high frequency of occurrence.

2 Economy module

2.1 The Intertemporal Social Welfare Function

(q_welfareGlob, q_welfare)

The objective of the optimization is to maximize the total discounted intertemporal utility \tilde{U}_r . It is calculated from consumption $C_{t,r}$ and population $P_{t,r}$ summing over all time steps taking into account the pure time preference rate ζ_r . Assuming an intertemporal elasticity of substitution of 1, it holds:

$$\widetilde{U}_{r} = \sum_{t} \left(\Delta t \cdot (1 + \zeta_{r})^{-t} \cdot \overline{P}_{t,r} \cdot \ln\left(\frac{C_{t,r}}{\overline{P}_{t,r}}\right) \right) \qquad \forall r$$
(1)

Global welfare sums up regional welfare U_r weighted by their Negishi weights W_r :

$$U = \sum_{r} \overline{W}_{r} \cdot \widetilde{U}_{r} \tag{2}$$

Allowing for an intertemporal elasticity of substitution η_r different from 1, it yields:

$$U = \sum_{r} \left(\overline{W}_{r} \cdot \sum_{t} \left(\Delta t \cdot (1 + \zeta_{r})^{-t} \cdot \overline{P}_{t,r} \cdot \frac{\left(\frac{C_{t,r}}{\overline{P}_{t,r}}\right)^{1 - \eta_{r}} - 1}{1 - \eta_{r}} \right) \right)$$
(3)

C U \widetilde{U}	consumption global welfare regional welfare	vm_cons vm_welfareGlob v_welfare
$\overline{P} \over \overline{W}$	population Negishi weight	pm_pop pm_w
$\begin{array}{c} \Delta t \\ \eta \\ \zeta \end{array}$	time step length intertemporal elasticity of substitution time preference rate	pm_ts p_ies pm_prtp

2.2 Budget equation (qm_budget)

Macroeconomic output Y - net of climate change damages (represented by damage factor Dam) - is added by imports of the final good (MGood), taking specific trade costs (τ^G) into account, which are assigned to the importer. The resulting output is used for consumption (C), for exports of the final good (XGood), for investments into the capital stock (I) ¹, into R&D

¹Please note that the capital stock dynamics of the energy sector is treated separately in the energy system module. Associated investments enter the macroeconomic budget as investment costs GInv.

(InvRD), and for the energy system cost components investments (GInv), fuel costs (GFuel) and operation & maintenance (GOM). Other additional costs like non-energy related greenhouse gas abatement costs (GAbat) and agricultural costs (AgrC), which are delivered by the land use model MAg-PIE, are deduced from disposable output. Net tax revenues (Rev) (see section 2.9) and adjustment costs (AdjNash) (see section 5.2) converge to zero in the optimal solution(equilibrium point).

$$Y_{t,r} \cdot Dam_{t,r} + (1 - \tau_r^G) \cdot MGood_{t,r} \geq C_{t,r} + I_{t,r} + XGood_{t,r} + InvRD_{t,r} + GInv_{t,r} + GFuel_{t,r} + GOM_{t,r} + \sum_e \tau_{r,e}^M \cdot MRes_{t,r,e} + \sum_e \tau_{r,e}^X \cdot XRes_{t,r,e} + AdjInv_{t,r} + GPollut_{t,r} + Rev_{t,r} + AdjNash_{t,r} + \overline{GAbat_{t,r}} + \overline{AgrC_{t,r}}$$

$$\forall r, t \qquad (4)$$

AdjInv	capital stock adjustment costs	v_invMacroAdj
AdjNash	adjustment costs of Nash algorithm	vm_costAdjNash
Dam	climate change damage factor	vm_damage
C	consumption	vm_cons
GFuel	fuel costs	v_costFu
GInv	investment costs	v_costInv
GOM	operation & maintenance costs	v_costOM
GPollut	pollution costs	$vm_costpollution$
Ι	investments into individual stocks of	vm_invMacro
	capital	
InvRD	investments into R&D	vm_invRD
	investment into innovation	vm_invInno
	investment into immitation	vm_invImi
MRes	imports of primary energy	<pre>vm_Mport(pety)</pre>
XRes	exports of primary energy	<pre>vm_Xport(pety)</pre>
MGood	imports of the final good	<pre>vm_Mport("good")</pre>
Rev	net tax revenue	vm_taxrev
XGood	exports of the final good	<pre>vm_Xport("good")</pre>
Y	macroeconomic output	$vm_cesIO("inco")$
τ^X	additional domestic trade costs of pri-	pm_costsTradePeFinancial
$ au^M$	mary energy export inter-regional trade costs of primary	$pm_costsTradePeFinancial$
$ au^G$	energy	
	specific trade costs	p_tradecostgood
GAbat	non-energy GHG abatement costs	p_macCost
\overline{AgrC}	agricultural production costs	pm_ag_costs
e	tradable energy type	trade_pe

2.3 The Production Function (q_cesI0)

The production function is a nested 'CES' (constant elasticity of substitution) production function. The macroeconomic output Y is generated by the inputs capital K, labor L, and total final energy E (as a macro-ecoomic aggregate in \$US units). The generation of total final energy is described by a CES production function as well, whose input factors are CES function outputs again. Hence, the outputs of CES nests are intermediates measured in \$US units. According to the Euler-equation the value of the intermediate equals the sum of expenditures for the inputs. Sector-specific final energy types represent the bottom end of the 'CES-tree'. These 'CES leaves' are measured in physical units and have a price in \$US per physical unit. The top of the tree is the total economic output Y measured in \$US.

In the code, you will find the generic form of the production function. It treats the various CES nests separately and the nests are inter-connetected via mappings. This equation calculates the amount of intermediate output in a time-step and region, $V_{r,t,o}$, from the associated factor input amounts $V_{r,t,i}$ according to:

$$V_{t,r,o} = \left(\sum_{M_{CES}} \xi_{r,i} \cdot (\theta_{r,t,i} V_{r,t,i})^{\rho_o}\right)^{\frac{1}{\rho_o}} \qquad \forall t, r, o \tag{5}$$

Parameter ρ_o is calculated from the elasticity of substitution, σ , according to the relation:

$$\sigma = \frac{1}{1 - \rho}.$$

Efficiency parameter $\theta_{r,t,i}$ is calculated as the product of an initial value and a scenario and time-dependent scaling factor. The mapping M_{CES} assigns the correct input types *i* to each output *o*.

All outputs (intermediate outputs and GDP) in the CES-tree represent monetary values. On the top of the CES-tree, macroeconomic output (GDP) is calculated from capital, labor, and total energy. If ρ_Y denotes the substitution elasticity, associated with GDP, Y, we thus have ²:

$$Y = \left[\xi_K(\theta_K K)^{\rho_Y} + \xi_L(\theta_L L)^{\rho_Y} + \xi_E(\theta_E E)^{\rho_Y}\right]^{\frac{1}{\rho_Y}} \qquad \forall t, r \tag{6}$$

V Y E	amount of production factor output macroeconomic output total final energy (as a production fac-	vm_cesIO(in) vm_cesIO("inco") vm_cesIO("en")
$L \\ K \\ FE_j$	tor) in US labor (equivalent to population) capital final energy carrier j in physical units (e.g. EJ/yr)	<pre>vm_cesIO("lab") vm_cesIO("kap") vm_cesIO(ppfen(in))</pre>
θ	efficiency of input factors parameter, calculated from substitu-	<pre>pm_cesdata("eff"), vm_effGr pm_cesdata("rho")</pre>
ρ	tion elasticity σ	-
ξ	share parameter	pm_cesdata("xi")
i	input factors	in
0	production outputs	out
M_{CES}	combination of input types and associated output	<pre>cesOut2cesIn(out,in)</pre>

2.4 Capital stocks (q_kapMo,q_kapMo0)

Capital stock K is claculated recursively. Its amount in the previous time step is devaluated by an annual depreciation factor δ_k and enlarged by investments I. Both depreciation and investments are expressed as annual values, so the time step length Δt is taken into account.

²For clarity, the regional indices and time arguments of Y, K, L, E and the associated efficiency parameters have been dropped here.

$$K_{t+1,r} = K_{t,r} \left(1 - \Delta t \cdot \delta \right) + \Delta t \cdot I_{r,t} \qquad \forall t,r \tag{7}$$

Initial values are assigned from exogenous data K^0 :

	$K_{t,r} = K_r^0$	$\forall r,t=0$	(8)
I K	investments macroeconomic capital stock		vm_invMacro vm_cesIO("kap")
$\begin{array}{c} K^0 \\ \delta \\ \Delta t \end{array}$	Initial value of capital stock annual depreciation factor time step length		pm_cesdata("kap") p_delta_kap pm_ts

2.5 Labor (q_balLab)

The labor available in every time step and every region, $L_{r,t}$, comes from exogenous data. It is the population corrected by the population age structure, which results in the labour force of people agged 15 to 65. The labor participation rate is not factored into the labour supply (as it would only imply a rescaling of parameters without consequences for the model's dynamic). The labour market balance equation reads as follows:

$$L_{t,r} = \overline{L}_{t,r} \qquad \forall t, r \tag{9}$$

L	labor available in every time step and region	v_cesIO("lab")
\overline{L}	exogenous data for available labor	p_p_lab

2.6 Final Energy balance (q_balfE, q_esm2macro, q_transFE2es)

The final energy balance equals the production of final energy P_f of type fin time-step t and region r to its demand as an input factor of the production function $V_f^r(t)$. Both variables are measured in energy units.

$$V_{t,r,f} = P_{t,r,f} \qquad \forall t, r, f \tag{10}$$

$P \\ V$	final energy production final energy demand, production factor	vm_prodFE v_demFE, v_cesIO
f	final energy type	fety,ppfen

2.7 Trade balances (q80_tradebal)

In each time step, exports and imports of each tradeable entity are globally balanced. This applies for exports and imports of each energy type e (oil, gas, coal, biomass, uranium), final good, and emission permits. The way of getting international markets to be cleared is different for both major solution concepts (see section 5). With the Negishi solution approach, the following trade balance is formulated explicitly:

$$\sum_{r} (X_{t,r,j} - M_{t,r,j}) = 0 \qquad \forall \ t,j$$
(11)

M_j	import of commodity j	<pre>vm_Mport(trade)</pre>
-	energy imports	<pre>vm_Mport(trade_pe)</pre>
	import of final goods	<pre>vm_Mport("good")</pre>
	permit imports	<pre>vm_Mport("perm")</pre>
X_j	export of commodity j	<pre>vm_Xport(trade)</pre>
U U	energy exports	<pre>vm_Xport(trade_pe)</pre>
	export of final goods	<pre>vm_Xport("good")</pre>
	permit exports	<pre>vm_Xport("perm")</pre>
j	all tradeable goods	trade

2.8 Emissions permit allocation (q41_perm_alloc_cap)

Emission permit allocation (QP) is either derived from a predefined emission cap (EmCap)

$$QP_{t,r} = \theta_{t,r} \cdot \overline{EmCap}_t \quad \forall \ t,r \tag{12}$$

or based on an endogenous GHG emission path Q_{tot}

$$QP_{t,r} = \theta_{t,r} \cdot Q_t \quad \forall \ t,r \tag{13}$$

To calculate the regional shares (θ) on the global permit budget, three different allocation scenarios are possible:

Contraction and Convergence

(Negishi mode only)

$$\theta_{t,r} = \left(\lambda_t \cdot \frac{\overline{L}_{t,r}}{\sum_r \overline{L}_{t,r}} + (1 - \lambda_t) \cdot \frac{Q_r^0}{\sum_r Q_r^0}\right) \quad \forall \ t,r \tag{14}$$

According to this rule, permit allocation converges from status quo towards an equal per capita allocation. The convergence parameter λ increases linearly from zero at the beginning of the time horizon (2005) to 1 at the convergence time (2050).

GDP intensity

(Negishi mode only)

$$\theta_{t,r} = \frac{\overline{Y}_{t,r}}{\sum_{r} \overline{Y}_{t,r}} \quad \forall \ t,r \tag{15}$$

Permits are allocated among regions in proportion to their share on global GDP in the baseline scenario.

Population share

$$\theta_{t,r} = \frac{\sum_{t} \overline{L}_{t,r}}{\sum_{t} \sum_{r} \overline{L}_{t,r}} \quad \forall \ t,r$$
(16)

Permits are allocated among regions (at each time step) in proportion to their population share over the entire time horizon.

$\begin{array}{c} Q \\ QP \end{array}$	global GHG emissions allocated emission permits	vm_co2eqGlob vm_perm
$ \overline{EmCap} \\ \overline{L} \\ Q^0 $	emission cap population scenario GHG emissions in 2005	pm_emicapglob pm_datapop
$\frac{\theta}{\overline{Y}}$	regional share on global permit budget GDP in the business-as-usual scenario convergence parameter	pm_shPerm pm_gdp_bau p41_lambda

2.9 Tax mechanism (q21_taxrev)

Taxes and subsidies are implemented in a budget-neutral way: In each solution iteration i, the net revenue Rev(r, t, i) is the difference between the paid taxes and the revenue of the previous iteration (Equation 17). This way, the net revenue that is a summand in the budget equation (see section 2.2) converges iteratively to zero. Therefore the taxes do not have an effect on the available budget, but the optimization is subject to the distorting marginal effect of taxes and subsidies.

$$Rev_{r,t,i} = \left(\sum_{f} \tau_{r,t,f,i} \cdot Act_{r,t,f,i}\right) - Rev_{r,t,i-1}$$
(17)

Taxes (and subsidies) for the following factors f are implemented, although tax rates are set to zero in default scenario settings with the exception of final energy taxes/subsidies: greenhouse gas emissions, final energy use, primaryto-secondary energy technologies, resource export, SO₂ emissions, bioenergy use. For some of them, the tax rate τ_t can itself be a function of the activity Act_t or other variables.

Rev	net tax revenue (converges to zero)	vm_taxrev
au	tax rate	pm_tau_*
Act	activity level for taxed variables	

3 Energy System Module

3.1 Energy system costs

3.1.1 Fuel costs (q_costfu)

Fuel costs are associated with the use of exhaustible primary energy (fossils, uranium) and biomass. In the latter case, resources are divided into several grades, and each grade has fixed specific costs. In the former case, specific fuel costs are a function of previous cumulative extraction ("**Rogner-curve**").

$$CostFu_{t,r} = \sum_{(b,g)} \left(\tau_{t,r,b,g} \cdot FuelEx_{t,r,b,g} \right)$$

+
$$\sum_{e} \left(\chi_{r,e} + \psi_{r,e} \left(\frac{\sum_{t} \Delta t \cdot FuelEx_{t,r,e,g}}{\phi_{r,e}} \right)^{\zeta_{r,e}} FuelEx_{t,r,e} \right)$$

$$\forall t,r \quad \forall (e,g) \in M_{b2g} \quad (18)$$

FuelEx CostFu	fuel extraction of primary energy b or e overall fuel costs	vm_fuEx v_costFu
$ au _{\chi ,\psi ,\phi ,\zeta }$	cost per unit of fuel b with grade level g parameters to characterize the exhaustible fuel cost curve	dataperen("cost") datarog
$b \\ e$	biomass energy tpyes exhaustible primary energy types	peExPol
M_{b2g}	combinations of primary energy types and grade levels (covers only biomass)	peren2rlf

3.1.2 Investment Costs (q_costInv)

Specific investment costs of learning technologies are a model-endogenous variable; those of non-learning technologies are fixed to constant values. Total investment costs CostIn are the product of specific costs and capacity additions CapAdd plus adjustment costs AdjCost:

$$CostIn_{t,r} = \sum_{c} \left(J_{t,r,c} \cdot \sum_{(c,g)} CapAdd_{t,r,c,g} + AdjCost_{t,r,c} \right) \qquad \forall t,r \ \forall (c,g) \in M_{c2g}$$

$$(19)$$

$$AdjCost_{t,r} = \sum_{c} \left(J_{t,r,c} \cdot \beta_c \cdot \frac{\left(\frac{CapAdd_{t,r,c} - CapAdd_{t-1,r,c}}{\Delta t}\right)^2}{CapAdd_{t-1,r,c} + \kappa_{t,r} \cdot \pi_c} \right) \qquad \forall t,r \ \forall (c,g) \in M_{c2g}$$

$$(20)$$

CostIn	investment costs	v_costInv
J	specific investment costs per unit of capacity ad-	$vm_costTeCapital$
CapAdd	dition of a learning technology l addition to the capacity of technology c and l of grade level q	vm_deltaCap
AdjCost	Adjustment costs	v_adjFactor
β	adjustment cost coefficient	p_adj_coeff
κ	build-up capacity	p_adj_seed_reg
π	multiplicative factor	p_adj_seed_te
с	all technologies	en2en
		teNoTransform
M_{c2g}	combination of technologies and grade levels	te2rlf

3.1.3 Operation and Maintenance Costs (q_costom)

O&M costs result from

- maintenance of existing facilities according to their capacity (fixed O&M costs) and
- operation of energy transformations according to the amount of produced secondary and final energy (variable O&M costs).

Addition of both contributions yields total O&M costs CostOM:

$$CostOM_{r} = \sum_{(p,s,f,c)} \left(\mu_{r,c} \sum_{(c,g)} \left(J_{r,c} \cdot Z_{r,c,g} \right) + \rho_{r,c} \cdot \left(ProdSe_{r,p,s,c} + ProdFe_{r,s,f,c} \right) \right)$$
(21)

$\forall (p, s, f, c) \in M_{e2\tilde{e}}, \qquad \forall$	$\mathcal{U}(c,g) \in M_{c2g}$	$\forall (l,g) \in M_{l2g}$
--	--------------------------------	-----------------------------

CostOM J	operation & maintenance costs specific investment costs for adding capacity of technology c	v_costOM vm_costTeCapital
$ProdSe \\ ProdFe \\ Z$	production of secondary energy production of final energy capacity of technology c and l	v_prodSe v_prodFe vm_cap
μho	fixed specific O&M costs variable specific O&M costs	data("omf") data("omv")
С	all technologies	en2en teNoTransform
$\begin{array}{c} M_{e2\tilde{e}} \\ M_{c2g}, M_{l2g} \end{array}$	definition of general energy transformation combination of technologies and grade levels	temapall te2rlf

3.2 Energy Balance Equations

Energy balance equations equate the production P of and demand D for each primary, secondary and final energy; so the general structure is:

$$\sum_{all} \operatorname{Prod}_{t,r,e} = \sum_{all} \operatorname{Dem}_{t,r,e} \quad \forall \ t,r \quad \forall \ \text{energy types e}$$

where "all" means all possible ways of energy transformation that produce or demand energy type e.

3.2.1 Primary Energy Balance (q_balPe)

Supply of primary energy ProdPe equals demand on Primary energy DemPe.

$$\sum_{(p,g)\in M_{p2g}} ProdPe_{t,r,p,g} = \sum_{(p,s,c)\in M_{p2s}} DemPe_{t,r,p,s,c} \quad \forall \ t,r \ \forall \ p$$
(22)

	demand for primary energy production of primary energy	vm_demPe vm_prodPe
$c \\ p \\ s \\ g$	all technologies all primary energy types all secondary energy types all resource grades	te entyPe entySe rlf
$\begin{array}{c} M_{p2g} \\ M_{p2s} \end{array}$	combination of primary energy types with grade levels combination of primary and secondary energies with their conversion technology	enty2rlf2 pe2se

3.2.2 Secondary Energy Balance (q_balSe)

The secondary energy balance comprises the following terms:

- Secondary energy can be produced (*ProdSe*) from primary or (another type of) secondary energy.
- Own consumption of secondary energy occurs from the production of secondary and final energy, and from CCS technologies. Own consumption is calculated as the product of the respective production (*ProdSe*, *ProdFe*, or *CCS* as the amount of CO_2 in the respective CCS chain step) and a negative coefficient ξ . Mapping M_{oc} defines possible combinations: the first two enty types of the mapping define the underlying transformation process, the 3rd argument the technology, and the 4th argument specifies the consumed energy type.
- Couple production is modeled as own consumption, but with a positive $\xi.$

• Secondary energy can be demanded (*DemSe*) to produce final or (another type of) secondary energy.

$$\sum_{(p,s,c)\in M_{p2s}} ProdSe_{t,r,p,s,c} + \sum_{(\tilde{s},s,c)\in M_{s2s}} ProdSe_{t,r,\tilde{s},s,c}$$

$$+ \sum_{(e,\tilde{s},c,s)\in M_{oc}} \xi_c \cdot ProdSe_{t,r,e,\tilde{s},c} + \sum_{(e,f,c,s)\in M_{oc}} \xi_c \cdot ProdFe_{t,r,e,f,c}$$

$$+ \sum_{(e,\tilde{e},c,s)\in M_{oc}} \xi_c \cdot CCS_{t,r,e,\tilde{e},c}$$
if $c \in T1$

$$=$$

$$\sum_{(s,f,c)\in M_{s2f}} DemSe_{t,r,s,f,c} + \sum_{(s,\tilde{s},c)\in M_{s2s}} DemSe_{t,r,s,\tilde{s},c}$$

$$+ \sum_{c\in T2} StorL_{t,r,c}$$
if $s = electricity$
(23)

 $\forall \ t,r \quad \forall s$

DemSe	demand for secondary energy	v_demSe
ProdSe	production of secondary energy	vm_prodSe
ProdFe	production of secondary energy	vm_prodFe
CCS	$CCS CO_2$ emissions	v_co2CCS
ImpSe	Import of secondary energy	v_MpSE
ExpSe	Export of secondary energy	v_XpSE
StorL	Storage losses of electricity	v_storloss
ξ	own consumption factor c	p_dataoc
с	all technologies	te
e	all energy types	enty
p	all primary energy types	entyPe
s	all secondary energy types	entySe
f	all final energy types	entyFe
T1	technologies used to deposit CO_2 underground	<pre>teccs2rlf(te,rlf)</pre>
T2	VRE technologies producing electricity (wind,	teVRE
	PV, CSP)	
M_{p2s}	combination of primary and secondary energies	pe2se
	with their conversion technology	
M_{s2s}	combination of secondary and secondary ener-	se2se
	gies with their conversion technology	
M_{s2f}	combination of secondary and final energies	se2fe
N	with their conversion technology	01
M_{oc}	combination of energy types and technologies	oc2te
	that have couple production or several inputs	

3.3 Energy Transformation Equations

Taking the technology-specific transformation efficiency η into account, the equations describe the transformation of an energy type to another type; note that energy type e entering a transformation is *demanded* (*Dem*), the resulting energy type \tilde{e} is *produced* (*Prod*):

$$\eta_{t,r,c} \cdot Dem_{t,r,e,c} = Prod_{t,r,\tilde{e},c} \quad \forall \ t,r \quad \forall (e,\tilde{e},c) \in M_{e2\tilde{e}}$$
(24)

and the allowed combinations of e and \tilde{e} are primary to secondary, secondary to secondary, secondary to final energy, and final energy to energy services.

3.3.1 Primary Energy to Secondary Energy (q_transPe2Se)

Depending on the detail of the technology representation, the transformation technology's efficiency (η_t) can depend either only on the current year or on the year when a specific technology was built; in the latter case, the production (*ProdSe*) is replaced by the equivalent product of the depreciated capacity additions ($\omega \cdot CapAdd$) and load factor (ν) to assign the η_t value valid at the year of the capacity addition (compare with sections 3.5.3 and 3.5.1):

$$DemPe_{t,r,p,s,c} = \begin{cases} \frac{1}{\eta_{t,r,c}} \cdot ProdSe_{t,r,p,s,c} & \text{if } c \in T1 \\ (1 - ERet_{t,r,c}) \cdot \nu_{r,c} \cdot \sum_{\tilde{t} \le t} \Delta \tilde{t} \cdot \frac{\omega_{t-\tilde{t},r,c} \cdot CapAdd_{\tilde{t},r,c}}{\eta_{\tilde{t},r,c}} & \text{if } c \in T2 \end{cases}$$

$$(25)$$

$$\forall t, r \quad \forall (p, s, c) \in M_{p2s}$$

DemPe ProdSe CapAdd ERet	demand for primary energy production of secondary energy addition to the capacity of technology c Share of capacities that is retired early	vm_demPe vm_prodSe vm_deltaCap v_capEarlyReti
η ν ω	efficiency of technology c load factor of technology c depreciation factor reflecting reduced capacity use as technology ages	pm_eta_conv, pm_dataeta pm_cf pm_omeg
Δt	time step length of each time step	pm_ts
c T1	all technologies technologies where the efficiency only depends on the current year (simplified assumption)	te teEtaConst
T2	technologies where the efficiency is de- termined by the build year and is tracked throughout time	teEtaIncr
M_{p2s}	combination of primary and secondary energies with their conversion technol- ogy	pe2se

3.3.2 Secondary Energy to Final Energy (q_selfetrans)

$$DemSe_{t,r,s,f,c} = \frac{ProdFe_{t,r,s,f,c}}{\eta_{t,r,c}}$$
(26)

$$\forall t, r \quad \forall (s, f, c) \in M_{s2f}$$

3.3.3 Secondary Energy to Secondary Energy (q_se2setrans)

$$DemSe_{t,r,s,\tilde{s},c} = \frac{ProdSe_{t,r,s,\tilde{s},c}}{\eta_{t,r,c}}$$
(27)

$$\forall t, r \quad \forall (s, \tilde{s}, c) \in M_{s2s}$$

3.3.4 Final Energy to Energy Services (q_fe2estrans)

$$DemFe_{t,r,f,e,c} = \frac{ProdEs_{t,r,f,e,c}}{\eta_{t,r,c}}$$
(28)

$$\forall t, r \quad \forall (f, e, c) \in M_{f2e}$$

DemSe	demand for secondary energy	v_demSe
DemFe	demand for final energy	v_demFe
ProdSe	production of secondary energy	vm_prodSe
ProdFe	production of final energy	vm_prodFe
ProdEs	production of energy services	vm_prodEs
η	efficiency of technology c	pm_eta_conv
с	all technologies	te
M_{s2f}	combination of secondary and final energies with their	se2fe
M_{s2s}	conversion technology combination of secondary and secondary energies with	se2se
M_{f2e}	their conversion technology combination of secondary and secondary energies with their conversion technology	fe2es

3.4 Treatment of VRE technologies (storage & grid requirements, resource competition)

- Each variable renewable technology c_{VRE} (VRE: wind, PV, CSP) requires a certain amount of its respective storage technology (stor: storwind, storPV, storCSP). Total storage needs from c_{VRE} increase with the absolute amount of electricity generated by c_{VRE} as well as with its share in total electricity generation.
- The specific relative storage requirement (StorSh) increases with increasing share of the respective VRE technology (ShSeel) as well as with increasing share of all VRE technologies that use a resource with similar fluctuations (M_{link}) (reduced by a factor 1/3 to represent only partial correlation between fluctuations). See eq. 33.
- Total storage capacity needed for a VRE technology c_{VRE} is calculated from the storage losses (StorL). See eq. 41.
- Total storage losses (StorL) are given by round-trip conversion losses multiplied by the product of specific relative storage requirement (StorSh) with the total usable electricity production of $c_{\rm VRE}$. See eq. 32.
- Round-trip conversion losses as percent of output are given by $(1-\eta)/\eta$, with η the conversion efficiency of the storage technology
- Total usable electricity production of c_{VRE} is equal to the total seel production of c_{VRE} minus the losses of the associated storage technology. See eq. 30.

3.4.1 Usable electricity

Share of technology te in total electricity production (q_shSeE1)

The share of electricity generation of one technology is calculated by dividing the useful secondary energy electricity (seel) production of one VRE technology by the combined usable seel production from primary energy and couple production. As storage losses are not used for anything, they are not counted in the 'usable seel' variables (else the share of a VRE technology might be larger than 100 percent).

$$ShSeel_{t,r,\mathbf{s},\mathbf{c}} = 100 \cdot \frac{UseSeTe_{t,r,\mathbf{s},\mathbf{c}}}{UseSe_{t,r,\mathbf{s}}}$$
(29)

 $\forall t, r \quad \forall \mathbf{c} \in T1 \quad \mathbf{s} = \text{electricity}$

Usable electricity from VRE technology c (q_usableSeTe)

$$UseSeTe_{t,r,\mathbf{s},\mathbf{c}} = \left(\sum_{(p,\mathbf{s},\mathbf{c})\in M_{p2s}} ProdSe_{t,r,p,\mathbf{s},\mathbf{c}}\right) - StorL_{t,r,\mathbf{c}}$$
(30)

 $\forall t, r \quad \forall \mathbf{c} \in T1 \quad \mathbf{s} = \text{electricity}$

Total usable electricity from primary energy and couple production (q_usableSe)

$$UseSe_{t,r,\mathbf{s}} = \sum_{\substack{(p,\mathbf{s},c)\in M_{p2s}}} ProdSe_{t,r,p,\mathbf{s},c} \\ + \sum_{\substack{(p,\tilde{s},c,\mathbf{s})\in M_{oc}}} \xi_c \cdot ProdSe_{t,r,p,\tilde{s},c} \qquad \text{if} \quad \xi_c > 0 \\ - StorL_{t,r,\mathbf{c}} \end{cases}$$

(31)

 $\forall t, r \quad \mathbf{s} = \text{electricity}$

ShSeel	Share of net seel production from techn. c in total	v_shSeEl
	net seel production	
UseSeTe	usable electricity from technology c	v_usableSeTe
UseSe	total usable electricity	v_usableSe
ProdSe	production of secondary energy	vm_prodSe
StorL	Storage losses of electricity	v_storloss
ξ	own consumption factor c	pm_prodCouple
c	all technologies	te
p	all primary energy types	pety(enty)
s	all secondary energy types	<pre>sety(enty)</pre>
T1	VRE technologies producing electricity (wind, PV,	teVRE(te)
	CSP)	
M_{p2s}	combination of primary and secondary energies	pe2se
-	with their conversion technology	
M_{oc}	combination of energy types and technologies that	pc2te
	have couple production or several inputs	

3.4.2 Calculate storage losses and requirements

Storage losses (q_storloss)

$$StorL_{t,r,c} = \frac{StorSh_{t,r,c}}{100} \cdot UseSeTe_{t,r,c} \cdot \sum_{(c,\tilde{c})\in M_{stor}} \frac{1-\eta_{\tilde{c}}}{\eta_{\tilde{c}}}$$
(32)
$$\forall t,r \quad \forall c \in T1$$

Storage requirements (q_shStor)

$$StorSh_{t,r,c} > 100 \cdot \lambda_{r,c} \cdot \left(\frac{1}{100} \cdot ShSeel_{t,r,c} + \frac{\sum_{(c,\tilde{c}) \in M_{link}} ShSeel_{t,r,\tilde{c}}}{3}\right)^{\mu_{r,c}}$$
(33)
$$\forall t, r \quad \forall c \in T1$$

UseSeTe StorSh ShSeel	usable electricity from technology c auxiliary variable: the relative need for storage Share of net electricity production from technol- ogy c in total net electricity production	v_usableSeTe v_shStor v_shSeEl
$\eta \ \lambda$	conversion efficiency of the storage factor for up/downscaling requirements in dif- ferent regions/for different technologies (default: 1)	pm_eta_conv p_stor_factor
μ	exponent determining how fast marginal storage requirements increase with VRE share (default: 1)	p_storexp
с	all technologies	te
T1	VRE technologies producing electricity (wind, PV, CSP)	teVRE(te)
M_{stor}	combination of VRE technologies and storage technologies	VRE2teStor
M_{link}	combination of VRE technologies that use the same resource and thus are correlated	VRE2teVRElinked

3.4.3 Required long-distance transmission grid

The variable renewable technologies c_{VRE} , for which the potential is usually concentrated in few regions of a continent, require explicit transmission grid expansion on top of the linear grid costs required for all electricity use.

Calculating the grid capacity requirements (q_limitCapTeGrid)

$$CapGrid_{t,r} = \sigma_r \sum_{c \in T1} \zeta_c \cdot ProdSe_{t,r,c}$$
(34)

$$\forall t, r$$

CapGrid ProdSe	Additional grid capacity for VRE technologies usable electricity from technology c	vm_cap vm_ProdSe
σ	factor for up/downscaling grid requirements in dif- ferent regions (default: 1)	p_grid_factor
ζ	factor for up/downscaling grid requirements for dif- ferent technologies	
С	all technologies	te
T1	VRE technologies producing electricity (wind, PV, CSP)	tegrid(te)

3.4.4 Competition for resources for renewable energies (q_limitGeopot)

Several renewable technologies use the same resource potential, e.g., CSP and PV both compete for solar irradiance and thus cannot use the same piece of land to generate electricity. The model needs to make sure that the sum of area used by both technologies is smaller than the total usable area/technical potential.

$$\gamma_{r,p,g} > \sum_{(p,c,g) \in M_{p2cg}} \frac{CapDist_{t,r,c,g}}{\iota_{r,c}} \qquad \forall t, r,g \ \forall p \in P1$$
(35)

CapDist	Capacity of renewable technology distributed to different resource grades	v_capDistr
γ_{ι}	maximum technical potential capacity per area of a renewable technology	p_dataplot("q_limitGeopot") pm_data("luse")
$c \\ p \\ g$	all technologies primary energy types all resource grades	te pety rlf
P1	all renewable PE with resource competition from different tech- nologies	peReComp
M_{p2cg}	mapping of renewable primary en- ergies with resource competition to technologies and resource grades	teReComp2pe

Final Energy Balance

The final energy balance is described in the economy module. See section 2.6.

3.5 Capacities

The following equations are at the core of the energy system, by linking the energy flows (ProdXX) with required capacities Cap of the corresponding conversion technologies. The equations are structurally equivalent throughout the chain from primary energy to secondary to final energy and lastly to energy services, and similar equations also apply to the CCS chain and storage.

3.5.1 Capacity constraints for energy transformations

Capacity constraints for primary to secondary energy transformation $(q_limitCapSe)$

$$ProdSe_{t,r,p,s,c} = \sum_{(c,g)\in M_{c2g}} \nu_{r,c} \cdot \nu_{r,c,g}^* \cdot Cap_{t,r,c,g} \quad \forall t,r \ \forall (p,s,c) \in M_{p2s}$$
(36)

Capacity constraints for secondary to secondary energy transformation (q_limitCapSe2se)

$$ProdSe_{t,r,s,\tilde{s},c} = \sum_{(c,g)\in M_{c2g}} \nu_{r,c} \cdot \nu^*_{r,c,g} \cdot Cap_{t,r,c,g} \quad \forall t,r \ \forall \ (s,\tilde{s},c) \in M_{s2s}$$
(37)

Capacity constraints for secondary to final energy transformation (q_limitCapFe)

$$ProdFe_{t,r,s,f,c} = \sum_{(c,g)\in M_{c2g}} \nu_{r,c} \cdot Cap_{t,r,c,g} \quad \forall \ t,r \ \forall \ (s,f,c) \in M_{s2f}$$
(38)

Capacity constraints for final energy to energy service transformation $(q_limitCapEs)$

$$ProdEs_{t,r,f,e,c} = \sum_{(c,g)\in M_{c2g}} \nu_{r,c} \cdot Cap_{t,r,c,g} \quad \forall \ t,r \ \forall \ (f,e,c) \in M_{f2e}$$
(39)

Constraint on the Share of Electricity from CHP (q_limitCapTeChp)

$$\sum_{(p,s,c)\in M_{CHP}} ProdSe_{t,r,p,s,c} \le \phi_r \cdot \sum_{(p,s,c)\in M_{p2s}} ProdSe_{t,r,p,s,c} \qquad \forall t,r \quad \text{if} \quad s = \text{electricity}$$

$$(40)$$

Capacity constraints for storage (q_limitCapTeStor**)**

$$\sum_{(c,\tilde{c})\in M_{stor}} Stor L_{t,r,\tilde{c}} \cdot \frac{\eta_{t,r,c}}{1-\eta_{t,r,c}} = \sum_{(c,g)\in M_{c2g}} \nu_{r,c} \cdot \nu_{r,c,g}^* \cdot Cap_{t,r,c,g} \quad \forall t,r \ \forall c \in T1$$

$$(41)$$

ProdSE	production of secondary energy	vm_prodSe
ProdFE	production of final energy	vm_prodFe
ProdES	production of energy service	vm_esprod
Cap	capacity of technology c	vm_cap
StorL	energy loss due to storage process	v_storloss
ν	capacity factor associated with technology c	pm_cf
$ u_g^*$	scaling of the load factor ν dependent on grade level q	pm_dataren("nur")
ϕ	maximum share of electricity from CHP on overall electricity generation	p_shCHP("bscu")
η	conversion efficiency of the storage	pm_eta_conv
c	all technologies	te
e	all energy types	enty
p	all primary energy types	pety(enty)
s	all secondary energy types	sety(enty)
f	all final energy types	fety(enty)
T1	storage technologies (storwind, storPV, storCSP)	teVRE
M_{p2s}	primary to secondary energy transformation technologies	pe2se
M_{s2s}	secondary to secondary energy transformation technologies	se2se
M_{s2f}	secondary to final energy transformation tech- nologies	se2fe
M_{f2e}	final energy to energy service transformation	fe2es
M_{c2g}	technologies combination of energy technologies and grade	teall2rlf
M_{stor}	levels combination of VRE technology and its respec- tive storage technology	VRE2teStor

3.5.2 Capacity constraints for CCS technologies (q_limitCapCCS)

 $R_{t,r,i,i+1,c,g} = \sum_{(c,g)\in M_{c2g}} \nu_{r,c} \cdot Cap_{t,r,c,g} \quad \forall t,r \ \forall (i,i+1,c) \in M_{CCS}$ (42)

R	amount of CO_2 in step <i>i</i> of the CCS chain to be transformed to the next one using technology <i>c</i> with	v_co2CCS
Cap	grade level g capacity of CCS transformation technology c with grade level g	vm_cap
ν	capacity factor associated with technology \boldsymbol{c}	pm_cf
$c \\ i$	all technologies step of the CCS process chain	te
$\begin{array}{c} M_{CCS} \\ M_{c2g} \end{array}$	definition of CCS steps and associated technologies combination of technology and grade levels	ccs2te teCCS2rlf

3.5.3 Capacity Depreciation (q_cap)

The capacities of vintaged technologies (c_{vin}) depreciate according to a vintage depreciation scheme, with generally low depreciation at the beginning of the lifetime, and fast depreciation around the average lifetime. Depreciation can generally be tracked for each grade separately. By implementation, however, only grades of level 1 are affected. The depreciation of any fossil technology can be accelerated by early retirement (*ERet*), which is a crucial way to quickly phase out emissions after the implementation of stringent climate policies.

$$\begin{aligned} Cap_{t,r,c,g} &= (1 - ERet_{t,r,c}) \cdot \left(\sum_{(c,\tilde{t}) \in M_{tl}} \Delta t \cdot \omega_{r,\tilde{t},c} \cdot CapAdd_{t-\tilde{t},r,c,g} \right) \\ &\forall t,r \ \forall \ (c,g) \in M_{c2g} \end{aligned} \tag{43}$$

$\begin{array}{c} Cap\\ CapAdd\\ ERet \end{array}$	capacity of technology c addition of capacity share of prematurely retired capacities	vm_cap vm_deltaCap v_capEarlyReti
ω Cap^0	weight factor of addition to technology c 's capacity prior to initial time initial capacity of technology c	pm_omeg data("cap0")
\tilde{t} c	life time technologies	opTimeYr te
$\begin{array}{c} M_{c2g} \\ M_{tl} \end{array}$	combination of technologies and grade levels set of possible combinations of vintage technologies and life time indices	te2rlf opTimeYr2te

3.6 Learning equation (q_costTeCapital, qm_deltaCapCumNet)

Technological change is an important driver of the evolution of energy systems. For mature technologies, such as coal-fired power plants, the evolution of techno-economic parameters is prescribed exogenously. For less mature technologies with substantial potential for cost decreases via learning-bydoing, investment costs are determined via an endogenous one-factor learning curve approach that assumes floor costs θ_c :

$$IC_{t,c} = \alpha_c \cdot \sum_r CCap_{t,r,c}^{\beta_c} + \theta_c \quad \forall t, r , \quad \forall c \in T1$$

with

$$\alpha_c = \frac{IC_c^0 - \theta_c}{\sum_r CCap_{r,c}^0 \beta_c} \quad \forall \ r \ ; \quad \forall \ c \in \mathrm{T1}$$

and β_c calculated from the learning rate $\tilde{\beta}$ (relative cost decrease when cumulated capacities double):

$$\beta_c = \frac{\ln(1 - \tilde{\beta}_c)}{\ln 2} \quad \forall \ r \ ; \quad \forall \ c \in \mathrm{T1}$$

It should be noted that the learning rate in this formula applies to the learning part only - it is thus larger than the empirically observed learning rate if $\theta > 0$. The cumulated capacities CCap are calculated as

$$CCap_{t+1,r,c} = \ CCap_{t,r,c} + \Delta t \cdot \ CapAdd_{t,r,c} \quad \forall \ t,r; \ \forall \ c \in \operatorname{T1};$$

This is equivalent to the common formulation of learning curves in the literature

$$IC_{t,c} = \tilde{\alpha}_c \cdot \left(\frac{\sum_r CCap_{t,r,c}}{\sum_r CCap_{t,r,c}^0}\right)^{\beta_c} + \theta_c \quad \forall \ t,r \ ; \quad \forall \ c \in \mathrm{T1}$$

where $\tilde{\alpha}_c$ represents the difference between initial costs and floor costs.

IC	specific investment costs for adding ca-	$vm_costTeCapital$
CCap	pacity of learning technology c cumulated capacity of technology c	vm_capCum
θ	floor costs of learning technology c	$pm_data("floorcost")$
α	parameter of learning technology c	pm_data("learnMult_wFC")
β	parameter of learning technology c	pm_data("learnExp_wFC")
\tilde{lpha}	difference between initial costs and floor	
$ ilde{eta}$	costs learning rate	
T1	set of technologies subject to endogenous	teLearn
	learning	

3.7 Resource and Potential Constraints

3.7.1 Fuel extraction (qm_fuel2pe)

To ensure that energy demand matches production, a balance equation links primary energy production to exhaustible resources extraction. More specifically primary energy production ProdPe must equal the extraction FuelExand the traded exhaustible primary energy carriers e (i.e. coal, oil, gas, uranium and biomass). Trade is designed so that each model region can import (MRes) or export (XRes) any amount of tradable primary energy. It is important to note that specific trade costs τ are taken into account.³

$$ProdPe_{t,r,e,g} = \sum_{M_{e2g}} FuelEx_{t,r,e,g}$$
$$- (XRes_{t,r,e} - (1 - \tau_{r,e}) \cdot MRes_{t,r,e}) \qquad \text{if} \quad e \in E1$$
$$\forall \ t, r, e \ \forall (e,g) \in M_{e2g} \quad (44)$$

$\begin{array}{c} ProdPe \\ FuelEx \end{array}$	production of primary energy fuel extraction rate of the grade g of an ex-	vm_prodPe vm_fuExtr
XRes MRes	haustible resource e energy export energy import	vm_Xport vm_Mport
τ	trade costs (i.e. energy losses)	$p_{-}costsPEtradeMp$
e	energy carrier	peRicardian(enty)
E1	tradable primary energy carriers	tradePe
M_{e2g}	combination of exhaustible primary energy car- riers and grade levels	pe2rlf

 $^{{}^{3}\}tau$ represents energetic losses here, whereas in case of final good import, τ^{G} represents monetary costs (see sec. 2.2).

3.7.2 Constraints on energy production from renewable sources

Constraints on secondary energy production from renewable sources (q_limitProd)

This equation assigns upper limits π on the *technical potential* of secondary energy production technologies from renewable sources (c).

 $\pi_{r,c,g} \geq \nu_{r,c} \cdot \sigma_{r,c,g} \cdot CapDist_{t,r,c,g}$

$$\forall t, r \ \forall (c, g) \in M_{c2g} \quad (45)$$

CapDist	capacity distribution of renewable technologies \boldsymbol{c}	v_capDistr
ν	load factor of technology c	pm_cf
σ	scaling of the load factor ν dependent on	pm_dataren("nur")
π	grade level g maximal production (according to tech- nology c) of secondary energy from non- exhaustible resource via c, g	pm_dataren("maxprod")
с	renewable energy transformation technologies	teReNoBio
M_{c2g}	combination of renewable technologies and grade levels	tese2rlfDistr

3.8 The Emission Equations

3.8.1 Production and Capture of Emissions (q_emiTeDetail)

Emissions of type q result from primary to secondary energy transformation, from secondary to final energy transformation (some air pollutants), or transformations within the chain of CCS steps (Leakage).

The equation describes CO_2 released into the atmosphere and CO_2 captured for storage as two different emission types. In primary to secondary energy transformation processes, both types can be generated.

$$\begin{split} Emi_{t,r,c,q} &= \sum_{(p,s,c) \in M_{p2s}} \gamma_{t,r,q,p,s,c} \cdot DemPe_{t,r,p,s,c} \\ &+ \sum_{(s,f,c) \in M_{s2f}} \gamma_{t,r,q,s,f,c} \cdot ProdFe_{t,r,s,f,c} \\ &+ \sum_{(c,i,i+1,q)} \sum_{(c,g)} \gamma_{t,r,c,q} \cdot CCS_{t,r,i,i+1,c,g} \\ &\forall t,r \ \forall (q,c) \in M_{e2t} \quad (c,i,i+1,q) \in M_{ccs2l} \quad (c,g) \in M_{c2g} \end{split}$$
(46)

DemPe	demand of primary energy	vm_demPe
ProdFe	production of final energy	vm_prodFe
Emi	amount of emissions from type q produced by con-	v_emiTeDetail
	versions explained in M_{e2t}	
CCS	CO2 emission from transformation in the CCS chain	v_co2CCS
	from step i to $i + 1$ using technology c with grade	
	level g	
γ	emission of type q per energy flow in the transfor-	pm_emifac
	mation e_{in} into e_{out} using technology te	
\overline{q}	emission type	emiseng(enty)
i	step of the CCS process chain	
c	all technologies	te
p	all primary energy types	pety(enty)
s	all secondary energy types	<pre>sety(enty)</pre>
f	all final energy types	fety(enty)
M_{ccs2l}	definition of leakage from CCS transformations	ccs2Leak
M_{c2q}	combination of technology and grade levels for CCS	teccs2rlf
M_{e2t}	definition of emissions from a transformation	emi2te
M_{p2s}	definition of primary to secondary energy transfor-	pe2se
M_{s2f}	mation definition of secondary to final energy transforma-	se2fe
1 11 s2f	tion	50210

3.8.2 MACs (q_macBase, q_emiMacSector,q_emiMac)

Mitigation options that are independent of energy consumption are represented using marginal abatement cost (MAC) curves, which describe the percentage of abated emissions as a function of the costs. Baseline emissions are obtained by three different methods: by source (via emission factors), by econometric estimate, and exogenous. Emissions (Qm_q) are calculated as baseline emissions (\overline{Q}_q) times (1 - relative emission reduction (λ_q)). In case of CO₂ from landuse (co2luc), emissions can be negative. To treat these emissions in the same framework, we subtract the minimal emission level ϵ from baseline emissions. This shift factor is then added again when calculating total emissions.

$$Qm_{t,r,q} = \overline{Q}_{t,r,q} \cdot (1 - s \cdot \lambda_{t,r,q})$$

$$+ \epsilon_{t,r}$$
if $q = co2luc$

$$\forall t, r, q$$

$$(47)$$

$\overline{Q} \\ Qm$	baseline emissions emissions	vm_macBase vm_emiMac
$s \ \lambda \ \epsilon$	switch to turn MACs on and off relative emission reduction minimal land use change emission level	p_macswitch p_macAbatLev f_co2magpietax50
q	type of emissions	emiMac

3.8.3 Total emissions (q_co2eq)

Total emissions in CO_2 equivalents are computed based on regional GHG emissions from different sectors j (energy system, non-energy system, exogenous, CDR technologies):

$$Qtot_{t,r} = \sum_{j} EmiCO2_{t,r,j} + \omega \cdot \sum_{j} EmiCH4_{t,r,j} + \delta \cdot \sum_{j} EmiN2O_{t,r,j}$$
$$\forall t, r \qquad (48)$$

