

TECHNIQUES FOR OUALITY ASSURANCE OF MODELS IN A MULTI-RUN SIMULATION ENVIRONMENT

TOPIK IV Project

M. Flechsig¹, U. Böhm¹, T. Nocke², C. Rachimow¹

¹ PIK - Potsdam Institute for Climate Impact Research ² University of Rostock, Institute of Computer Graphics

MODSIMENV Sub-Project SIMENV

GENERAL SIMENV APPROACH

SimEnv is a sampling-based simulation environment that enables model developers / users to deal with quality assurance matters and scenario analyses for any model M. It runs under Unix and Linux.

M: $\mathbf{y} = \mathbf{F}(\mathbf{X}_k)$

 $X_k = (x_1,...,x_k)$ input vector of factors (parameters, initial / boundary values) multi-dimensional (large scale) model output y

SimEnv aims to support all stages of a model's life cycle (Fig. 1).

EXPERIMENT TYPES

are the core of SimEnv. They represent different generic sampling strategies of the factor space $\{X_k\}$ formed from X_k and result in the performance of multi-run simulation experiments. Generic experiment types have to be equipped with factors, a sam-

ple in the factor space, and a description of model output variables.

Global sensitivity analysis		Qualitative ranking of a large number of factors			
v.†		with respect to their sensitivity on model output at			
	* * * *	random trajectories in the factor space $\{X_k\}$			
	• • • •	For determination of most important factors			
	x1	to focus on afterwards			
Behavio	ural analysis	Deterministic inspection with a flexible screening			
		strategy in the factor space $\{X_k\}$			
A2		For - one-factor-at-a-time experiments			
		- (fractional) factorial experiments			
x x x x		- response surface methodology			
Local sensitivity analysis		Deterministic sampling in a local neighbourhood of			
		the default factor values of M			
3		For local first order sensitivity measures			
С-	ž.	by investigating finite difference			
li –	x1	approximations of derivatives			
Monte C	arlo analysis	Probabilistic random or Latin hypercube sampling			
0 0		of factors according to pre-defined distributions			
anlu 🕺	* x x x • *	and determination of statistical measures			
*	x x x	For - error analysis			
	x1	- model validation			
Uncerta	inty analysis	Orthogonal variance decomposition of model			
t∎t		output to first order and total effects of factors by a			
* efa	таха. *хагах+	Monte Carlo re-sampling experiment {+} (in prep.)			
p :		For - uncertainty analysis			
	x1	- model validation			
⁹ Opti	mization	Stochastic sampling to find the global minimum of			
ple *		a cost function on $\{X_k\}$ applying the simulated			
an i	°xxxx xoxu	annealing strategy ASA			
S		For model validation, control design: minimize a			
1× –	x1	distance measure between model and data			

MODEL INTERFACE

is based on minimal source code modifications for C/C++. Fortran. Python, Matlab, Mathematica, and/or GAMS models, at UNIX shell level and for ASCII files by implementation of function calls

- to forward a sampled factor value x_i from SimEnv to M: one call of function simenv get for each x:
- to store model output y from **M** to SimEnv data structures: one call of function simenv put for each v

SimEnv-related model output storage uses self-describing Network Common Data Form NetCDF or IEEE compliant binary formats.

EXPERIMENT PERFORMANCE

- On local, remote, parallel or distributed hardware architectures (the latter two using Message Passing Interface MPI)
- Support of distributed models

POST-PROCESSING AND VISUAL EVALUATION

Interactive post-processing allows

- to compute secondary output functions from the model's output y and from reference data by application of chains of elemental, selective, analytical, and statistical operators
- to navigate the factor space $\{X_k\}$ and derive from output functions uncertainty and sensitivity measures over the whole run ensemble by application of experiment type-specific operators

Currently, about 100 built-in operators are available. There is an interface to plug user-defined operators into the environment.

Analysis and evaluation of post-processed data derived from large amount of relevant model output benefit from coupled visualization techniques, using pre-defined OpenDX visualization modules.

PROSPECTS

- Support of remotely coupled models by a SimEnv client server architecture
- Single factor experiments as multi-factor experiment types •
- Multi-file support for very large experiment output

REFERENCES

MPI http://ingber.com/#ASA http://w3.gkss.de/CLM/clm_home.html NetCDF GAMS http://www.gams.com OpenDX

CLM

http://www.mpi-forum.org http://www.unidata.ucar.edu/packages/netcdf http://www.opendx.org

EXAMPLE

Iodel:	CLM -	regional meteorological model in climate mode
Iodel area:	Baltic S	Sea and most of Northern and Central Europe
esolution:	Space:	0.5° lat x 0.5° lon x 20 vertical layers
1.P	Time:	model time step: 90 sec, output: 6 hourly value

- Parametrization of the soil submodel: Study: dependency of latent and sensible heat fluxes lhf and
 - shf from soil in a $\{X_2\} = \{crs_{min}, T_{end}\}$ parameter space

Model output variable description file:

coordinate	lat	values	35 (0.5) 67	# defines coord. latitude with 1/2° resolution
coordinate	lon	values	-25 (0.5) 40	# defines coord. longitude
coordinate	time	values	1 (1) 28	# defines coord. time (6 hourly time steps)
variable	lhf	coords	lat, lon, time	# defines lhs as lhf(lat,lon,time)
variable	shf	coords	lat, lon, time	# defines shf as shf(lat,lon,time)

Experiment	description	file for a	behavioural	analysis in X ₂ :	
					ł

factor	crsmin	sample	30. (5.) 120.	# specifies 19 sampled values for crsmin
factor	crsmin	default	60.	# default model value of crsmin
factor	crsmin	type	set	# do not modify sampled values by def. val
factor	Tend	sample	273.15 (5) 333.15	# specifies 13 sampled values for Tend
factor	Tend	default	313.15	
factor	Tend	type	set	
specific		comb	crsmin*Tend	# factorial screening: 1+19*13=248 runs

Post-processor operator chain:

Fig. 2: behav(' ', avg(shf)) - run('default', avg(shf)) # area- and temporal averaged shf anomaly Fig. 3: behav('sel_s(Tend=313.15)', avg_l('time', shf))# area-averaged shf anomaly for each time run('default', avg_l('time', shf)) # step, all crsmin, and the def. value of Tend

Experiment: Monte Carlo analysis in X₂ for model time steps 2 - 28 crs_{min}, T_{end} ~ N(def_value,20.), Latin hypercube sampling, 150 runs:

