

The Multi-Run
Simulation Environment

SimEnv

User Guide for Version 1.24 (31-May-2006)

by M. Flechsig, U. Böhm, T. Nocke & C. Rachimow

-ii- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Disclaimer of Warranty
The authors make no warranties, expressed or implied, that the programs and data contained in the software package and the formulas

given in this document are free of error, or are consistent with any particular standard of merchantability, or that they will meet the
requirements for any particular application. They should not be relied for solving a problem whose incorrect solution could result in injury

to a person or loss of property. Applying the programs or data or formulas in such a manner is on the user’s own risk. The authors
disclaim all liability for direct or consequential damages from the use of the programs and data.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -iii-

The Multi-Run
Simulation Environment

SimEnv

User Guide for Version 1.24 (31-May-2006)

by

Michael Flechsig Potsdam Institute for Climate Impact Research
 Department Data & Computation, flechsig@pik-potsdam.de

Uwe Böhm Potsdam Institute for Climate Impact Research
 Climate System Department, boehm@pik-potsdam.de

Thomas Nocke University of Rostock
 Institute of Computer Graphics, nocke@informatik.uni-rostock.de

Claus Rachimow Potsdam Institute for Climate Impact Research
 Department Data & Computation, rachimow@pik-potsdam.de

SimEnv on the Internet:
http://www.pik-potsdam.de/software/simenv/

Potsdam Institute for Climate Impact Research
Telegrafenberg
14473 Potsdam, Germany
Phone ++49 – 331 – 288 2604
Fax ++49 – 331 – 288 2600
WWW http://www.pik-potsdam.de

University of Rostock Institute of Computer Graphics
Albert-Einstein-Str. 21
18059 Rostock, Germany
Phone ++49 – 381 – 498 7481
Fax ++49 – 331 – 498 7482
WWW http://wwwicg.informatik.uni-rostock.de

-iv- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Contents

 EXECUTIVE SUMMARY .. 1

1 ABOUT THIS DOCUMENT.. 5
1.1 Document Conventions .. 5
1.2 Example Layout.. 6
2 GETTING STARTED ... 7
3 VERSION 1.24... 9
3.1 What is New? ... 9
3.2 Limitations / Problems and Their Workarounds.. 10
3.3 Known Bugs and Their Workarounds... 11
4 EXPERIMENT TYPES... 13
4.1 General Approach, Computational Costs ... 13
4.2 Global Sensitivity Analysis.. 15
4.3 Behavioural Analysis .. 17
4.4 Local Sensitivity Analysis ... 18
4.5 Monte Carlo Analysis ... 19
4.6 Optimization ... 22
5 MODEL INTERFACE... 25
5.1 General Approach .. 25
5.2 Coordinate and Grid Assignments to Variables.. 28
5.3 Model Output Description File <model>.mdf .. 28
5.4 Model Interface for Fortran and C/C++ Models .. 31
5.5 Model Interface for Python Models... 34
5.5.1 Standard Dot Scripts for Python Models... 35
5.6 Model Interface for Matlab and Mathematica Models... 35
5.7 Model Interface for GAMS Models ... 37
5.7.1 Standard Dot Scripts for GAMS Models ... 38
5.7.2 GAMS Description File <model>.gdf, <model>.edf, <model>.mdf.. 38
5.7.3 Files Created during GAMS Model Performance.. 41
5.8 Model Interface at Shell Script Level .. 42
5.9 Model Interface for ASCII Files... 44
5.10 Semi-Automated Model Interface ... 46
5.11 Supported Model Structures... 48
5.12 Using Interfaced Models Outside SimEnv .. 49
6 EXPERIMENT PREPARATION... 51
6.1 General Approach - Experiment Description File <model>.edf... 51
6.2 Global Sensitivity Analysis.. 53
6.2.1 Special Features in Global Sensitivity Analysis, Run Sequence... 53
6.2.2 Example.. 53
6.3 Behavioural Analysis .. 54
6.3.1 Formalisation of the Inspection Strategy, Run Sequence ... 55
6.3.2 Example.. 56
6.4 Local Sensitivity Analysis ... 57
6.4.1 Sensitivity Functions, Run Sequence ... 57
6.4.2 Example.. 58
6.5 Monte Carlo Analysis ... 58
6.5.1 Distribution Functions and their Parameters, Stopping Rule .. 60
6.5.2 Example.. 61
6.6 Optimization ... 62
6.6.1 Special Features in Optimization .. 62
6.6.2 Example.. 63
7 EXPERIMENT PERFORMANCE... 65
7.1 General Approach .. 65
7.2 Model Wrap Shell Script <model>.run, Experiment-Specific Preparation and Wrap-Up Shell Scripts........ 66
7.3 Experiment Parallelization.. 67
7.4 Experiment Restart... 68
7.5 Experiment Partial Performance... 70
7.6 Experiment Related User Shell Scripts and Files ... 71
7.7 Saving Experiments ... 73

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -v-

8 EXPERIMENT POST-PROCESSING.. 75
8.1 General Approach .. 75
8.1.1 Post-Processor Results .. 75
8.1.2 Operands.. 76
8.1.3 Model Output Variables .. 77
8.1.4 Operators.. 79
8.1.5 Operator Classification, Flexible Coordinate Checking... 80
8.2 Built-In Generic Standard Aggregation / Moment Operators .. 82
8.3 Built-In Elemental, Basic, and Advanced Operators... 82
8.3.1 Elemental Operators... 82
8.3.2 Basic and Trigonometric Operators .. 83
8.3.3 Standard Aggregation / Moment Operators .. 84
8.3.4 Advanced Operators... 87
8.3.5 Examples.. 93
8.4 Built-In Experiment Specific Operators... 95
8.4.1 Standard Aggregation / Moment Operators .. 95
8.4.2 Global Sensitivity Analysis.. 96
8.4.3 Behavioural Analysis .. 97
8.4.4 Local Sensitivity Analysis.. 100
8.4.5 Monte Carlo Analysis.. 102
8.4.6 Optimization.. 105
8.5 User-Defined and Composed Operators / Operator Interface .. 105
8.5.1 Declaration of User-Defined Operator Dynamics.. 105
8.5.2 Undefined Results in User-Defined Operators.. 110
8.5.3 Composed Operators ... 110
8.5.4 Operator Description File <model>.odf ... 111
8.6 Undefined Results .. 113
8.7 Macros and Macro Definition File <model>.mac .. 113
8.8 Wildcard Operands &v& and &f& ... 114
8.9 Saving Results ... 115
9 VISUAL EXPERIMENT EVALUATION .. 117
10 GENERAL CONTROL, SERVICES, USER FILES, AND SETTINGS .. 119
10.1 General Configuration File <model>.cfg... 119
10.2 Main and Auxiliary Services ... 121
10.3 Model Interface Scripts, Include Files, Link Scripts .. 123
10.4 User-Defined Files and Shell Scripts, Temporary Files .. 124
10.5 Built-In Names.. 128
10.6 Case Sensitivity.. 130
10.7 Nodata Representation .. 132
10.8 Operating System Environment Variables.. 132
11 STRUCTURE OF USER-DEFINED FILES, COORDINATE TRANSFORMATION FILES, VALUE LISTS 135
11.1 General Structure of User-Defined Files .. 135
11.2 Coordinate Transformation File .. 138
11.3 ASCII Data Files and Value Lists ... 140
12 MODEL AND EXPERIMENT POST-PROCESSOR OUTPUT DATA STRUCTURES 143
12.1 NetCDF Model and Experiment Post-Processor Output .. 143
12.1.1 Global Attributes ... 144
12.1.2 Variable Labelling and Variable Attributes .. 144
12.2 IEEE Compliant Binary Model Output .. 146
12.3 IEEE Compliant Binary and ASCII Experiment Post-Processor Output .. 147
13 SIMENV PROSPECTS .. 149
14 REFERENCES .. 151
15 APPENDICES.. 153
15.1 Version Implementation.. 155
15.1.1 System Requirements .. 155
15.1.2 Technical Limitations .. 156
15.1.3 Linking User Models and User-Defined Operators ... 157
15.1.4 Example Models and User Files ... 157
15.1.5 Example User-Defined Operators... 158
15.2 Examples for Model Interfaces... 159
15.2.1 Example Implementation of the Generic Model world... 159
15.2.2 Fortran Model ... 160

-vi- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.3 Fortran Model with Semi-Automated Model Interface... 161
15.2.4 C Model .. 162
15.2.5 C++ Model .. 164
15.2.6 Python Model.. 166
15.2.7 Matlab / Mathematica Model... 167
15.2.8 GAMS Model .. 168
15.2.9 Model Interface at Shell Script Level .. 170
15.2.10 Model Interface for ASCII Files... 171
15.2.11 Semi-Automated Model Interface at Shell Script Level... 172
15.3 Example Implementation for the Experiment Post-Processor User-Defined Operator matmul_[f | c]..... 173
15.3.1 Fortran Implementation... 173
15.3.2 C Implementation.. 176
15.4 Example for an Experiment Post-Processor Result Import Interface.. 179
15.5 List of Experiment Post-Processor Built-In Operators and Operator Arguments 180
15.5.1 Experiment Post-Processor Built-In Operators (in Thematic Order) ... 180
15.5.2 Experiment Post-Processor Built-In Operators (in Alphabetic Order) ... 183
15.5.3 Character Arguments of Experiment Post-Processor Built-In Operators .. 186
15.5.4 Constant Arguments of Experiment Post-Processor Built-In Operators.. 187
15.6 Additionally Used Symbols for the Model and Operator Interface .. 188
15.7 Glossary ... 189

Tables

Tab. 1.1 Document conventions ... 5
Tab. 1.2 Main placeholders in this document.. 5
Tab. 3.1 SimEnv changes in Version 1.24.. 9
Tab. 3.2 User actions to upgrade to Version 1.24... 9
Tab. 3.3 Limitations / problems and their workarounds .. 10
Tab. 3.4 Known bugs and their workarounds.. 11
Tab. 4.1 Experiment types and their computational costs .. 15
Tab. 4.2 Local sensitivity, linearity, and symmetry measures ... 19
Tab. 4.3 Statistical measures.. 21
Tab. 4.4 Probability density functions ... 21
Tab. 5.1 Generic SimEnv interface functions.. 25
Tab. 5.2 Language suffices for SimEnv interface functions .. 26
Tab. 5.3 Elements of a model output description file <model>.mdf .. 29
Tab. 5.4 SimEnv data types.. 30
Tab. 5.5 Model interface functions for Fortran and C/C++ models ... 33
Tab. 5.6 Model interface functions for Python models .. 34
Tab. 5.7 Elements of a GAMS description file <model>.gdf.. 39
Tab. 5.8 Model interface functions at shell script level.. 43
Tab. 5.9 Model interface functions at ASCII level ... 44
Tab. 6.1 Elements of an experiment description file <model>.edf .. 51
Tab. 6.2 Factor adjustment types in experiment preparation.. 52
Tab. 6.3 Experiment specific elements of an edf-file for a global sensitivity experiment..................................... 53
Tab. 6.4 Experiment specific elements of an edf-file for behavioural analysis .. 54
Tab. 6.5 Experiment specific elements of an edf-file for local sensitivity analysis... 57
Tab. 6.6 Experiment specific elements of an edf-file for Monte Carlo analysis ... 59
Tab. 6.7 Probability density functions and their parameters ... 60
Tab. 6.8 Experiment specific elements of an edf-file for an optimization experiment.. 62
Tab. 7.1 Experiment related user shell scripts and files.. 71
Tab. 8.1 Classified argument restriction(s) / result description ... 80
Tab. 8.2 Built-in generic standard aggregation / moment operators ... 82
Tab. 8.3 Built-in elemental operators .. 82
Tab. 8.4 Built-in basic and trigonometric operators... 83
Tab. 8.5 Built-in standard aggregation / moment operators without suffix .. 85
Tab. 8.6 Built-in standard aggregation / moment operators with suffix _n .. 85
Tab. 8.7 Built-in standard aggregation / moment operators with suffix _l ... 86
Tab. 8.8 Built-in advanced operators .. 89
Tab. 8.9 Multi-run standard aggregation / moment operators... 95
Tab. 8.10 Experiment specific operator for global sensitivity analysis .. 96
Tab. 8.11 Experiment specific operator for behavioural analysis.. 97
Tab. 8.12 Syntax of the filter argument 1 for operator behav.. 98

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -vii-

Tab. 8.13 Experiment specific operators for local sensitivity analysis... 100
Tab. 8.14 Syntax of the filter argument 1 for local sensitivity operators.. 101
Tab. 8.15 Experiment specific operators for Monte Carlo analysis ... 103
Tab. 8.16 Experiment specific operator for the optimization experiment type... 105
Tab. 8.17 Operator interface functions for the declarative and computational part... 106
Tab. 8.18 Operator interface functions to get and put structural information .. 108
Tab. 8.19 Operator interface functions to get / check / put arguments and results ... 109
Tab. 8.20 Elements of an operator description file <model>.odf... 112
Tab. 8.21 Elements of a macro description file <model>.mac .. 114
Tab. 10.1 Elements of a general configuration file <model>.cfg ... 120
Tab. 10.2 Default values for the general configuration file.. 121
Tab. 10.3 SimEnv services ... 122
Tab. 10.4 Shell scripts and dot scripts that can be used in <model>.[ini | run | end] .. 123
Tab. 10.5 SimEnv include files and link scripts ... 124
Tab. 10.6 User files and shell scripts to perform any SimEnv service .. 125
Tab. 10.7 Files generated during performance of SimEnv services.. 127
Tab. 10.8 Built-in model output variables.. 129
Tab. 10.9 Built-in shell script variables in <model>.run... 129
Tab. 10.10 Built-in variables by simenv_mod_[f | c].inc .. 129
Tab. 10.11 Built-in coordinates for experiment post-processing ... 130
Tab. 10.12 Case sensitivity of SimEnv entities ... 131
Tab. 10.13 Data type related nodata values ... 132
Tab. 10.14 Environment variables .. 133
Tab. 11.1 User-defined files with general structure... 135
Tab. 11.2 Constraints in user-defined files ... 136
Tab. 11.3 Reserved names and file names in user-defined files .. 136
Tab. 11.4 Line types in user-defined files ... 137
Tab. 11.5 Elements of a coordinate transformation file... 138
Tab. 11.6 Syntax rules for value lists .. 141
Tab. 12.1 NetCDF data types ... 143
Tab. 12.2 Additional global NetCDF attributes.. 144
Tab. 12.3 Variable NetCDF attributes... 144
Tab. 12.4 Variable NetCDF attributes for visualization ... 145
Tab. 15.1 SimEnv installation directory structure.. 155
Tab. 15.2 System requirements.. 156
Tab. 15.3 Current SimEnv technical limitations .. 156
Tab. 15.4 Implemented example models for the current version .. 157
Tab. 15.5 Implemented model and operator related user files for the current version .. 158
Tab. 15.6 Available user-defined operators .. 158
Tab. 15.7 Factors of the generic model world... 159
Tab. 15.8 Experiment post-processor built-in operators (in thematic order) ... 182
Tab. 15.9 Experiment post-processor built-in operators (in alphabetical order).. 185
Tab. 15.10 Character arguments of experiment post-processor built-in operators ... 186
Tab. 15.11 Constant arguments of experiment post-processor built-in operators... 187
Tab. 15.12 Additionally used symbols for the model interface.. 188
Tab. 15.13 Additionally used symbols for the operator interface .. 188

Figures

Fig. 0.1 SimEnv system design …………………………………………………………………………………………. 2
Fig. 4.1 Factor space... 14
Fig. 4.2 Sample for a global sensitivity analysis .. 16
Fig. 4.3 Sample for a behavioural analysis.. 17
Fig. 4.4 Behavioural analysis: Scanning multi-dimensional factor spaces... 18
Fig. 4.5 Sample for a local sensitivity analysis... 18
Fig. 4.6 Sample for a Monte Carlo analysis ... 20
Fig. 4.7 Part of a sample for an optimization experiment, generated during the experiment 23
Fig. 5.1 Conceptual scheme of the model interface for C/C++/Fortran/Python.. 27
Fig. 5.2 Grid types ... 28
Fig. 5.3 Model output variable definition: Grid assignment .. 31
Fig. 6.1 Monte Carlo analysis: Latin hypercube sampling ... 59
Fig. 7.1 Flowcharts for performing simenv.run and simenv.rst .. 72
Fig. 10.1 SimEnv user shell scripts and files ... 128

-viii- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Examples

Example 1.1 General example layout in the User Guide ... 6
Example 5.1 Model output description file <model>.mdf.. 31
Example 5.2 GAMS description file <model>.gdf... 40
Example 5.3 GAMS description file for coupled GAMS models... 40
Example 5.4 Model output description file for a GAMS model ... 41
Example 5.5 Addressing factor names and values for the model interface at shell script level 44
Example 5.6 ASCII file structure for the ASCII model interface ... 46
Example 5.7 Shell script <model>.run for a parallel model .. 49
Example 6.1 Experiment description file <model>.edf for an optimization experiment .. 54
Example 6.2 Experiment description file <model>.edf for behavioural analysis... 56
Example 6.3 Experiment description file <model>.edf for local sensitivity analysis ... 58
Example 6.4 Experiment description file <model>.edf for Monte Carlo analysis.. 61
Example 6.5 Experiment description file <model>.edf for an optimization experiment .. 63
Example 7.1 Shell script <model>.run to wrap the user model .. 67
Example 7.2 Shell script <model>.ini for user-model specific experiment preparation .. 67
Example 7.3 Shell script <model>.end for user-model specific experiment wrap-up ... 67
Example 7.4 Shell script <model>.rst to prepare model performance during experiment restart............................... 69
Example 8.1 Addressing results in experiment post-processing.. 76
Example 8.2 Addressing model output variables in experiment post-processing .. 78
Example 8.3 Checking rules for coordinates.. 81
Example 8.4 Experiment post-processing operator get_data and coordinate transformation file 90
Example 8.5 Experiment post-processing with advanced operators.. 94
Example 8.6 Experiment post-processing operators for local sensitivity analysis.. 96
Example 8.7 Experiment post-processing operator behav for behavioural analysis .. 100
Example 8.8 Experiment post-processing operators for local sensitivity analysis.. 102
Example 8.9 Experiment post-processing operators for Monte Carlo analysis .. 104
Example 8.10 Composed operators... 111
Example 8.11 Operator description file <model>.odf ... 113
Example 8.12 User-defined macro definition file <model>.mac ... 114
Example 8.13 Experiment post-processing with wildcard operands .. 115
Example 10.1 User-defined general configuration file <model>.cfg... 121
Example 11.1 Structure of a user-defined file .. 137
Example 11.2 Coordinate transformations by a transformation file.. 140
Example 11.3 Examples of value lists.. 141
Example 12.1 IEEE compliant model output data structure ... 146
Example 15.1 Model interface for Fortran models - model world_f.f .. 160
Example 15.2 Semi-automated model interface for Fortran models - model world_f_auto.f...................................... 161
Example 15.3 Model interface for C models – model world_c.c .. 163
Example 15.4 Model interface for C++ models – model world_cpp.cpp .. 165
Example 15.5 Model interface for Python models – model world_py.py.. 166
Example 15.8 Model interface for Matlab / Mathematica – model shell script <model>.run....................................... 167
Example 15.6 Model interface for GAMS models – model gams_model.gms ... 169
Example 15.7 Model interface at shell script level – model shell script world_sh.run .. 170
Example 15.8 Model interface for ASCII files – model shell script world_as.run.. 171
Example 15.9 Semi-automated model interface at shell script level – model shell script world_sh_auto.run 172
Example 15.10 Experiment post-processor user-defined operator module – operator matmul_f 175
Example 15.11 Experiment post-processor user-defined operator module – operator matmul_c................................ 178
Example 15.12 ASCII compliant experiment post-processor result import interface.. 179

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -ix-

That is what we meant by science. That both question and answer are tied up
with uncertainty, and that they are painful. But that there is no way around them.
And that you hide nothing; instead, everything is brougth out into the open.

Peter Høeg, Borderliners
McClelland-Bantam, Toronto, 1995, p. 19

-x- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -1-

Executive Summary

SimEnv is a multi-run simulation environment that focuses on evaluation and usage of models with
large and multi-dimensional output mainly for quality assurance matters and scenario analyses using sam-
pling techniques.
Interfacing models to the simulation environment is supported for a number of model programming lan-
guages by minimal source code modifications and in general at the shell script level. Pre-defined experiment
types are the backbone of SimEnv, applying standardised numerical sampling schemes for model parame-
ters, initial or boundary values, or driving forces spaces. The resulting multi-run experiment can be per-
formed sequentially or in parallel. Interactive experiment post-processing makes use of built-in operators,
optionally supplemented by user-defined and composed operators. Operator chains are applied on model
output and reference data to navigate and post-process in the combined sample and model output space.
Resulting post-processor output data can be evaluated within SimEnv by advanced visualization techniques.

Simulation is one of the cornerstones in scientific research. The aim of the SimEnv project is to develop a
toolbox oriented simulation environment that allows the modeller to handle model related quality assurance
matters (Saltelli et al., 2000 & 2004) and scenario analyses. Both research foci require complex simulation
experiments for model inspection, validation and control design without changing the model in general.

SimEnv (Flechsig et.al, 2005) aims at model evaluation by performing simulation runs with a model in a co-
ordinated manner and running the model several times. Co-ordination is achieved by pre-defined experiment
types representing multi-run simulations.
According to the strategy of a selected experiment type for a set of so-called factors x which represent pa-
rameters, initial or boundary values, or drivers of a model M a numerical sample is generated before simula-
tion. This sample corresponds to a multi-run experiment with the model. During the experiment for each sin-
gle simulation run the factors x are adjusted numerically according to the sample and the factors’ default
values. Each experiment results in a sequence of model outputs for selected state variables z of the model
M in the space of all addressed factors {X}. Model outputs can be processed and evaluated after simulation
generally on the state space and experiment-type specifically on the factor space.

The following experiment types form the base of the SimEnv multi-run facility:

• Global sensitivity analysis

Qualitative ranking of a large number of factors x with respect to their sensitivity on model output at ran-
dom trajectories in the factor space {X}.
For determination of the most important factors.

• Behavioural analysis
Inspection of the model’s behaviour in the factor space {X} by a discrete numerical sampling with a flexi-
ble inspection strategy for sub-spaces.
For model verification, numerical validation, deterministic error analysis, deterministic control design,
scenario analysis and spatial patch model applications.

• Local sensitivity analysis
Determination of model (state variable’s z) local sensitivity to factors x. Is performed by finite difference
derivative approximations from M.
For numerical validation purposes, model analysis, sub-model sensitivity.

• Monte Carlo analysis
Factor space {X} sampling by perturbations according to probability density functions. Determination of
moments, confidence intervals and heuristic probability density functions for state variables in the course
of experiment post-processing.
For error analysis, uncertainty analysis, verification and validation of deterministic models.

• Optimization
Determination of optimal factor values by a simulated annealing method for a cost function derived from
z.
For model validation (system - model comparison), control design, decision making.

-2- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

SimEnv makes use of modern IT concepts. Model preparation for interfacing them to SimEnv is based on
minimal source code manipulations by implementing interface functions into Fortran, C/C++, Python, Matlab,
Mathematica and GAMS model source code for the addressed factors and model output. Additionally, inter-
faces are available at shell script level and for supporting ASCII files.

In experiment preparation an experiment type is selected and equipped numerically by sampling the factor
space. Experiment performance supports local, remote, and parallel / distributed hardware architectures to
distribute work load of the single runs of the experiment.

Experiment specific model output post-processing enables navigation in the complex factor - model output
space and interactive filtering of model output and reference data by application of operator chains. SimEnv
supplies built-in operators and enables specification of user-defined and composed operators.

Result evaluation is dominated by application of pre-formed visualization modules.
SimEnv model output as well as experiment post-processing offer data interfaces for NetCDF, IEEE compli-
ant binary and ASCII format for a more detailed post-processing outside SimEnv.

Original
Model

Experiment
Post-

processing

Experiment
Performance

Experiment
Preparation

Experiment
Evaluation

Model
Update

Model
Interface

 Fig. 0.1 SimEnv system design

SimEnv key features:

• Available at Unix and Linux platforms
• Support of key working techniques in experimenting with models:

SimEnv enables model evaluation, uncertainty and scenario analyses in a structured, methodologically
sound and pre-formed manner applying sampling techniques.

• Run ensembles instead of single model runs:
Model evaluation by multi-run simulation experiments

• Availability of pre-defined multi-run simulation experiment types:
To perform an experiment only the factors (parameters, initial values, drivers, ...) to experiment with and
a strategy how to sample the factor space have to be specified.

• Simple model interface to the simulation environment:
Model interface functions allow mainly to adjust an experiment factor numerically and to output model
results for later experiment post-processing. Model interfacing and finally communication between the
model and SimEnv can be done at the model language level by incorporating interface function calls into

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -3-

model source code (C/C++, Fortran and Python: “include per experiment factor and per model output
variable one additional SimEnv function call into the source code”) or can be done at the shell script
level. Additionally, there are special interfaces for Matlab, Mathematica and GAMS models.

• Support of distributed models:
Independently on the kind distributed model components are interfaced to SimEnv and among each
other the total model can be run within SimEnv.

• Parallelization of the experiment:
This is a prerequisite for a lot of simulation tasks.

• Operator-based experiment post-processing:
Chains of built-in, user-defined and composed operators enable interactive experiment post-processing
based on experiment model output and reference data including general purpose and experiment spe-
cific operators. There is a simple interface to write user-defined and to derive composed operators.

• Graphical experiment evaluation:
For post-processed model output

• Support of standard data formats:
Output from the model as well from the post-processor can be stored in NetCDF or IEEE compliant bi-
nary format.

-4- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -5-

1 About this Document

In this chapter document conventions are explained. Within the whole document one generic refer-
ence example model is used to explain application of SimEnv. Examples are always located in grey boxes.

1.1 Document Conventions

Character /
string

Meaning

< ... > angle brackets enclose a placeholder for a string
{ ... } braces enclose an optional element
[... | ... | ...] square brackets enclose a list of choices, separated by a vertical bar
‘ ... ‘ single quotation marks enclose a keyword or sub-keyword from user-defined files
“ ... “ double quotation marks enclose the string-value of a sub-keyword from user-defined files
<nil> stands for the empty string (nothing)
monospace indicates SimEnv example code

Tab. 1.1 Document conventions

Tab. 1.2 summarizes the main placeholders used in this document.

Placeholder

Description

<directory> path to a file directory
<factor_adj_val> resulting adjusted value of a factor by <factor_smp_val> and <factor_def_val>
<factor_def_val> default value of a factor as defined in <model>.edf
<factor_name> name of a factor to experiment with as defined in <model>.edf
<factor_smp_val> default value of a factor as defined in <model>.edf
<file_name> name of a ASCII data file
<int_val> integer value (e.g., -1234)
<model> model name to start a SimEnv service with
<real_val> real (float) value in integer (e.g., -1234), fixed point (e.g., -1234.) or floating

point (scientific) (e.g., -0.1234e+4) notation
<simenv_res_char> 2-character experiment post-processor output file number 01, 02, ..., 99
<simenv_res_int> integer post-processor output file number 1, 2, ..., 99
<simenv_run_char> 6-character single run number 000000, 000001, ... within an experiment
<simenv_run_int> integer single run number 0, 1, ... within an experiment
<sep> sequence of white spaces as item separators in user-defined and related files
<string> any string
<val_list> list of values in explicit or implicit notation according to Tab. 11.6

For post-processor operator descriptions only

arg general numerical argument (operand)
char_arg character argument (operand), enclosed in single quotation marks
int_arg integer constant argument (operand) 0
real_arg real (float) constant argument (operand)

Tab. 1.2 Main placeholders in this document

-6- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

1.2 Example Layout

All examples in this document but that refer to a hypothetical global simulation model world.
It is to describe dynamics of atmosphere and biosphere at the global scale over 200 years.
Lateral (latitudinal and longitudinal) model resolution differs for different model implementa-
tions (see below), temporal resolution is at decadal time steps. Additionally, atmosphere is
structured vertically into levels. For more information on this model check Section 15.2.1.

The model world is assumed to map lateral and vertical (level) fluxes and demands that’s
why for computing state variables for the whole globe.

The model world is a generic model. Model implementation in several programming lan-
guages results in models world_<lng> where <lng> is an identifier for the programming lan-
guage (and the lateral model resolution).
In the model gridcell_f state variables are calculated for one grid cell (one single latitude -
longitude constellation) without consideration of lateral fluxes.

Model
state variable Description Defined on

Data
type

 atmo aggregated atmospheric state lat x lon x level x time float
 bios aggregated biospheric state at

land masses (defined between
84°N and 60°S latitude at land
masses, i. e., without Antarctic)

lat x lon x time float

 atmo_g
(not for model gridcell_f)

aggregated global state
derived from atmo for level 1

time int

 bios_g
(not for model gridcell_f)

aggregated global state
derived from bios

- int

Dynamics of all model variables depend on model parameters p1, p2, p3 and p4.

With this SimEnv release the following model implementations are distributed:

Resolution

Model

“auto” in name
=

semi-automated
model interface

Model
interface

example for
language <lng>

lateral:
lat x lon

[deg x deg]

vertical:
number of

levels

temporal:
number of
time steps

 world_f Fortran 4 x 4 4: 1, 7, 11, 16 20
 world_c C 4 x 4 4: 1, 7, 11, 16 20
 world_cpp C++ 4 x 4 4: 1, 7, 11, 16 20
 world_py Python 4 x 4 4: 1, 7, 11, 16 20
 world_sh Shell script level 4 x 4 4: 1, 7, 11, 16 20
 world_as ASCII 4 x 4 4: 1, 7, 11, 16 20
 world_f_auto Fortran 4 x 4 4: 1, 7, 11, 16 20
 world_sh_auto Shell script level 4 x 4 4: 1, 7, 11, 16 20
 world_f_1x1 Fortran 1 x 1 16: 1 - 16 20
 world_f_05x05 Fortran 0.5 x 0.5 16: 1 - 16 20
 gridcell_f Fortran without, implicitly by

experiment as 4 x 4
4: 1, 7, 11, 16 20

Examples are generally placed in grey-shaded boxes. Examples that are available from the
example directory $SE_HOME/../examples of SimEnv are marked as such in the lower right
corner of an example box. To copy files from this directory use the SimEnv service
simenv.cpy (see Tab. 10.3).

Example 1.1 General example layout in the User Guide
 For Matlab, Mathematica and GAMS models see Sections 5.6 and 5.7.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -7-

2 Getting Started

In this chapter a quick start tour is described. Without going into details the user can get an impres-
sion how to apply SimEnv and which files are essential to use the simulation environment.

• SimEnv is implemented under AIX-Unix at IBM’s RS6000 and compatibles and SUSE-Linux at Intel-

based platforms and compatibles. For detailed system requirements check Tab. 15.2 on page 156.
• Include into the file $HOME/.profile

 export SE_HOME=<path>
 export PATH=$SE_HOME:$PATH

to set the SimEnv home directory and execute at the operating system prompt. <path> is the directory
SimEnv is available from. For Unix <path> is /usr/local/simenv/bin

 . $HOME/.profile

• Change to a directory with full access permissions. This is the SimEnv current workspace.

• Start
 simenv.hlp

to acquire basic information on how to use SimEnv.

• Select a model implementation language <lng> to check SimEnv with the model world_<lng> from
Example 1.1 on page 6:
 <lng> = f for Fortran
 c for C
 cpp for C++
 py for Python
 sh for shell script level
 as for ASCII file
For Matlab and Mathematica models check Section 5.6 on page 35, for a GAMS model example check
Section � on page 35.

• Start
 simenv.cpy world_<lng>

to copy the model world_<lng> model and experiment related files to the current workspace.

• Copy the file world.edf_3c to world_<lng>.edf

• Check for
• The SimEnv configuration file world_<lng>.cfg general SimEnv configurations
• The model output description file world_<lng>.mdf available model output variables
• The model world_<lng>.<lng> implementation of the model
• The model wrap shell script world_<lng>.run wrapping the model executable
• The experiment description file world_<lng>.edf experiment definition
• The post-processing input file world.post_c post-processor result sequence

Either
• Start

 simenv.cpl world_<lng> -1 world.post_c

to run a complete SimEnv session:
• Model and experiment related files will be checked
• The experiment will be prepared
• The experiment will be performed (select the login machine on request)
• Model output post-processing will be started for this experiment

• With the post-processing input file world_post_3c and following

-8- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

• Interactively: Enter any result and finish post-processing by entering a single <return>
• Visualization of post-processed results will be started (*)
• Model or result output files will be dumped

or
• Start

 simenv.chk world_<lng>

to check model and experiment relate files.

• Start

 simenv.run world_<lng>

to prepare and perform a simulation experiment (select the login machine on request).

• Start

 simenv.res world_<lng> { new { <simenv_run_int> } }

to post-process the last simulation experiment for the whole run ensemble or for run number
<simenv_run_int> and to create a new result file world_<lng>.res<simenv_res_char>.[nc | ieee | as-
cii] with the highest two-digit number <simenv_res_char>. <simenv_res_char> can range from 01 to
99.

• Start (*)

 simenv.vis world_<lng> { [latest | <simenv_res_char>] }

to visualize output from the latest post-processing session world_<lng>.res<simenv_res_char>.nc or
that with number <simenv_res_char> with the highest two-digit number <simenv_res_char>.

• Start

 simenv.dmp world_<lng> mod | more
 simenv.dmp world_<lng> res | more

to dump a SimEnv model or post-processor output file.

• Check in the current workspace the
 model interface log-file world_<lng>.mlog
 native model terminal output log-file world_<lng>.nlog
 experiment performance log-file world_<lng>.elog.

• Start

 simenv.cln world_<lng>

to wrap up a simulation experiment.

• Get the usage of any SimEnv service by entering the service command without arguments.

• To run other simulation experiments and/or output in other data formats modify
• world_<lng>.cfg
• world_<lng>.edf
• world_<lng>.mdf
• world_<lng>.run and/or
• world_<lng>.<lng>

• To experiment with other models replace world_<lng> by <model> as a placeholder for the name of any
other model.

__
(*): To get access permission for the visualization server under Unix check in Section 10.2 on page 121 the

SimEnv service

 simenv.key <user_name>

and set the DISPLAY environment variable accordingly.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -9-

3 Version 1.24

This chapter summarizes differences between the current and the previous SimEnv release, limita-
tions and bugs and their workarounds.

3.1 What is New?

Type Check / see

On
page

Description

new Section 5.6 35 Interface for Matlab and Mathematica models
new Section 5.9

Section 15.2.10
44
171

Interface for ASCII files

update dot script
- py_model_ini renamed to simenv_ini_py
- gams_model_ini renamed to simenv_ini_gams
- gams_model_run renamed to simenv_run_gams
- gams_model_end renamed to simenv_end_gams

update The following scripts are now dot scripts:
- simenv_ini_py
- simenv_ini_gams
- simenv_end_gams

 Bug fixes

Tab. 3.1 SimEnv changes in Version 1.24

Upgrade type

Upgrade action

mandatory Update <model>.ini for Python and GAMS models
mandatory Update <model>.end for GAMS models
mandatory Re-link models interfaced to SimEnv and user-defined operators

Tab. 3.2 User actions to upgrade to Version 1.24

-10- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

3.2 Limitations / Problems and Their Workarounds

Where
Limitation /

Problem
Workaround

Description

Where

Limitation

Workaround

Overall

Current SimEnv technical limitations as specified in Tab. 15.3 on page 156

None

Where

Limitation

Workaround

Overall but visual result evaluation

Without graphical user interface

None

Where

Limitation

Workaround

Experiment performance: Experiment type optimization

Can not be performed in parallel mode

Perform optimization experiment in sequential mode

Where

Limitation

Workaround

Experiment performance: under LoadL control for dis:

Built-in model output variable sim_time (see Tab. 10.8) is undefined (nodata)

Use LoadL control with par or seq or run the experiment on the login machine

Where

Limitation

Workaround

Experiment performance: Experiment type optimization

The initial seed for the optimization technique is fixed. That’s why the algorithm results for
the same optimization problem always in the same sampled sequence in the factor space

None

Where

Problem

Workaround

Experiment performance: Model output to NetCDF

Check on undefined model output results in noticably additional CPU-time consumption.
Example: to check 8 Mill of real*8 values takes per single run additionally 80 sec for single
nc-file model output and 200 sec for common nc-file output.

Specify in <model>.cfg for the sub-keyword ‘message_level’ the value = “error”

Tab. 3.3 Limitations / problems and their workarounds

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -11-

3.3 Known Bugs and Their Workarounds

Where
Bug

Workaround

Description

Where

Bug

Workaround

Experiment performance:
Model output to NetCDF of distributed models (structure = ‘distributed’ in <model>.cfg)

May not store all model output

Specify IEEE model output in <model>.cfg

Where

Bug

Workaround

Experiment post-processing:
Behavioural analysis / result output to NetCDF / operator behav

When applying the operator behav to non-monotonic and monotonously decreasing factor
adjustments <factor_adj_val> are transferred to the NetCDF output file in a wrong manner.

Specify only monotonously increasing factor adjustments in <model>.edf or
specify IEEE and/or ASCII post-processor output in <model>.cfg

Tab. 3.4 Known bugs and their workarounds

-12- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -13-

4 Experiment Types

SimEnv supplies a set of pre-defined multi-run experiment types. Each experiment type addresses a
special experiment class for performing a simulation model several times in a co-ordinated manner. In this
chapter an overview on the available experiment types is given from the viewpoint of system’s theory.

4.1 General Approach, Computational Costs

SimEnv supplies a set of pre-defined multi-run experiment types, where each type addresses a special multi-
run experiment class for performing a simulation model or any algorithm with an input - output transition be-
haviour.
In the following, the general SimEnv approach will be described for time dynamic simulation models, be-
cause this class forms the majority of SimEnv applications. All information can be transformed easily to any
other algorithm.

Based on systems’ theory, each time dynamic model M can be formulated - without limitation of generality -
for the time dependent, time discrete, and state deterministic case as

 M: Z(t) = ST (Z(t-∆t) ,..., Z(t-k*∆t) , P , IX(t) , Z0 , B)

with ST state transition description
 Z state variables’ vector
 P parameter vector
 IX input (driving forces) vector
 Z0 initial value vector
 B boundary value vector
 t time
 ∆t time increment
 k time delay

The output vector Y is a function of the state vector Z, parameters P, drivers IX, and initial values Z0:

 Y(t) = OU (Z(t) , P , IX(t) , Z0).

Model behaviour Z is determined for fixed k and ∆t by state transition description ST, parameters P, driving
forces IX, initial values Z0, and boundary values B. Manipulating and exploring model behaviour in any sense
means changing these four model components. While state transition description ST reflects mainly model
structure and is quite complex to change, each component of the driving forces vector IX normally is a time-
dependent vector.

Introduction of additional technical parameters / triggers Ptech can reduce the complexity of handling a model
with respect to the five model components, described above: Changes in state transition description ST can
be pre-determined in the model by assigning values of a technical / trigger parameter ptech to apply for ex-
ample alternative model structures, sub-structures, processes formulations, resolutions, which are triggered
by these values.
Additionally, each component of the driving forces vector IX can be combined with technical parameters in
different ways:
• By selecting special driving forces dependent on the technical value
• By manipulating the driving forces with the parameter value

(e.g., as an additive or multiplicative increment)
• By parametrizing the shape of a driving force

When this has been done, the model behaviour finally depends only on the parameters P, the initial values
Z0, and the boundary values B. From the methodical point of view there is no difference between parame-

-14- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

ters, initial values and boundary values, because all are considered as constant during one model run. That
is why in SimEnv all the four model components parameters, drivers, initial values and boundary values are
lumped together and the term factor1 stands as a placeholder for them. All factors form the factor space X:

 X = { P, IX , Z0 , B }
and
 Z = ST(X).

In the following,
 Xk = (x1 ,..., xk) k > 0

stands for a subset of the factor space X that spans up an k-dimensional sub-space of X by selected model
factors (x1 ,..., xk) from X and

 Xk,n =

knk

n

xx

xx

...

......

...

1

111

 = (^X1 ,..., ^Xn) k > 0, n > 0

stands for a numerical sample for Xk of size n and finally for k*n values representing in any sense the sample
space Xk.
In the set of all samples Xk,1 Xk,1 is the default (nominal) numerical factor constellation for the model M as
normally defined in the model source code.
If { } n denotes the dynamics of the model M over a sample of size n then it holds:

 { Z } n = { ST(^X1) ,..., ST(^Xn) }.

Factor space
X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.1 Factor space

SimEnv supports different sampling strategies and the performance of multi-run experiments where k factors
are adjusted numerically for each of n single simulation runs according the generated sample and the default
(nominal) values of the factors. Central goal is to study the dependency of the model dynamics in the factor
space. For simulation purposes in SimEnv experimentation with the model M over Xk,n is based on the as-
sumption that dynamics of M for each representative from the sample is independent from all other repre-
sentatives, which is fulfilled in general. This results in the possibility to form a run ensemble for performing
the model M with n single model runs from the sample Xk,n.

SimEnv experiment types differ in the way the sample space Xk is sampled to get Xk,n. There are determinis-
tic and non-deterministic sampling strategies that offer a broad range of techniques for
• Experimentation with models

1 An often used synonym for “factor” is “input”.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -15-

• Post-processing model output results
• Interpreting results with respect to uncertainty and sensitivity matters of models.

The experiment types are described in detail in the following sections. They are ordered in a preferred se-
quence which should be used for a best results in assessing any model. Tab. 4.1 provides an overview on
the experiment types together with their computational costs. The computational cost of an resulting experi-
ment from an experiment type is the number of single model runs to perform.

Experiment
Type

Description

Compu-
tational
Costs

(k factors)

global
sensitivity
analysis

Qualitative ranking of a large number of factors with respect to their sensitivity
on model output at random trajectories in the factor space.

For determination of the most important factors.

(5 … 10) *
(k+1)+1

behavioural
analysis

Inspection of the model’s behaviour in the factor space by a discrete numeri-
cal sampling with a flexible inspection strategy for sub-spaces.

For model verification, numerical validation, deterministic error analysis, de-
terministic control design, scenario analysis and spatial patch model applica-
tions.

experi-
ment
depend-
ent

local
sensitivity
analysis

Determination of model (state variable’s) local sensitivity to factors. Is per-
formed by finite difference derivative approximations from the model.

For numerical validation purposes, model analysis, sub-model sensitivity.

2*k+1

Monte
Carlo
analysis

Factor space sampling by perturbations according to probability density func-
tions. Determination of moments, confidence intervals and heuristic probability
density functions for state variables in the course of experiment post-
processing.

For error analysis, uncertainty analysis, verification and validation of determi-
nistic models.

N+1

optimization Determination of optimal factor values by a simulated annealing method for a
cost function derived from state variables.

For model validation (system - model comparison), control design, decision
making.

unpre-
dictable

Tab. 4.1 Experiment types and their computational costs
N denotes the number of Monte Carlo runs

4.2 Global Sensitivity Analysis

The guiding philosophy of a global sensitivity analysis is to determine these factors that influence a model
state z the most and to distinguish them from these factors that are negligible. Contrary to a local sensitivity
analysis, during a global sensitivity analysis the entire space where the factors may vary is considered.
The global sensitivity analysis in SimEnv applies the method of Morris (1991) in its modification by Cam-
polongo et al. (2005). Its main approach is to derive qualitative global sensitivity measures for all factors by
computing a statistics on a series of local sensitivity measures, the so-called elementary effects. The result
of this analysis is a ranking of the factors in order of importance with respect to the model state z.

The Morris method is as follows (see also Fig. 4.2):
• Start for each factor with the determination of the so-called sensitivity range where the factor may vary.

All k factors span up with their sensitivity ranges a k-dimensional cube.
• Sub-divide this cube into a regular k-dimensional p-level grid by determining within the sensitivity range

of each factor p-2 equidistant grid points. Together with the bounds from the sensitivity range this results
in p equidistant points for each factor.

-16- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

• Select at the p-level grid randomly a starting grid point x = (x1 ,…, xk) and at the grid randomly a next-
neighbour grid point (x1 ,…, xi-1 , xi+ i , xi+1 ,…, xk) that differs from the starting grid point in exactly one
factor xi (i=1 ,…, k).

• Compute from these two grid point the elementary effect for the model state variable z
di(x,z) = z(x1 ,…, xi-1 , xi+ i , xi+1 ,…, xk) - z(x1 ,…, xk)

• Proceed by randomly selecting a new next-neighbour grid point to the old next-neighbour grid point for
another elementary effect dj(x,z) (i j) until k+1 points (including the starting point) are sampled. Such a
series of k+1 point is called a trajectory. For one trajectory k elementary effects di(x,z) (i=1 ,…, k) can be
determined by two consecutive points.

• Determine randomly r trajectories in this way finally resulting in r elementary effects di(x,z) for each i in 1
,…, k.

• Consider distributions

Fi
abs = { |di(x,z)| } and compute mean µi

abs = Σ|di(x,z)| / r for i=1 ,…, k

Fi = { di(x,z) } and compute variance σi = Σ (di(x,z) – Σdi(x,z) / r)2 / (r - 1) for i=1 ,…, k
• Consider in the (µabs , σ) plane the points (µi

abs , σi), (i=1 ,…, k)
a high value of µi

abs with respect to the other µj
abs

 indicates an important overall influence of the factor xi on the model state z
a high value of σi with respect to the other σj
 indicates that the factor xi is involved in interactions with other factors or
 indicates that the effect of xi on the model state z is non-linear
(Saltelli et al., 2004)

As a rule of thumb, normally p ranges between 4 and 6 and r around 10.

{x} = X2,12

 sample of size 12
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)
 representing
 4 trajectories and using
 a 5-level grid

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.2 Sample for a global sensitivity analysis
The arrows indicate the sequence how sampling points were generated for each trajec-
tory.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -17-

4.3 Behavioural Analysis

Behavioural analysis uses a deterministic strategy to sample Xk. It is the inspection of the model in the factor
space Xk where inspection points are set in a regular and well structured manner.

Behavioural analysis can be interpreted and used in different ways:
• For scenario analysis:

to show how model behaviour changes with changes of factor values
• For numerical validation purposes:

to determine factor values in such a way that the output vector matches with measurement results of the
real system

• For deterministic error analysis:
to analyse how the model error is dependent on factor errors

• For a simulation-based control design:
to determine factor values in such a way that a goal function becomes an extreme

{x} = X2,12

 sample of size 12
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.3 Sample for a behavioural analysis

SimEnv behavioural analysis sampling strategy is a generalization of the one-dimensional case for X1, where
the model behaviour is scanned in dependence on deterministic sample of one factor x1. The general case
for Xk demands a strategy for scanning m-dimensional spaces in a flexible manner. Based on the predeces-
sors of SimEnv (Wenzel et al., 1990, Wenzel et al., 1995, Flechsig, 1998) subspaces of the m-dimensional
factor space can be scanned on the subspace diagonal (parallel in a one-dimensional hyperspace) or com-
pletely for all dimensions (combinatorially on a grid) and both techniques can be combined. Besides this
regular scanning method an irregular technique is possible.

The resulting number of single simulation runs for the experiment depends on the number of factor samples
per dimension of the scanned factor space and from the selected scanning method. An experiment is de-
scribed by the names of the involved factors, their numerical sampling values and their combination (scan-
ning method). Experiment post-processing can resolve the scanning method again and output results as
projections on multi-dimensional factor subspaces.

Fig. 4.4 describes the regular scanning technique by an example. In the left scheme (a) the two-dimensional
factor space X2 = (p1 , p2) is scanned combinatorially, resulting in 4*4 = 16 model runs, while the middle
scheme (b) represents a parallel scanning of these two factors at the diagonal by 1+1+1+1 = 4 model runs.
The scheme (c) at the right side shows a complex scanning strategy of the 3-dimensional factor space X3 =
(p1 , p2 , p3) with (1+1+1+1)*3 = 12 model runs. Each filled cross x in Fig. 4.4 represents a sample point in
the factor space and finally a single model run of the experiment.

-18- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

 (a) (b) (c)

Fig. 4.4 Behavioural analysis: Scanning multi-dimensional factor spaces

4.4 Local Sensitivity Analysis

Local sensitivity analysis uses a deterministic sampling stategy in ε-neighbourhoods of the numerical default
constellation Xk,1 of the model M. For each value xi from the default (nominal) factor constallation Xk,1 and
each εj from the ε-neighbourhoods (ε1 ,…, εm) two members (x1 ,..., xi-1 , xi±εj , xi+1 ,..., xk) of the resulting
sample are generated. The sample size n is given by 2*m*k. Running the model for this sampling set serves
to determine sensitivity functions.

In classical systems’ theory, model sensitivity of a model state variable z with respect to a factor x is the
partial derivative of z after x δz/δx. In the numerical simulation of complex systems a finite sensitivity function
is preferred, because it can be obtained without model enlargements or re-formulations. It is a linear ap-
proximations of the classical model sensitivity measure (Wierzbicki, 1984). Contrary to a global sensitivity
analysis a local one covers the model’s sensitivity around the default (nominal) factor constellation.

Local sensitivity measures as well as measures which reflect model output linearity and/or symmetry nearby
Xk,1 can be used for localizing modification-relevant model parts as well as control-sensitive factors in control
problems. On the other hand, identification of robust parts of a model or even complete robust models
makes it possible to run a model under internal or external disturbances. Sensitivity analysis in SimEnv ex-
periment post-processing is based on finite sensitivity, linearity, and symmetry measures, which are defined
as in Tab. 4.2.

{x} = X2,12

 sample of size 12
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.5 Sample for a local sensitivity analysis

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -19-

 Definition

Local
measure

Absolute measure Relative measure

sensitivity
measure sens_abs(z,±ε) =

ε
ε
±

± z(t) -) z(t
 sens_rel(z,±ε) = sens_abs(z,±ε)

)t(z
t

linearity
measure lin_abs(z,ε) =

ε
εε z(t))-)-(z(tz(t)) -) (z(t ++

 lin_rel(z,ε) = lin_abs(z,ε)
)t(z

t

symmetry
measure

sym_abs(z,ε) =
ε

εε)-z(t -)z(t +
 sym_rel(z,ε) = sym_abs(z,ε)

)t(z
t

Tab. 4.2 Local sensitivity, linearity, and symmetry measures
 for a state variable z, a selected factor x from Xk,1 and a selected value ε from (ε1 ,…, εm)

Accordingly, local measures of the model with respect to a factor are always expressed as a measure of a
model’s state variable z, usually at a selected time step within a surrounding neighborhood ε of a factor
value t. That is why the conclusions drawn from a local sensitivity analysis are only valid locally at Xk,1 with
respect to the whole factor space Xk. Additionally, local measures only describe the influence of one factor xi
from the whole vector Xk on the model’s dynamics.

As stated above, the sensitivity measures reflect the classical sensitivity functions in a neighborhood of Xk,1.
The larger the absolute value of the measure the higher is the influence of an incremental change of the
factor x on the model output z. The linearity measures map the linear behaviour of z nearby Xk,1. If the linear
measure is zero z shows a linear behaviour with respect to x. The symmetry measures measures map the
symmetric behaviour of the z nearby Xk,1. If the symmetry measure is zero z shows a symmetric behaviour
with respect to x. The larger the absolute values of the latter two measures the higher is the nonlinear / non-
symmetric behaviour of z with respect to x.

The absolute measures are best suited to compare the influence of different factors {x} on the same state
variable z while due to their normalization factor the relative measures enable comparison of the influence of
one factor x on different state variables {z}.

From the local measures of table Tab. 4.2 additional measures can be derived on demand, e.g.,
abs(sym_abs(z, ε)).

A local sensitivity experiment is described by the names of the factors x to be involved and the increments ε.
The number of runs for the experiment results from the number of factors and increments: two runs per fac-
tor for each increment plus one run with the default values of the factors. Local sensitivity functions are cal-
culated during experiment post-processing.

4.5 Monte Carlo Analysis

Monte Carlo analysis uses a non-deterministic strategy to sample Xk,n. A Monte Carlo experiment in SimEnv
is a perturbation analysis with pre-single run factor perturbations.

Theoretically, with a Monte Carlo analysis moments of a state variable z can be computed as

 M(m){z} = ∫...∫ z(Xk)
m * pdf(Xk) dXk

 Xk

with z(Xk) state variable z as a function of Xk
 pdf(Xk) probability density function of Xk

 M(m){z} m-th moment of the state variable z with respect to the
 probability density function pdf

-20- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

By interpreting the probability density function pdf(Xk) as the error distribution in the factor space Xk it is pos-
sible to study error propagation in the model. On the other hand Monte Carlo analysis can be interpreted as
a stochastic error analysis, if there are measurements of the real system for z.

For a numerical experiment in SimEnv it is assumed that the probability density function pdf(Xk) can be de-
composed into independent probability density functions pdfi for all factors xi of Xk:

 k

 pdf(Xk) = Π pdfi(xi)
 i=1

and the k-dimensional integral is approximated by a sequence of n single simulation runs of the model where
the numerical factor values xij of ti (1 i k, 1 j n) are sampled according to the probability density func-
tion pdfi.
On the basis of these assumptions, the statistical measures in Tab. 4.3 can be computed during perform-
ance of an experiment post-processing session from a Monte Carlo analysis with n simulation runs resulting
in n realizations z1 ,..., zn of the model’s state variables z, z1 and z2:

{x} = X2,12

 sample of size 12
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.6 Sample for a Monte Carlo analysis

Statistical measure

Definition (*)

minimum min(z) = min (zi)

maximum max(z) = max (zi)

sum sum(z) = Σ zi

arithmetic mean avg(z) = Σ zi / n

variance var(z) = Σ (zi – avg(z)) 2 / (n - 1)

skewness skw(z) = Σ (zi – avg(z)) 3 / (n * var(z) 3/2)

kurtosis krt(z) = Σ (zi – avg(z)) 4 / (n * var(z) 2) - 3

range rng(z) = max(z) – min(z)

geometric mean avgg(z) = (Π zi)1/n

harmonic mean agvh(z) = n / Σ(1 / zi)

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -21-

Statistical measure

Definition (*)

weighted mean avgw(z) = Σ zi * wi / Σ wi w : weight

correlation
cor(z1,z2) = Σ (z1i – avg(z1)) * (z2i – avg(z2)) /

 √ Σ (z1i – avg(z1))2 * Σ (z2i – avg(z2))2

covariance cov(z1,z2) = Σ (z1i – avg(z1)) * (z2i – avg(z2)) / (n – 1)

linear regression coefficient
to forecast z2 from z1

reg(z1,z2) = (Σ (z1i – avg(z1)) * (z2i – avg(z2))) /

 (Σ (z1i – avg(z1))2)
It is: z2 = reg(z1,z2) * z1 + avg(z2) – reg(z1,z2) * avg(z1) + error

median
med(z) = middle value from increasingly ordered { zi } (n = odd)
 mean of the two middle values from { zi } (n = even)

quantile
qnt(p)(z) = that value from increasingly ordered { zi }
 which corresponds to a cumulative frequency of n*p/100
 qnt(50)(z) = med(z)

confidence interval
boundaries

cnf(α)(z) = avg(z) ± tα,n-1
 √ var(z) / n

 α : probability of error
 tα,n : significance boundaries of Student distribution

heuristic probability density
function

hgr(class)(z) = number of zi with classmin ≤ zi < classmax

 classmin, classmax : boundaries of equidistant classes

Tab. 4.3 Statistical measures
 n n

 (*): indices for sums Σ, products Π and extremes run from 1 to n: Σ , Π , min , max
 i=1 i=1 i=1,...,n i=1,...,n

Tab. 4.4 summarizes these probability density functions (Bohr, 1998) that are pre-defined in SimEnv for fac-
tors to be perturbed. Additionally, SimEnv offers to import random number samples in the course of experi-
ment preparation.

Distribution

Short-
cut

Probability density function pdf

Distribution parameters

uniform

U(a,b)
pdf(x) =

ab
1
−

 if x ∈ [a,b]

pdf(x) = 0 otherwise

a lower boundary
b upper boundary > a

it is: mean = (a+b) / 2
 standard deviation =
 __

 √ (b-a)2 / 12
normal N(µ,σ2)

pdf(x) =
()

σ

µ−−
πσ 2

2

2

x
exp

2

1

µ mean
σ standard deviation > 0

lognormal

L(µ,σ2)
pdf(x) =

()

σ

µ−−
πσ 2

2

2

lnx
exp

2x

1
 if x > 0

pdf(x) = 0 otherwise

µ
σ > 0

it is: ln(x) ~ N(µ,σ2)

exponential E(µ)
pdf(x) =

µ

−
µ

x
exp

1
 if x > 0

pdf(x) = 0 otherwise

µ mean > 0

it is: standard deviation = µ

Tab. 4.4 Probability density functions

-22- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

The number of runs to be performed during a Monte Carlo analysis has to be specified. An experiment is
described by the factors involved in the analysis, their distribution and the appropriate distribution parame-
ters.
Optionally, a stopping rule is helpful to limit the number of simulation runs in an experiment. In a stopping
rule statistical measures from model output z of all performed single runs are calculated during the experi-
ment after each single model run to decide whether to stop the whole experiment. SimEnv supplies a simple
rule-of-thumb stopping rule from Schuyler (1997), using the standard error of mean statistic

 √ var(z) / n with n = number of already performed single runs

and checks it against the mean avg(z).

4.6 Optimization

The optimization experiment in SimEnv uses a stochastic strategy to sample Xk. It is the only experiment
type where the sample is generated during experiment performance and not at experiment preparation. The
general approach of optimization is to find the global minimum of a cost function (synonym: objective func-
tion)

 F(Z) = F(ST(Xk))

that depends on model’s state variables Z and consequently on the experiment factors Xk = (x1 ,..., xk):

 minimize F(Z(x1 ,..., xk))
 subject to xi min xi xi max for i = 1 ,..., k

Often, F represents a distance measure in a specific metric between selected model state variables and
reference data (measurement values of the real system or simulation results from an other model). Conse-
quently, optimization can be used for model validation and control design to find optimal values of model
factors in such a way that model state variables are close to reference data. In SimEnv the cost function is
specified in experiment preparation as a single run result formed from model output (and reference data)
where an operator chain is applied on (check Section 6.6 and Chapter 8). The value of the cost function is
calculated directly after the current single run has been performed.

SimEnv uses a gradient free optimization approach that is called “Simulated Annealing” and is a generali-
zation of a Monte Carlo method for examining the state equations of n-body systems. The concept is based
on the manner in which metals recrystalize in the process of annealing. In an annealing process a melt, ini-
tially at high temperature Temp and disordered, is slowly cooled so that the system at any time is approxi-
mately in thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered and ap-
proaches a "frozen" ground state at Temp = 0. Hence the process can be thought of as an adiabatic ap-
proach to the lowest energy state E. If the initial temperature of the system is too low or cooling is done in-
sufficiently slowly the system may become quenched forming defects or freezing out in metastable states
(i.e. trapped in a local minimum energy state).

The annealing scheme is that an initial state of a thermodynamic system is chosen at energy E and tempera-
ture Temp, holding Temp constant the initial configuration is perturbed and the change in energy dE is com-
puted. If the change in energy is negative or zero the new configuration is accepted. If the change in energy
is positive it is accepted with a probability given by

 p = exp(-dE/(kB*Temp))

where kB denotes the Boltzmann constant. This process is then repeated sufficient times to give good sam-
pling statistics for the current temperature, and then the temperature is decremented and the entire process
repeated until a frozen state is achieved at Temp = 0.

By analogy the generalization of this Monte Carlo approach to optimization problems is straight forward:
• The current state of the thermodynamic system is analogous to the current solution to the optimization

problem

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -23-

• The energy equation for the thermodynamic system is analogous to the objective function F, and
• The ground state at Temp = 0 is analogous to the global minimum of F.

The major difficulty (art) in implementation of a simulated annealing algorithm is that there is no obvious
analogy for the temperature Temp with respect to a free parameter in the optimization problem. Furthermore,
avoidance of entrainment in local minima (quenching) is dependent on the "annealing schedule", that is, the
choice of initial temperature, how many iterations are performed at each temperature, and how much the
temperature is decremented at each step as cooling proceeds (after Gray et al., 1997). Ideally, when local
optimization methods are trapped in a poor local minimum, simulated annealing can ‘climb’ out.

The algorithm applied in SimEnv is a very fast simulated re-annealing method, named Adaptive Simulated
Annealing ASA (Ingber 2004, Ingber 1989 and Ingber 1996). For the above stated probability p the term
kB * Temp is chosen as

 kB * Temp = Temp0 * exp(-c*k1/m)

where k is the annealing time.

The ASA schedule is much faster than Boltzmann annealing, where kB * Temp = Temp0 /ln(k) and faster
than fast Cauchy annealing, where kB * Temp= Temp0 / k. With the ASA method the global minimum of a
nonlinear non-convex cost function F over an m-dimensional bounded factor space Xk is determined.

{x} = X2,12
 sub-sample of size 31
 from a sample
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.7 Part of a sample for an optimization experiment, generated during the experiment

-24- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -25-

5 Model Interface

To use any model within SimEnv it has to be interfaced to the simulation environment. SimEnv offers easy
coupling techniques at programming language and shell script level. While at language level SimEnv func-
tion calls have to be implemented into model source code to address and modify numerically experiment
factors, i. e. model parameters, initial or boundary values or drivers of the current single run out of the run
ensemble and to output simulation results, at the shell script level communication between the simulation
environment and the model can be based on operating system information exchange methods. To plug the
model into the simulation environment the variables of the model to be output during experiment perform-
ance and to be potentially processed during experiment post-processing have to be declared in the model
output description file <model>.mdf. Additionally, the model itself has to be wrapped into a shell script
<model>.run.
Model interfacing is related to transferring sampled numerical values of model factors under investigation
from the simulation environment to the model and to transferring model output variables under investigation
from the model to the simulation environment for later experiment post-processing. Interfacing is supported
at the programming language level for C/C++, Fortran, Python, Matlab, Mathematica and GAMS program-
ming languages, the model is implemented in and at shell script level.

5.1 General Approach

SimEnv model interface has to supply a link between the simulation environment and the model and has to
address two aspects:
For each single run from the run ensemble
• All experiment factors as defined in the experiment description file <model>.edf (check Section 6.1) have

to be associated to the corresponding model code entities (parameters, initial or boundary values, driv-
ers). These entities are modified numerically in the model by the sampled values and the default values
of the factors according to the specified factor adjustment types. The process of such a modification is
call an adjustment. The factor adjustment type specifies how to interfere the current sampled value with
the the default value of the entity (check Section 6.1).

• All model output variables as defined in the model output description file <model>.mdf (check Section
5.3) have to be associated to the corresponding model entities (in general, model state variables) and
these entities have to be output to SimEnv data structures during the performance of the model.

Imlementation of this general approach is based on minimal source code manipulation of the model. SimEnv
supplies a library with a set of simple functions to interface the model to the simulation environment. Gener-
ally speaking,
• Every experiment factor and
• Every model output variable
demand one additional SimEnv function call in the model source code. According to Tab. 5.1 model interface
functions are generic.

Function name

Description

simenv_ini_<lng> open model coupling interface
simenv_get_<lng> associate a model source code entity (parameter / initial value /

boundary value / driver) with an experiment factor from
<model>.edf and assign the adjusted factor value to the entity

simenv_get_run_<lng> get the current single run number of the run ensemble
simenv_put_<lng> associate a model source code entity with a model output variable

from <model>.mdf and output it to SimEnv data structures
simenv_slice_<lng> enable slicing, i.e., a repetitively partial output of model output

variables.
simenv_end_<lng> close model coupling interface

Tab. 5.1 Generic SimEnv interface functions
 (for <lng> check Tab. 5.2)

-26- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

The function simenv_slice_<lng> announces output of a slice of the data of a defined model output variable.
This is good for models with multi-dimensional variables where at least one dimension is omitted in the state
variable declaration in the model the source code because the dynamics for this dimension is calculated in
place (e.g., time). The assigned variable then has a lower dimensionality than the corresponding variable in
the model output description file. Nevertheless, the simenv_slice_<lng>-function ensures that model output
over the omitted dimension can be handled in experiment post-processing in common.

Fig. 5.1 shows the conceptual scheme for the SimEnv interface for a Fortran model.

The alignment of the contents of the SimEnv description files and the used SimEnv model interface functions
in the model source code is dominated by the description files: These files determine the experiment and the
model source code is expected to be well adapted. Nevertheless, this approach is implemented in a flexible
manner:
• Function calls in the source code where an experiment factor from <model>.edf and/or a model output

variable from <model>.mdf is not associated with are handled during the model performance in such a
way that the factors are unadjusted and/or the model output variable is not output. This enables adaption
of the model source code for a number of potential experiment factors and model outputs where only a
subset of these factors is under consideration in special experiments and/or requested for model output.

• Vice versa, model entities that are requested by the corresponding experiment description file as a factor
and/or model output description file for model output and where the corresponding SimEnv functions in
the model source code are missing are identified as such.

A regular matching between the model output description file and the used SimEnv interface functions in the
model source code as well as the above exceptions are reported to the interface log-file <model>.mlog
(check Tab. 10.7).

Native model output does not influence performance of the model in SimEnv and there is no necessity to
disable this output for SimEnv. The user only has to ensure that for a experiment control by the load leveler
LoadL the outputs of different single runs do not conflict with each other. Normally, this can be ensured by
performing each single run in a special run-related sub-directory (check Example 15.8). Native user model
output to the terminal is redirected during the experiment to the log-file <model>.nlog.

For running an interfaced model outside SimEnv there are dummy SimEnv libraries to link / run the model
with. They ensure the same model dynamics as before interfacing the model to SimEnv (check Section
5.12).

Currently, there are SimEnv interfaces for Fortran, C/C++, Python Matlab, Mathematica and GAMS models.
Additionally, there is an interface implementation at shell script leveland for ASCII files. Mixed language
models as well as distributed models (check Section 5.11) can be run with SimEnv.

<lng>

for model source code

c C/C++
f Fortran
py Python
sh Shell script level
as ASCII file

Tab. 5.2 Language suffices for SimEnv interface functions
(for the Matlab and GAMS interface check Section 5.6,
for the GAMS interface check Section 5.7)

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -27-

Fig. 5.1 Conceptual scheme of the model interface for C/C++/Fortran/Python

 :
associate
description file entity
with
source code entity

For transparency reasons:
Description entity name
should be the same as
source code entity name
(unlike this example)

Model

Model wrapper shell script <model>.run

. $SE_HOME/simenv_ini_sh
...
perform model with model source code from below:
model
...
. $SE_HOME/simenv_end_sh

Fortran model source code (*)

program model
...
integer*4 simenv_ini_f, simenv_get_f, simenv_put_f, simenv_end_f, simenv_sts
real*4 model_factor ! source code entity
dimension model_var (...) ! source code entity
...
simenv_sts = simenv_ini_f ()
...
model_factor = ...
simenv_sts = simenv_get_f (‘edf_factor‘ , model_factor , model_factor)
...
model_var(...) = ...
simenv_sts = simenv_put_f (‘mdf_var‘ , model_var)
...
simenv_sts = simenv_end_f ()
...
end

field model_var is
output as mdf_var

model_factor is
the adjusted
factor value

Experiment description file <model>.edf Model output description file <model>.mdf

 factor edf_factor type ... variable mdf_var type ...
 factor edf_factor default ... { variable mdf_var coords ...
{ factor edf_factor specific info } variable mdf_var index_extents ... }

Description Files

model factor is the default factor value
as specified in the previous statement
to be used as the adjusted value if
‘edf_factor’ is undefined in <model>.edf

(*): for C/C++/Python in a likewise manner

-28- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

5.2 Coordinate and Grid Assignments to Variables

To each variable

• Dimensionality dim(variable)
• Extents ext(variable,i) with i=1 ,..., dim(variable)
• Coordinates coord(variable,i) with i=1 ,..., dim(variable)

are assigned to. The dimensionality is the number of dimensions, an extent is related to each dimension and
represents the number of elements in that dimension. Extents are always greater than 1. To each dimension
a coordinate is assigned to. Coordinates have a name and from all coordinate values the coordinate is de-
fined for a subset is assigned to the extent of the dimension of the variable. Variables of dimensionality 0 do
not have a coordinate assignment.
A variable of dimensionality n corresponds to an n-dimensional array, a variable of dimensionality 0 is a sca-
lar.

Rectilinear grid: supported by SimEnv

Curvilinear grid: not supported by SimEnv

Fig. 5.2 Grid types

Additionally, coordinate axes are defined. Each coordinate axis a strictly monotonic sequence of coordinate
values, a description and a unit is assigned to. For reasons of simplification in experiment post-processing
coordinate axes are assumed as curvilinear.
Each dimension of a variable with a dimensionality > 0 a complete coordinate axis or a part of a coordinate
axis is assigned to. Consequently, each variable with a dimensionality > 0 is defined on a coordinate system
formed from the assigned coordinates. For reasons of simplification in result evaluation with visualization
techniques coordinate systems are assumed as rectilinear (orthogonal with variable distances between ad-
jacent coordinate values). The model output variable values then exist on the grid, spanned up from the co-
ordinate values of the coordinate axes (see Fig. 5.2).

Since coordinate axes can be assigned to model output variable dimensions in a flexible manner, model
output variables can exist on the same coordinate system or completely or partially disjoint coordinate sys-
tems.