Qtot EmiCO2 EmiCH4 EmiN2O	Total regional CO2 equivalent emissions CO2 emissions CH4 emissions N2O emission	vm_co2eq vm_emiAll("co2") vm_emiAll("ch4") vm_emiAll("n2o")
$\frac{\omega}{\delta}$	conversion factor for 100yr GWP of CH4 conversion factor for 100yr GWP of N2O	s_tgch4_2_pgc s_tgn_2_pgc
j	type of emission sector	

3.8.4 The CO_2 emission constraint (q_emiCap)

The initial allocation of permits to a region (QP) must cover its emissions Emi plus its permit exports X minus its permit imports M plus its banking B.

$$Qtot_{t,r} + X_{t,r} - M_{t,r} + B_{t,r} \le QP_{t,r} \quad \forall \ t,r \tag{49}$$

В	emission permit banking	vm_banking
M	emissions permit import	<pre>vm_Mport("perm")</pre>
EmiTot	amount of emissions in CO_2 eq	vm_co2eq
QP	initial permit allocation	vm_perm
X	emissions permit export	<pre>vm_Xport("perm")</pre>

3.9 The CCS Equations

CCS Balance (q_balCCS)

The right hand side of the equation calculates the total amount of CO_2 captured (*Emi*) from all relevant processes *c* that produce captured CO2.⁴ This amount enters the CCS process chain (left hand side).

$$\sum_{c \in M_{CCS}} CCS_{t,r,c,i} = \sum_{c \in M_c} Emi_{t,r,c} \quad \forall \ t,r \quad i = 1$$
(50)

Transformation in the CCS chain (q_transCCS)

Process steps in the CCS chain are subject to leakage. The amount of captured CO₂ at one step *i* of the CCS chain is thus the amount of CO₂ in the previous step i - 1 times 1 minus specific emission coefficient γ that considers the leakage.

$$(1 - \theta_{t,r,c,i}) \cdot CCS_{t,r,c,i} = CCS_{t,r,c,i+1} \qquad \forall t, r, i \quad \forall c \in M_{CCS}$$
(51)

 $\sum \Delta t \cdot CCS_{t,n-i} \leq y_{t,n} \quad \forall r \quad \forall (c, i) \in M_{i-1}$

(52)

Constraint on CCS injection (q_limitCCS)

The storage space for carbon that is injected over time is limited by ψ .

	$\sum_{t} \Delta t + C C S_{t,r,c,i} \leq \psi_r \forall t \forall \ (c,t) \in W$	I_{inj} (52)
Emi	amount of captured CO_2 emissions produced by	v_emiTeDetail
CCS	various conversion technologies amount of CO_2 in step <i>i</i> of the CCS chain to be transformed in to next one using technology <i>c</i>	v_co2CCS
θ	specific CO_2 emissions leakage rate in the CCS	pm_emifac
ψ	chain (default=0) maximal cumulative injection for CCS	p_dataccs("quan")
с	Technology that produces captured CO_2 in CCS	te
i	chain at stage i stage in the CCS chain, $i=1,,4$	
M_{CCS}	definition of technologies in CCS chain	ccs2te
M_c	definition of technologies that produce captured	emi2te
M_{inj}	CO ₂ definition of CCS injection technologies	ccs2te2("ico2")

⁴Note that " CO_2 captured" is treated as an emission type distinct from CO_2 released into the atmosphere (see sec. 3.8.1 also).

4 Climate Module

4.1 MAGICC (Interface and further reference)

The reduced-form climate model MAGICC calculates the climate system dynamics in response to various emission types given in annual resolution.

For a model description, please refer to Meinshausen, Raper, and Wigley (2011).

MAGICC is coupled to REMIND via emissions of fossil- and other CO_2 , CH_4 , N_2O , F-Gases, SO_2 , BC, OC, NO_x , CO, VOC, and NH_3 . The emissions are calculated either endogenously by REMIND, derived from endogenous values during post-processing, carried over from a matching exogenous scenario (e.g. RCP) or a mix of the above.

Emissions are mapped from REMIND regions to the five RCP regions (OECD90, REF, ASIA, MAF, LAM) using the 2005 SO_2 emissions as weighting factors.

Group	Description	Emissions
a b	model endogenous emissions emissions partly derived from model endogenous values during post-processing, partly	fossil CO ₂ , other CO ₂ , CH ₄ , N ₂ O SO ₂ , BC, OC, CO, NO _x , VOC, NH ₃
с	exogenous exogenous emissions	F-Gases

Emissions of group a and c are simply mapped to RCP regions.

$$EmiMag_{t,r',q} = \sum_{r} \omega_{r,r'} Emi_{t,r,q}$$
(53)

Post-processing emissions (group b) are calculated by (and summed over) sectors. Emissions from power production, industry, residential and transport are derived from endogenous activity data. Emissions from fossil fuel extraction, industry processes, solvents, agriculture, agricultural waste burning, forest burning, grassland burning, and waste are carried over from external scenarios.

$$EmiMag_{t,r',q} = \sum_{r} \omega_{r,r'} \cdot \sum_{s \in S1} \sum_{(s,c) \in M_S} \left(\left(\sum_{(s,c) \in M_S} EmiP_{t,r,q,s,c} \right) + EmiX_{t,r,q,s} \right) \cdot \sigma_{q,s} + \sum_{s \in S2} EmiX_{t,r,q,s}$$

$$(54)$$

EmiMag	emissions exported to MAGICC	pm_magicc_emi
ω	weighting factor mapping Remind to	pm_regi_2_MAGICC_regions
	RCP regions	
Emi	endogenous or exogenous emissions	vm_emiTe or
		vm_emiMac or
EmiP	air pollutant amissions calculated	p_emiFgas
Linur	air pollutant emissions calculated during post-processing	pm_emi_postrun
EmiX	air pollutant emissions of exogenous	p11_ef_limits_wp4 or
	sectors	r
		pm_limits_wp4_rcp
σ	scaling factor to match 2005 RCP	pm_scale_rcp
	emissions	
r'	RCP region	RCP_regions_world_bunkers
r	REMIND region	regi
q	emission type	emiRCP
s	sector	sector
с	technology	te
$S_{ m e}$	sectors with endogenised emissions	_
$S_{\mathbf{x}}$	sectors with exogenous emissions	_
M_S	mapping of technologies to sectors	sectorEndoEmi2te

Global emissions also include external scenario data for emissions from international aviation and shipping.

Emissions are exported to MAGICC in native REMIND time steps, except for a spin-up interval from 2000 to 2005, where emissions are interpolated linearly to ensure a smooth transition between historical and model data.

In policy experiments, MAGICC can be used to iteratively adapt emission budgets or price levels to meet forcing or temperature targets. To that end, the total anthropogenic radiative forcing (file DAT_TOTAL_ANTHRO_RF.OUT) is read from MAGICC into REMIND.

5 Optimization

Two solution concepts calculating the Pareto-optimal solution are implemented: Negishi, and Nash procedures, as described in detail in this section⁵.

The Negishi procedure uses a joint-optimization method to find the cooperative solution between regions. The Nash procedure uses a Walrasianauctioneer mechanism to coordinate regional trade, and arrives at the noncooperative solution.

Non-internalized inter-regional externalities drive a wedge between the cooperative and the non-cooperative solution – global technological learning-by-doing is the only externality in the default model version.

Major element of the solution algorithms are prices p_j . They always represent net present value prices. Variables, parameters, sets and set elements used in both of the two approaches are:

$\frac{\begin{matrix} M_j^i \\ X_j^i \end{matrix}}{p_j^i}$	imports of commodity j in iteration i exports of commodity j in iteration i	vm_Mport vm_Xport
p_j^i	Prices on commodity markets j in iteration i	pm_pvp
$egin{array}{c} g \\ q \\ i \\ j \end{array}$	composite good emission permits iteration traded commodities	"good" "perm" iteration trade
$\begin{array}{c} C1 = \{C2,g,q\} \\ C2 \end{array}$	traded commodities traded energy types	

5.1 Negishi procedure

Within this solution approach, the objective functions of the individual regions are merged to a global objective function (see Eq. 1) by means of welfare weights W. The Negishi procedure adjusts the welfare weights in an iterative process around the model optimization.