5.3 Model Output Description File <model>.mdf

In the model output description file <model>.mdf the model output variables are declared that are to be out-
put by a SimEnv model coupling interface function in the model (code) and are to be post-processed after
experiment performance. Additionally, coordinate axes are defined and flexibly assigned to model output
variables. Consequently, a model output variable always is defined on a coordinate system, formed from the
assigned coordinates to the variable.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -29-

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

general <nil> descr o any <string> model output description
descr o 1 <string> coordinate axis description
unit o 1 <string> coordinate axis unit

coordinate <coordinate_
name>
(<co_name>) values m 1 <val_list> strictly monotonic sequence of

coordinate values <co_vals>
(for syntax see Tab. 11.6)

descr o 1 <string> variable description
unit o 1 <string> variable unit
type m 1 see Tab. 5.4 variable type in the simulation

model
coords c1 1 <co_name1>

,...,
<co_namen>

assigns a coordinate axis by
its name to each dimension of
the variable. Determines in
this way implicitly the dimen-
sionality n of the variable.

coord_extents c2 1 <co_val11>:
<co_val12>
,...,
<co_valn1>:
<co_valn2>

assigns start and end coordi-
nate real values from each
coordinate axis to the vari-
able. If missing all coordinate
values will be used from all
assigned coordinates.

variable <variable_
name>

index_extents c1 1 <in_val11>:
<in_val12>
,...,
<in_valn1>:
<in_valn2>

assigns integer value start
and end indeces for each
dimension to the variable.
Indices can be used to ad-
dress the variable during ex-
periment post-processing.

Tab. 5.3 Elements of a model output description file <model>.mdf

Each model output variable has a name, a dimensionality and assigned extents, a data type, a description
and a unit. The name should correspond to the name of the variable in the simulation model code. Associa-
tion between these two names is achieved by the SimEnv model interface function simenv_put_* (see be-
low).

<model>.mdf is an ASCII file that holds this information. It follows the coding rules in Section 11.1 on page
135 with the keywords, names, sub-keywords, and values as in Tab. 5.3.

To Tab. 5.3 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• Coordinate and variable names must differ from factor names in experiment description (see Section

6.1) and from built-in and user-defined operator names for experiment post-processing (see Section
8.5.4).

• Assignment of coordinate axes to variable dimensions and consequently of a grid to a variables is only
valid for experiment post-processing. Normally, the simulation model itself will also exploit the same grid
structure. Nevertheless, the grid structures of the model are defined autonomously in the model in a ex-
plicit or implicit manner and do only correspond to the grid structure in the model output description file
symbolically.

• Model output variables with dimensionality 0 are not assigned to a coordinate axis.
• The values of a coordinate have to be ordered in a strictly monotonic sequence. They may be non-

equidistant and may be ordered in a decreasing sequence.
• With the sub-keyword ‘coord_extents’ only a portion of coordinate values of a coordinate axis can be

assigned to a dimension of a variable. This portion is addressed by its begin and end value <co_vali1>
and/or <co_vali2>. The number of coordinates values of the portion has to be greater than 1.

-30- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

<co_vali1> > <co_vali2> for strictly increasing values of coordinates
<co_vali1> < <co_vali2> for strictly decreasing values of coordinates

• With the sub-keyword ‘index_extents’ portions of variables are made addressable during SimEnv ex-
periment post-processing. In the same way multi-dimensional variables are equipped with indices in the
simulation model they also have an index description in the model output description file for purposes of
experiment post-processing. It is advisable, that these two descriptions coincide. The index range is de-
scribed by a start and an end integer value index <in_vali1> and/or <in_val_exti2>.
The index set is a strictly increasing, equidistant set of integer values with an index increment of 1,
<in_vali1> < <in_vali2> ,
<in_vali1> 0 is possible.

• Coordinate values <co_val> and index values <in_val> are assigned in a one-to-one manner.
• For multi-dimensional variables that do not exist on an assigned grid completely or partially, simply as-

sign formal coordinate axes to.
• Specify at least one model output variable in <model>.mdf.

SimEnv data type
(synonyms)

Description Restriction

byte int*1 1 byte integer not for Python models
short int*2 2 bytes integer not for Python models
int int*4 4 bytes integer
float real*4 4 bytes real
double real*8 8 bytes real not for Python models

Tab. 5.4 SimEnv data types

For the following example of a model output description file and the assigned grids for model output vari-
ables check Example 1.1 on page 6:

general descr World with a resolution of
general descr 4° lat x 4° lon x
general descr 4 levels x 20 time steps
general descr Data centred per lat-lon cell
general descr This file is valid for all models
general descr world_[f | c | cpp | py | sh | as]

coordinate lat descr geographic latitude
coordinate lat unit deg
coordinate lat values equidist_end 88(-4)-88

coordinate lon descr geographic longitude
coordinate lon unit deg
coordinate lon values equidist_end -178(4)178

coordinate level descr atmospheric vertical level
coordinate level unit level no
coordinate level values list 1,7,11,16

coordinate time descr time in decades
coordinate time unit 10 years
coordinate time values equidist_nmb 1(1)20

variable atmo descr aggregated atmospheric state
variable atmo unit without
variable atmo type float
variable atmo coords lat , lon , level , time
variable atmo index_extents 1:45 , 1:90 , 1:4 , 1:20

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -31-

variable bios descr aggregated biospheric state
variable bios unit g/m2
variable bios type float
variable bios coords lat , lon , time
variable bios coord_extents 84.:-56. , -178.:178. , 1:20
variable bios index_extents 1:36 , 1:90 , 1:20

variable atmo_g type int
variable atmo_g coords time
variable atmo_g index_extents 1:20

variable bios_g type int

 Example-file: world_[f | c | cpp | py | sh | as].mdf

Example 5.1 Model output description file <model>.mdf

lon [deg]

lat [deg]

time [10 years]

-178

178

20

88
1

-56

84
(36,1,1)

(1,90,1)

(1,1,1)

(36,1,20)

(36,90,1)

(36 ,90,20)

(1,90 ,20)

(1,1 ,20)

-2

0

model variable
bios(lat,lon,time)

-88

2

Definition of model output variable bios refers to
Example 5.1 above.
The triples at the edges of the grid are
the indices of model output variable
bios(lat,lon,time) for the appropriate grid cells.

Fig. 5.3 Model output variable definition: Grid assignment

5.4 Model Interface for Fortran and C/C++ Models

Tab. 5.5 describes the model interface functions that can be used in user models written in Fortran or C/C++
(postfix f for Fortran, c for C/C++)
• to get sampled values of the experiment factors and to adjust them numerically by the factor default

value for the current single run of the run ensemble and
• to output model results from the current single run.
In this table the input and output data types are documented for functions used in Fortran. For C/C++ the
corresponding data types are valid.
All functions have a 4-byte integer function value (integer*4 and/or int). Implementation of the functions for
C/C++ is based on a call by reference for the function arguments.

-32- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Function name

Function
description

Arguments /
function value

Argument / function value
description

simenv_
ini_[f | c]
(
)

initialize model
coupling interface

Perform always
as the first
SimEnv function
in the model.
Alternatively
include <model>_
[f | c].inc for
semi-automated
model interface

integer*4
simenv_ini_
[f | c]
(function value)

return code
= 0 ok
= 2 I/O error for model output file
= 3 error memory allocation
= 4 I/O error for simenv_edf_bin.tmp
 as the structed representation of <model>.edf
= 5 I/O error for simenv_mdf_bin.tmp
 as the structed representation of <model>.mdf
= 6 I/O error for <model>.smp
= 7 wrong single run number

character*(*)
factor_name
(input)

name of the factor in <model>.edf

real*4
factor_def_val
(input)

default (nominal) factor value as specified in
<model>.edf.
If factor_name is not defined in <model>.edf
then factor_adj_val is set to factor_def_val

real*4
factor_adj_val
(output)

adjusted factor value

simenv_
get_[f | c]
(
factor_name,
factor_def_val,
factor_adj_val
)

get the resulting
adjusted value for
the factor to be
experimented with
in the current sin-
gle run

integer*4
simenv_get_
[f | c]
(function value)

return code
= 0 ok
= 1 factor_name undefined:
 factor_adj_val := factor_def_val

character*6
simenv_
run_char
(output)

current run number with leading zeros

integer*4
simenv_run_int
(output)

current run number

simenv_
get_run_[f | c]
(
simenv_run_int,
simenv_
run_char
)

get run number of
the current run as
an integer value
and a character
string

integer*4
simenv_get_run
_[f | c]
(function value)

return code
= 0 ok

character*(*)
var_name
(input)

name of the variable in <model>.mdf to be output

dimension
field(...),
type according
to <model>.mdf
(input)

data of variable var_name to be stored as simula-
tion results

simenv_
put_[f | c]
(
var_name,
field
)

output model re-
sults to native
SimEnv output
file(s)

integer*4
simenv_put_
[f | c]
(function value)

return code
= 0 ok
= 1 var_name undefined
= 2 I/O error for model output file

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -33-

Function name

Function
description

Arguments /
function value

Argument / function value
description

character*(*)
var_name
(input)

name of the variable in <model>.mdf to be sliced

integer*4
idim
(input)

dimension to be sliced

integer*4
ifrom
(input)

slice to start at position ifrom.
ifrom corresponds to an index from index_extents
in <model>.mdf

integer*4
ito
(input)

slice to end at position ito.
ito corresponds to an index from index_extents in
<model>.mdf

simenv_
slice_[f | c]
(
var_name,
idim,
ifrom,
ito
)

announce to out-
put at the next
corresponding
simenv_put_[f | c]
call only a slice of
variable var_name.
This announce-
ment becomes
inactive after per-
formance of the
corresponding
simenv_put[f | c]

integer*4
simenv_slice_
[f | c]
(function value)

return code
= 0 ok
= 1 var_name undefined
= 3 inconsistency between variable and
 idim, ifrom, ito
= 4 slice storage exceeded
= 5 warning: slice overwritten

simenv_
end_[f | c]
(
)

close model cou-
pling interface

Perform always
the last
SimEnv function
in the model

integer*4
simenv_end_
[f | c]
(function value)

return code
= 0 ok
= 2 I/O error for model output file

Tab. 5.5 Model interface functions for Fortran and C/C++ models

• Make sure consistency of type and dimension declarations between the model output variables in model
source code and the corresponding variable declarations in the model output description file
<model>.mdf.

• Model output variables that are not output completely or partially within the user model are handled in
experiment post-processing as their corresponding nodata-values (see Tab. 10.13).

• Application of simenv_slice_* for NetCDF model output may result in a higher consumption of computing
time for each single run of the experiment compared with NetCDF model output without simenv_slice_*.
For this case, keep in mind the trade-off between the demand for computing time and the demand for
main memory.

• The include file simenv_mod_[f | c].inc from the SimEnv home directory can be used in a model to de-
clare the SimEnv model interface functions as integer*4 / int for Fortran and/or C/C++. Addionally, these
include file declare for the semi-automated model interface (see Section 5.10) auxiliary variables. For the
contents of the include files check Tab. 10.10.

• Apply the shell script
 simenv_mod_[f | c | cpp].lnk <model_name>
From the SimEnv home directory to compile and link an interfaced model

• User models implemented in C/C++ or Fortran have to be linked with the following libraries to interface
them to the simulation environment
• $SE_HOME/libsimenv.a
• libnetcdf.a from /usr/local/lib or /usr/lib

• Tab. 15.12 lists the additionally used symbols when interfacing a Fortran or C/C++ model to SimEnv.
• In

• Example 15.1 on page 160 the model world_f.f
• Example 15.3 on page 163 the model world_c.c
• Example 15.4 on page 165 the model world_cpp.cpp
are explained.

-34- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

5.5 Model Interface for Python Models

Function name

Function
description

Arguments /
function value

Argument / function value
description

simenv_
ini_py
(
)

initialize model
coupling interface

Perform always
as the first
SimEnv function
in the model.
Alternatively
include
<model>_py.inc
for semi-
automated model
interface

string
ini_py
(function value)

return code of the spawn function for a SimEnv
executable

string
factor_name
(input)

name of the factor in <model>.edf

float
factor_def_val
(input)

default (nominal) factor value as specified in
<model>.edf.
If factor_name is not defined in <model>.edf
then factor_adj_val is set to factor_def_val

simenv_
get_py
(
factor_name,
factor_def_val)
)

get the resulting
adjusted value for
the factor to be
experimented with
in the current sin-
gle run

float
get_py
(function value)

adjusted factor value factor_adj_val

simenv_
get_run_py
(
)

get the run number
of the current run
as a character
string

string
get_run_py
(function value)

current run number as string of the length 6 with
leading zeros.
If an error occurred then function value = ‘------‘

string
var_name
(input)

name of the variable in <model>.mdf to be output

declaration of
field(...)
according to
<model>.mdf
(input)

data of variable var_name to be stored as simula-
tion results. Maximum length of field is limited to
12.000 characters.

simenv_
put_py
(
var_name,
field
)

output model re-
sults to native
SimEnv output
file(s)

put_py
(function value)

unused

simenv_
slice_py
(
var_name,
idim,
ifrom,
ito
)

Currently not
available for
Python models

simenv_
end_py
(
)

close model cou-
pling interface

Perform always
as the last
SimEnv function
in the model

Tab. 5.6 Model interface functions for Python models

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -35-

Due to the special features of Python the coupling interface to SimEnv differs from that for Fortran and
C/C++ in Section 5.4. Additionally, Python supports only some data types (check Tab. 5.4). Tab. 5.6 summa-
rizes the model interface functions for a Python model.

• Python model interface functions are declared in the file simenv.py in the SimEnv home directory. To

use these functions in a Python model import it by
 from simenv import *
and refer to it for example by simenv_get_py.

• Errors that occur during performance of one of the above functions are directly reported to the log-file
<model>.nlog.

In Example 15.5 on page 166 the model world_py.py is described in detail.

5.5.1 Standard Dot Scripts for Python Models

<model>.ini
<model>.ini (see Section 7.1 on page 65) is for Python models a mandatory shell script and has to have the
same contents for all Python models:

. $SE_HOME/simenv_ini_py
rc_py_model_ini = $?

additional user-model specific commands can be implemented up from here
if test $rc_py_model_ini = 0
then
 ...
fi

exit $rc_py_model_ini

For an experiment restart with a Python model (check Section 7.3 on page 67) <model>.ini has to be per-
formed again. To force this specify in <model>.cfg (check Section 10.1 on page 119) for the sub-keyword
‘restart_ini’ the value “yes”.

5.6 Model Interface for Matlab and Mathematica Models

For both Matlab and Mathematica models a simple interface to SimEnv is implemented. It is based on
• generating automatically per single run a temporary Matlab and/or Mathematica model
• performing this temporary model
• transferring the model output from external files to SimEnv model output structures.

simenv_get function

The generic simenv_get function for a Matlab / Mathematica model and running the model is performed by
the SimEnv dot script

. $SE_HOME/simenv_run_[matlab | mathematica]

This dot script has to be called in <model>.run. It expects that the Matlab / Mathematica model
• has the name <model>.m where <model> is the model name the service is started with.
• is stored in the current workspace the SimEnv simulation service simenv.[run | rst] is started from.

-36- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

To enable the adjustment of a factor <factor_name> in the model during the performance of any single run it
is necessary to modify the model source code with respect to the initial settings of the factors. Let depend
the assignment of the default value <factor_def_val> to the factor variable <factor_name> in the model
source code whether this variable was already set to the adjusted value

for Matlab model source code by:
 if exist('<factor_name>') == 0
 <factor_name> = <factor_def_val>;
 end

for Mathematica model source code by:
 if [ValueQ[<factor_name>] == False ,
 <factor_name> = <factor_def_val> ,
 <factor_name> = <factor_name>];

For an experiment with k factors the temporary Matlab / Mathematica model for single run number
<simenv_run_int> has the following structure:

<factor_name1> = <factor_value1<simenv_run_int>> ;
…
<factor_namek> = <factor_valuek<simenv_run_int>> ;
<model>
exit (only for Matlab models)

This file is generated in a temporary sub-directory run<simenv_run_char> of the current workspace. The
sub-directory itself is created automatically when performing the single run <simenv_run_int>.

For the Matlab interface store the path to your current workspace in the file
 ~/matlab/startup.m
by
 path(path,'<path_to_the_current_workspace>')

simenv_put function

For the Matlab / Mathematica model interface a dedicated simenv_put function does not exist. SimEnv ex-
pects the Matlab / Mathematica model to write model output to external files. These files can be transferred
into SimEnv model output by writing a specific simenv_put_sh executable (see Section 5.8) or for ASCII
model output files by applying simenv_put_as (see Section 5.9). Both interfaces have to be incorporated into
<model>.run.

<model>.edf
While for the C/C++/Fortran/Python model interface the names of corresponding factors in the model de-
scription file <model>.edf and the model source code can differ and are associated by the first argument of
the interface function simenv_put_* (see Fig. 5.1) the names have to coincide for the Matlab / Mathematica
model interface. Since in Matlab / Mathematica variables are case sensitive they have to be declared in the
experiment description file <model>.edf also in a case sensitive manner.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -37-

5.7 Model Interface for GAMS Models

SimEnv allows to interface GAMS models to the experiment shell. A GAMS (main) model interfaced to
SimEnv can call GAMS sub-models. SimEnv expects that the GAMS main model
• is located in the file <model>.gms where <model> is the model name a SimEnv service is started with.
• and all optional GAMS sub-models are stored in the current workspace the SimEnv services simenv.[

chk | run | rst] are started from.

Therefore, two additional include-statements have to be inserted into these GAMS model source code files
where experiment factors are to be adjusted or model variables are to be output to SimEnv. GAMS model
source code files to be interfaced to SimEnv are one GAMS main model and optionally a number of GAMS
sub-models that are called directly from the GAMS main model. Additional GAMS sub-programs (included
files) are not affected bei SimEnv, but one should keep in mind that the GAMS code within SimEnv will be
executed in a sub-directory of the current workspace (see below) and so the include statements have to be
changed, if the files are addressed in a relative manner (see below).

• The include files are

<model>_simenv_get.inc
<model>_simenv_put.inc

• During experiment preparation the file <model>_simenv_put.inc and during experiment performance files
<model>_simenv_get.inc are generated automatically to forward GAMS model output to SimEnv data
structures and to adjust investigated experiment factors, respectively.
These include files correspond to the simenv_put and simenv_get model interface functions at the lan-
guage level (see Sections 5.4 and 5.5).

• The GAMS include statement $include <model>_simenv_get.inc has to be placed in the GAMS model
file at such a position where all the GAMS variables are declared. Directly before the include statement
the factor default values have to be assigned to factor variables, that are introduced additionally in the
model. Directly after the include statement the factor variables with the adjusted factor values have to be
assigned to the model variables.

• The GAMS include statement $include <model>_simenv_put.inc has to be placed in the GAMS model
file at such a position where all the variables from the model output description file can be output by
GAMS put-statements.

• In the course of experiment preparation the GAMS model and all sub-models that are specified in
<model>.gdf (see below) are transformed automatically. Each GAMS model single run from the run en-
semble is performed in a separate sub-directory run<simenv_run_char> of the current workspace. The
sub-directories are created automatically. Transformed GAMS models and sub-models are copied to this
sub-directory and are performed from there. Keep this in mind when specifying in any GAMS model in-
clude statements with relative paths.

In Example 15.7 on page 169 the model gams_model.gms is described in detail.

Additionally, the following settings are valid:
• An ASCII GAMS description file <model>.gdf (see below) has to be supplied to specify the GAMS sub-

models and assigned factors and model output variables in detail.
• Maximum dimensionality of any model output variable declared in <model>.mdf is 4 for GAMS models.

Note the following information:
• To output the GAMS model status to SimEnv a

PARAMETER modstat
has to be declared and the statement

modstat = <model_name>.modelstat
has to be incorporated in the GAMS model above the $include <model>_simenv_put.inc line. The vari-
able modstat has to be stated in the model output description file <model>.mdf and the GAMS descrip-
tion file <model>.gdf.

-38- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

5.7.1 Standard Dot Scripts for GAMS Models

<model>.ini
<model>.ini (see Section 7.1 on page 65) is for GAMS models a mandatory shell script and has to have the
contents for all GAMS models:

. $SE_HOME/simenv_ini_gams
rc_gams_model_ini = $?

additional user-model specific commands can be implemented up from here
if test $rc_gams_model_ini = 0
then
 ...
fi

exit $rc_gams_model_ini

For an experiment restart with a GAMS model (check Section 7.3 on page 67) <model>.ini has to be per-
formed again. To force this specify in <model>.cfg (check Section 10.1 on page 119) for the sub-keyword
‘restart_ini’ the value “yes”.

<model>.run
<model>.run (see Section 7.1 on page 65) has for each GAMS model the same contents:

#! /bin/sh
. $SE_HOME/simenv_ini_sh
. $SE_HOME/simenv_run_gams
. $SE_HOME/simenv_end_sh

<model>.end
<model>.end (see Section 7.1 on page 65) is for GAMS models a mandatory shell script and has to have the
contents for all GAMS models:

. $SE_HOME/simenv_end_gams

additional user-model specific commands can follow

Python programming language is used to prepare, run and to end a GAMS model.

5.7.2 GAMS Description File <model>.gdf, <model>.edf, <model>.mdf

The ASCII GAMS description file <model>.gdf is intented to create a block of lines for each GAMS sub-
model with a simenv_get.inc file and/or a simenv_put.inc file. The block holds the specific characteristics of
GAMS model input and output needed by SimEnv to generate GAMS put-statements. All model output vari-
ables from the model output description file and all factors from the factor description file have to be used in
this file again.

<model>.gdf is an ASCII file that follows the coding rules in Section 11.1 on page 135 with the keywords,
names, sub-keywords, and values as in Tab. 5.3.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -39-

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

descr o any <string> GAMS coupling description
keep_runs o 1 <val_list> value list of run numbers

where single GAMS model
runs are to be stored by keep-
ing their corresponding sub-
directories
(for syntax see Tab. 11.6)

time_limit o 1 <int_val> CPU limit in seconds for each
GAMS model single run

general <nil>

options o 1 <string> string of options, GAMS main
model is started with from
command line

descr o 1 <string> (sub-)model output descrip-
tion

type m 1 [main | sub] identifies GAMS main or sub-
model

model

get m exactly
number
of
factors

<factor_name> get resulting adjustment for
<factor_name> to this model

<model_
name>

(without
extension
.gms)

put m exactly
number
of
model
output
vari-
ables

(<var_name>
{.<suffix_set>}
{(<index_set>)})
{<format>}

put values of SimEnv model
output variable <var_name>
from this model to SimEnv
output.
GAMS variable <var_name>
has the specified suffix and
index sets and is interfaced
from GAMS to SimEnv ac-
cording to <format>

Tab. 5.7 Elements of a GAMS description file <model>.gdf

To Tab. 5.7 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• Each factor and each model output variable as declared in <model>.edf and <model>.mdf respectively

has to be used in the value-field of <model>.gdf exactly one time.
• To each GAMS model <model_name> an arbitrary number of factors and model output variables can be

assigned to by the corresponding sub-keyword ‘get’ and/or ‘put’.
To each sub-model (‘type’ = “sub”) at least one ‘get’ or one ‘put’ sub-keyword must be assigned to. The
main model (‘type’ = “main”) can be configured without any sub-keyword ‘get’ and ‘put’. This is useful
when the main model simply calls sub-models.

• Each model <model_name> in <model>.gdf with at least one sub-keyword ‘get’ has to have an $include
<model_name>_simenv_get.inc statement in the corresponding GAMS model file <model_name>.gms

• Each model <model_name> in <model>.gdf with at least one sub-keyword ‘put’ has to have an $include
<model_name>_simenv_put.inc statement in the corresponding GAMS model file <model_name>.gms

• There has to be exactly one main GAMS model, identified by the sub-keyword ‘type’ value “main”. All
other models have to be of sub-keyword type value “sub”.

• The value-field for the sub-keyword ‘put’ is adapted to GAMS syntax to output GAMS model output vari-
ables. Afterwards this output is used to generate the appropriate SimEnv output.
<index_set> is mandatory for variables with a dimensionality > 0. Otherwise, specification of <in-
dex_set> is forbidden. Indices as used in the GAMS model are separated from each other by comma.

• The sub-keyword ‘time_limit’ enables limitation of each GAMS model single run in the run ensemble to a
maximum CPU-time consumption. If this threshold is reached the single run is aborted and the following
single run started. In general, SimEnv nodata values will be assigned to the results of the aborted single

-40- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

runs. The sub-keyword ‘time_limit’ can be necessary since each GAMS model single run itself is an op-
timization procedure which could result in an unfeasible CPU time consumption. If the sub-keyword is
not used in the gdf-file CPU-time consumption per single run is unlimited.

With respect to Example 15.7 the GAMS description file could look like

general descr GAMS model output description
general descr for the examples in the SimEnv
general descr User Guide
general keep_runs list 0,1

model gams_model descr this is the only GAMS model to use
model gams_model type main
model gams_model get dem_ny
model gams_model get dem_ch
model gams_model put x.l(i,j):10:5
model gams_model put a(i):10:5
model gams_model put z.l
model gams_model put modstat

Example file: gams_model.gdf

Example 5.2 GAMS description file <model>.gdf

If the model gams_model from the above Example 5.3 would be coupled with two additional
GAMS sub-models sub_m1 and sub_m2 where both sub-models interact with SimEnv
the GAMS description file could look like
(without taking into consideration plausibility with respect to model contents)

model gams_model type main
model gams_model put modstat

model sub_m1 type sub
model sub_m1 get dem_ny
model sub_m1 put x.l(i,j):10:5
model sub_m1 put a(i):10:5

model sub_m2 type sub
model sub_m2 get dem_ch
model sub_m2 put z.l

or

model gams_model type main

model sub_m1 type sub
model sub_m1 get dem_ny
model sub_m1 put x.l(i,j):10:5
model sub_m1 put a(i):10:5

model sub_m2 type sub
model sub_m2 get dem_ch
model sub_m2 put z.l
model sub_m2 put modstat

Example 5.3 GAMS description file for coupled GAMS models

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -41-

<model>.edf
While for the C/C++/Fortran/Python model interface the names of corresponding factors in the model de-
scription file <model>.edf and the model source code can differ and are associated by the first argument of
the interface function simenv_put_* (see Fig. 5.1) the names have to coincide for the GAMS model interface.
In the GAMS model code the factors specified in the experiment description file have to be of type
PARAMETER and have be defined before the include statement $include simenv_get.inc.

<model>.mdf
Corresponding variables in the model output description file and in the GAMS model source code must have
same names. Variables have to be always of type float in the model output description file. In GAMS model
code the model output variables declared in the model output description file can be of the numeric types
VARIABLES or PARAMETER. The maximum dimensionality of GAMS model output is restricted to 4.

With respect to Example 15.7 the model output description file could look like

coordinate plant descr canning plants
coordinate plant unit plant number
coordinate plant values equidist_end 1(1)2

coordinate market descr canning markets
coordinate market unit market number
coordinate market values equidist_end 1(1)3

variable a descr plant capacity
variable a unit cases
variable a type float
variable a coords plant
variable a index_extents 1:2

variable x descr shipment quantities
variable x unit cases
variable x type float
variable x coords plant , market
variable x index_extents 1:2 , 1:3

variable z descr total transportation costs
variable z unit 10^3 US$
variable z type float

variable modstat descr model status
variable modstat type float

Example file: gams_model.mdf

Example 5.4 Model output description file for a GAMS model

5.7.3 Files Created during GAMS Model Performance

Additionally to the files listed in Tab. 10.7, during the performance of a GAMS model the files
<gams_model>_[pre | main | post].inc are created temporarily in the current workspace by <model>.ini and
are deleted after the whole experiment where <gams_model> is a placeholder for the model of type main
and all models of type sub in the gdf-file.

During experiment performance of a GAMS model each single run <simenv_run_int> from the experiment is
performed individually in a sub-directory run<simenv_run_char> of the current workspace. Each directory is

-42- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

generated automatically before performing the corresponding single run and removed after perfomance of
this single run. With the sub-keyword ‘keep_runs’ the user can force to keep sub-directories for later check of
the transformed model code and its performance.

Unlike the other interface implementations GAMS main model terminal output for each single run is redi-
rected to the log-file <model>.nlog in the sub-directory run<simenv_run_char> of the current workspace. The
modeler is responsible for re-direction of the terminal output from sub-models and from solvers. It is recom-
mended to call all GAMS sub-models with the GAMS option string

 ll=0 lo=2 lf=<model>.nlog dp=0

(see Example 15.7) which is also applied for the main model. With the options sub-keyword ‘options’ addi-
tional options can be specified in <model>.cfg for the main model.