• A distinguished Pareto-optimal solution, which without noninternalized externalities also corresponds to a market solution, is obtained by adjusting the welfare weights iteratively according to the intertemporal trade balances B^i :

$$\overline{B}_{r}^{i} = \sum_{t} \sum_{j \in C1} \Delta t \cdot p_{t,j}^{i} \cdot (X_{t,r,j}^{i} - M_{t,r,j}^{i}) \ \forall \ r, i$$
(55)

⁵Both methods are described in full detail in Leimbach et al. (2015).

The intertemporal trade balance B of each region is the net present value of all trade flows to and from this region, and is computed as the sum of net trade volumes of all tradable entities evaluated by associated shadow prices. i is the iteration step.

• Shadow prices p of each tradable entity are determined from the marginal values of the associated trade balance (see sec. 2.7).

$$p_{t,j} = \left| \frac{\partial U}{\partial (\sum_{r} (X_{t,r,j} - M_{t,r,j}))} \right| \quad \forall \ t, j \neq q$$
(56)

In case of permits, the maximum marginal of the permit trade balance (see sec. 3.8.4) and the emission summation is considered:

$$p_{t,j} = \max\left(\left|\frac{\partial U}{\partial(\sum_r (X_{t,r,j} - M_{t,r,j}))}\right|, \left|\frac{\partial U}{\partial(\sum_r (Q_{t,r} + Qneg_{t,r} - Qtot_{t,r}))}\right|\right) \quad \forall t, j = q$$

• A new set of welfare weights is derived iteratively:

$$\overline{W}_{r}^{i+1} = \overline{W}_{r}^{i} + \frac{\overline{B}_{r}^{i}}{\sum_{t} ((1+\rho_{r})^{-t} \overline{L}_{t,r})} \quad \forall r, i$$
(57)

• The global sum of all regional intertemporal imbalances ω is an indicator for the convergence of the solution (is close to zero in the final solution):

$$\omega^{i} = \sum_{r} \left| \overline{B}_{r}^{i} \right| \qquad \forall i \qquad (58)$$

$\begin{array}{c} Qtot\\ Qneg\\ Q\end{array}$	total GHG emissions non-energy related GHG emissions energy related GHG emissions	v_co2eq vm_emiMac vm_emiTe
$ \overline{W} \\ \overline{B} \\ \overline{L} \\ \rho \\ \omega $	Negishi weights intertemporal trade balance deficit population pure rate of time preference global sum of intertemporal trade deficits and surpluses	p80_nw p80_defic pm_pop pm_prtp p80_defic_sum

5.2 Nash procedure

The Nash procedure computes an inter-temporal and inter-regional equilibrium among independent regions - which coincides with the Negishi equilibrium in the absence of inter-regional externalities. Currently, the only inter-regional externality in the model is learning-by-doing in the energy sector (see Sec. 3.6).

Regional social planner models, each including the inter-temporal trade balance, are solved in parallel, and choose their trade patterns for given prices. The Nash algorithm then computes surpluses on all markets, and adjusts prices in order to reduce market surpluses in the next iteration. This procedure is then iterated until residual market clearances are reasonably small.

5.2.1 Inter-temporal budget equation (q80_budg_intertemp)

The inter-temporal trade balance is fulfilled by construction in each region:

$$0 = \sum_{t} \Delta t \sum_{j \in C1} p_{t,j}^{i} \left(1 + \operatorname{An}_{t,r,j}^{i} \right) \left(X_{t,r,j}^{i} - M_{t,r,j}^{i} \right) \quad \forall \ r, i$$
(59)

The anticipation term $\operatorname{An}(r, t, j)$ is a helper construct, which does not influence the solution point. It enables regions to anticipate price changes on the market in response to their trade decisions *within* the optimization, helping the solution to converge. During the iteration, as soon as trade deficits are reasonably small, this term is faded out and thus does not influence the solution.

5.2.2 Regularization (adjustment costs) (q80_costAdjNash)

This equation is a helper construct to aid the convergence process. Deviation from the trade pattern of the previous iteration are penalized with quadratic adjustment costs, which are accounted for in the regional budget equation. This regularization helps the convergence process as it prevents quickly diverging markets, but does not influence the solution point. Adjustment costs are priced into the budget equation, and calculated using a weighting parameter ν_i according to:

$$AdjNa_{t,r}^{i} = \sum_{j \in C1} \frac{p_{t,j}^{i} \nu_{j}^{i}}{\overline{No_{j}^{i}}} \left(X_{t,r,j}^{i} - M_{t,r,j}^{i} - \left(X_{t,r,j}^{i-1} - M_{t,r,j}^{i-1} \right) \right)^{2} \quad \forall \ t,r$$
(60)

5.2.3 Iterative price adjustment algorithm

After each successful round of regional optimizations, this algorithm calculates prices for the next iteration i + 1 from the surplus on all markets:

• Trade deficits \overline{S} of each tradable commodity j are calculated from imports M and exports X:

$$\overline{S}_{t,j}^i = \sum_r (X_{t,r,j}^i - M_{t,r,j}^i) \quad \forall \ t, j \in \mathbf{C} \mathbf{1}$$

$$(61)$$

• From these surpluses, the price for the next iteration is calculated:

$$p_{t,j}^{i+1} = p_{t,j}^i \left(1 - \eta_j^i \frac{\overline{S}_{t,j}^i}{\overline{No_j^i}} \right) \quad \forall \ t, j \in \mathbf{C1}$$

$$(62)$$

The parameter $\overline{No_j^i}$ normalizes to a proxy for the potential volume of the corresponding market j^{6} .

• This procedure is iterated until market surpluses are reasonably small. At that point though, the price anticipation terms $\operatorname{An}_{t,r,j}$ are still nonzero, which influences the solution point, as it gives regions market power. Thus, the anticipation terms are now faded out, while iterating further.

5.2.4 Convergence indicators

Iterations stop once residual deviations from market clearances fall below the threshold ϵ :

$$\left|\overline{S}_{t,j}^{i}\right| < \epsilon \qquad \forall \ t,j \tag{63}$$

The net present value of these residual deviations clearances volumes p80_defic_sum is a useful single-number indicator for the convergence of the solution algorithm.

$$\overline{D}^{i} = \sum_{t} \sum_{j} \Delta t \cdot p_{t,j}^{i} \cdot \overline{S}_{t,r,j}^{i} \quad \forall i$$
(64)

AdjNa Adjustment costs vm_costAdjNash	
$\begin{array}{lll} \eta & \mbox{parameter of price adjustment} & \mbox{p80_etaXp, p80_etaLT, p80_eta}\\ \nu & \mbox{weighting facor} & \mbox{p80_etaAdj} \\ \hline \nu & \mbox{tolerance level} & \mbox{p80_surplusMaxTolerance} \\ \hline \overline{S} & \mbox{trade deficit} & \mbox{p80_surplus} \\ \hline \overline{No} & \mbox{normalization parameter} & \mbox{p80_normalize0} \\ \hline \overline{D} & \mbox{deviation from market clearance} & \mbox{p80_etaXp, p80_etaLT, p80_eta}\\ \hline \end{array}$:aST

⁶The parameter η_j includes a time-dependent price correction. This – heuristic – correction helps energy markets converge faster.

6 Literature

Leimbach et al.(2015): Leimbach, M., Schultes, A., Baumstark, L., Giannousakis, A., Luderer, G. (2017): Solution algorithms of large-scale Integrated Assessment models on climate change. Annals of Operations Research 255, 29-45. doi:10.1007 s10479-016-2340-z.

Luderer et al. (2015):Luderer, G., Leimbach, M., Bauer, N., Kriegler, E., Baumstark, L., Bertram, C., Giannousakis, A., Hilaire, J., Klein, D., Levesque, A., Mouratiadou, I., Pehl, M., Pietzcker, R., Piontek, F., Roming, N., Schultes, A. and Schwanitz, V. J., Streffer, J. (2015). Description of the REMIND Model (Version 1.6). SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, November 30, 2015. https://papers.ssrn.com/abstract=2697070.

Meinshausen et al. (2011): Meinshausen, M., Raper, S. C. B., Wigley, T. M. L. (2011). Emulating Coupled Atmosphere-Ocean and Carbon Cycle Models with a Simpler Model, MAGICC6 - Part 1: Model Description and Calibration. Atmos. Chem. Phys. 11, 1417-56. doi:10.5194/acp-11-1417-2011.