5.8 Model Interface at Shell Script Level

For models that do not allow to implement the model coupling interface at programming language level (e.g.,
because source code is not available) SimEnv supplies a coupling interface at shell script level by a set of
dot scripts: The shell script <model>.run (see Section 7.1 on page 65) is used to wrap the model and option-
ally to have at disposal corresponding functionality of the SimEnv model interface functions of Tab. 5.5. For
additional interfaces at the shell script level using ASCII files see Section 5.9.

Dot script name

Command
description

Inputs /
outputs

Input / output
description

$SE_HOME/
simenv_
ini_sh

initialize current
single run

Perform always
and as the first
SimEnv dot script
in <model>.run
and <model>.rst.
Alternatively per-
form for
<model>.run dot
script $SE_WS/
<model>_sh.inc
for semi-auto-
mated model in-
terface

SE_RUN
(output)

operating system environment variable SE_RUN is
set to the current run number of the simulation
experiment

script variable
factor_name
(input)

name of the factor in <model>.edf

script variable
factor_def_val
(input)

default (nominal) factor value.
If factor_name is not defined in <model>.edf
then factor_adj_val is set to <factor_def_val>

factor_name=
‘<factor_name>’
factor_def_val=
<factor_def_val>
$SE_HOME/
simenv_
get_sh

get the resulting
adjusted value for
the factor to be
experimented with
in the current sin-
gle run

script variable
factor_name
(output)

shell script variable with the same name as the
value of factor_name. Script variable value is the
adjusted factor value <factor_adj_val>.

simenv_
run_char
(output)

shell script variable with the current run number
with leading zeros

$SE_HOME/
simenv_
get_run_sh

get the run number
of the current run
as an integer and
a character script
variable

simenv_run_int
(output)

shell script variable (type integer) with the current
run number

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -43-

Dot script name

Command
description

Inputs /
outputs

Input / output
description

$SE_HOME/
simenv_
put_sh

Not available at
shell script level

 Write a model related simenv_put_sh at the
language level using the SimEnv model inter-
face functions from Tab. 5.5 or Tab. 5.6

$SE_HOME/
simenv_
slice_sh

Not available at
shell script level

$SE_HOME/
simenv_
end_sh

wrap up current
single run

Perform always
and as the last
SimEnv dot script
in <model>.run
and <model>.rst

Tab. 5.8 Model interface functions at shell script level

• For the model interface at the shell script level, i.e., within the shell script <model>.run the adjusted ex-
periment factors for the current single run from the whole run ensemble can be made available to for-
ward them to the model under investigation by any means the modeller is responsible for.
One common way to forward experiment factors to the model is to place current numerical factor values
as arguments to the model executable at the model command line in Unix or Linux. Another way could
be to read the factors from a special file in a special file format.

• While for the C/C++/Fortran/Python model interface the names of corresponding factors in the model
description file <model>.edf and the model source code can differ and are associated by the first argu-
ment of the interface function simenv_put_* (see Fig. 5.1) the names have to coincide for the model in-
terface at the shell script level.

• Directly before performing the dot script $SE_HOME/simenv_get_sh make sure that the shell script vari-
ables factor_name and factor_def_val have been specified. At the end of the dot script simenv_get_sh
these variables are set again to empty strings.

• After running the dot script $SE_HOME/simenv_get_sh the name of an experiment factor <fac-
tor_name> from the experiment description file <model>.edf is available in <model>.run as a shell script
variable <factor_name> and the resulting adjusted value of the factor is available as $<factor_name>.

• After running the model model output has to be identified and potentially transformed within <model>.run
for SimEnv output. To do this simply write a model related simenv_put_sh as a transformation program
that reads in all the native model output and outputs it to SimEnv by applying the model interface func-
tions simenv_*_* from the SimEnv model interfaces at language level.

• Tab. 10.9 lists the built-in (pre-defined) shell script variables that are defined and/or used by the dot
scripts $SE_HOME/simenv_*_sh and are directly available in <model>.run.

• Please notice:
To perform a dot script (see the Glossary at the end of this document) it has to be preceded by a dot and
a space.

In Example 15.8 on page 170 the model shell script world_sh.run is described in detail.

. $SE_HOME/simenv_ini_sh

get adjusted value for the a factor p_def, defined in the edf-file
factor_name=‘p_def’
factor_def_val=2.
. $SE_HOME/simenv_get_sh
now shell script variable p_def is available
value of shell script variable p_def is according to edf-file

-44- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

get adjusted value for a factor p_undef, not defined in edf-file
factor_name=‘p_undef’
factor_def_val=-999.
. $SE_HOME/simenv_get_sh
now shell script variable p_undef is available
value of shell script variable p_undef is -999.

...

. $SE_HOME/simenv_end_sh

Example file: world_sh.run

Example 5.5 Addressing factor names and values for the model interface at shell script level

5.9 Model Interface for ASCII Files

The SimEnv ASCII interface addresses constellations where
• a model expects factor names and their adjusted values in an ASCII file
• model output is stored to ASCII files.

Tab. 5.9 lists those SimEnv dot scripts and shell scripts that represent the ASCII interface. They have to be
applied in the model wrap shell script <model>.run. They can be used together with the interface at the shell
script level (see Section 5.8).

Dot script name

Command
description

Inputs /
outputs

Input / output
description

$SE_HOME/
simenv_
get_as

get the names and
the resulting ad-
justed values of all
factors to be ex-
perimented with in
the current single
run

ASCII file
<model>.as
<simenv_run_
char>
(output)

After performing simenv_get_sh the ASCII file
<model>.as<simenv_run_char> contains all factor
names and resulting adjusted values in the form
 <factor_name> <factor_adj_val>
Sequence of the factor lines in the file corresponds
to the sequence of the factors in the experiment
description file <model>.edf

<file_name>
(input)

Name of an ASCII file that is transferred to SimEnv
model output according to model output variable
coordinate <coord>

$SE_HOME/
simenv_
put_as
<file_name>
{ <coord> }

transfer ASCII file
to SimEnv model
output
in safe mode

simenv_put_as is
a normal shell
script and NOT a
dot script

<coord>
(input)

Name of a model output variable.
Lines in <file_name> correspond to coordinate
values. If <coord> is not specified <file_name> has
to be an one-record file.

<file_name>
(input)

Name of an ASCII file that is transferred to SimEnv
model output according to model output variable
coordinate <coord>

$SE_HOME/
simenv_
put_as_simple
<file_name>
{ <coord> }

transfer ASCII file
to SimEnv model
output
in simple mode

simenv_put_as_
simple is a
normal shell
script and NOT a
dot script

<coord>
(input)

Name of a model output variable.
Lines in <file_name> correspond to coordinate
values. If <coord> is not specified <file_name> has
to be an one-record file.

Tab. 5.9 Model interface functions at ASCII level

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -45-

After performing the dot script simenv_get_as an ASCII file <model>.as<simenv_run_char> holds lines with
a factor name and its resulting adjusted value per line. Each factor name is separated from its resulting ad-
justed value by at least one character space.

simenv_put_as and simenv_put_as_simple can be used to transfer ASCII model output to SimEnv model
output data structures. These are the only SimEnv script that can be used in <model>.run that are shell
scripts and not dot scripts. Both they have two arguments. The first argument specifies the ASCII file name
that is to be transfererred. The second argument is the name of a coordinate as specified in <model>.mdf.

Both shell scripts transfer the ASCII file data to SimEnv model output file as follows:
• A SimEnv model output variable is defined on a rectilinear grid that is composed from coordinates (see

Section 5.2). By specifying a coordinate name as the second argument all these model variable values
are expected in the ASCII file that have this coordinate as their first coordinate (see Section 5.3).

• The lines in the ASCII file correspond to the coordinate axis values in that sequence as defined in
<model>.mdf.

• The columns in the ASCII file correspond to the variables with the first coordinate as specified in the
second argument in that sequence of the variables as defined in <model>.mdf. A multi-dimensional vari-
able occupies a block of contiguous columns. The sequence of all columns of all lines of this variable is
according to the Fortran storage model (see Glossary).

• Variables with the same first coordinate but with different coordinate extents (variable sub-keyword co-
ord_extents in <model>.mdf) have to be harmonised line by line: The set of all lines is the union of all de-
fined coordinate axis values from all variables. To ensure synchronisation across columns, variable val-
ues for undefined coordinate values of a variable have to be output to the file as any real*4 / float nodata
placeholder <nodata>.

• The values of the ASCII file are interpreted as of type real*4 / float. They are transferred to SimEnv
model output according to their defined data type. If a real*4 / float value is outside the definition range
of the data type it is set to the SimEnv nodata element of this data type (see Tab. 10.13).

• If no coordinate is defined as the second argument the values of all zero-dimensional variables are ex-
pected to be in the ASCII file. Consequently, the file can have only one record with data values.

• The shell scripts simenv_put_as and simenv_put_as_simple differ in how to read each line of the ASCII
file. simenv_put_as handles the file as an ASCII data file, defined in Section with the exception that data
files are not limited to 1000 characters. Consequently, a file can have comment and blank lines when
transferring by simenv_get_as. Additionally, the number of columns per line is checked and missing col-
umns are added as nodata values. In contrast, simenv_put_as_simple just applies a simple Fortran read
statement per expected line without any checking routines. Due to the extensive interpretation efforts of
simenv_put_as it is rather slow. As a rule of thumb simenv_put_as_simple should by used for file with
more than 2000 columns where one can trust in the file structure.

Having a model output variable definition as in Example 5.1 on page 31.

$SE_HOME/simenv_put_as atmo_g.ascii time
Since atmo_g is the only variable with time as the first coordinate the file atmo_g.ascii can only

hold
this variable. The 1st record of the file with data corresponds with time = 1, the 20th record with
data with time = 20. There is only one column.

$SE_HOME/simenv_put_as bios.ascii lat
Assuming that variable atmo is not defined.
Since bios is the only variable with lat as the first coordinate the file bios.ascii can only hold this
variable. The 1st record of the file with data corresponds with lat = 84, the 36th record with data
with lat = -56. There are 90*20 = 1800 columns. The file has to hold bios(lat,lon,time) in the
following structure, shown are the indices of bios:

-46- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

 column #/ line # 1 2 … 90 91 … 90*20
 1 (84,-178,1) (84,-174,1) … (84,178,1) (84,-178,2) … (84,178,20)
 … … … … … … … …
 36 (-56,-178,1) (-56,-174,1) … (-56,178,1) (-56,-178,2) … (-56,178,20)

$SE_HOME/simenv_put_as_simple atmo_bios.ascii lat
atmo and bios are the variable with lat as the first coordinate. According to the sequence in
world_as.mdf the file atmo_bios.ascii has to hold in its first columns the variable atmo, followed by
the variable bios. Since bios is defined for the coordinate lat only on the subrange 2 – 37 of the
complete range 1 – 45 for atmo values with numerical nodata-placeholder <nodata> (e.g., 0.0)
have to be set for all values of bios in file records 1 and 38 to 45. The first record of the file
corresponds for atmo with lat = 88, for bios <nodata> has to be assigned.. The 45th record
corresponds for atmo with lat = -88, for bios <nodata> has to be assigned. There are 90*4*20 +
90*20 = 9000 columns, that’s why simenv_put_as_simple is used instead of simenv_put_as.
The file has to hold atmo(lat,lon,level,time) and bios(lat,lon,time) in the following structure, shown
are the indices:

 atmo bios
 column #/ line # 1 … 90*4*20 90*4*20+1 … 9000
 1 (88,-178,1,1) … (88,178,16,20) <nodata> … <nodata>
 2 (84,-178,1,1) … (84,178,16,20) (84,-178,1) … (84,178,20)
 … … … … … … …
 37 (-56,-178,1,1) … (-56,178,16,20) (-56,-178,1) … (-56,178,20)
 38 (-60,-178,1,1) … (-60,178,16,20) <nodata> … <nodata>
 … … … … … … …
 45 (-88,-178,1,1) … (-88,178,16,20) <nodata> … <nodata>

$SE_HOME/simenv_put_as bios_g.ascii
Since there is no second argument to simenv_put_as all variables without coordinate assignment
(zero-dimensional variables) are output. This is only bios_g. The file has to have only one record
with data and it must hold one data value.

The example model world_as.f writes the model output files atmo_bios.ascii, atmo_g.ascii and
bios_g.ascii in the structures as explained above.

Example 5.6 ASCII file structure for the ASCII model interface

An example can be found in Section 15.2.10.

5.10 Semi-Automated Model Interface

Source code manipulations of a model for interfacing it to SimEnv can be classified into four parts:
• Initialization: apply simenv_ini_* and simenv_get_run_*
• Factor adjustments: apply simenv_get_*
• Model output: apply simenv_slice_* and simenv_put_*
• End: apply simenv_end_*

Often, “initialization” and “factor adjustments” can be lumped together in a source code sequence where the
factor adjustment part has to be updated when new factors are defined in an experiment description file and
have to be mapped to model internal factors the first time. Contrarily, “model output” and “end” are often
distributed in the model source code but do not change so often.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -47-

Recognising this situation SimEnv offers beside the standard hand-coded model interface a semi-automated
model interface: “Initialization” and “factor adjustments” are generated automatically during experiment
preparation as sequences of source code based on the current experiment description file (and conse-
quently the current experiment factors) for all supported model source code languages but GAMS, Matlab
and Mathematica. For the latter three SimEnv offers such a simple interface that a semi-automated interface
is needless.

These source code sequences can be used
• for Fortran/C/C++/Python model source codes

as include files in the model source code and/or
• for the model interface at the shell script level and ASCII level

as a dot script in <model>.run
to interface the model and consequently to run the experiment with an up-to-date part for initialization and
factor adjustment.

For
• Fortran/C/C++ models:

The model has to be compiled and linked anew with a new include file. This is supported by SimEnv in
the course of experiment preparation.

• Python models and the model interface at shell script level and ASCII level:
The include file and/or dot script can be used directly.

Generating source code sequences for the semi-automated model interface is invoked by the sub-keyword
‘auto_interface’ of the keyword ‘model’ in the model configuration file <model>.cfg (see Section 10.1).

The Fortan/C/C++/Python model interfaces offer to use different names of corresponding factors in the
model description file <model>.edf and in the model source code that are associated by the first argument of
the interface function simenv_put_* (see Fig. 5.1). When using the semi-automated model interface the
SimEnv factor names and the corresponding source code variable names have to be coincided.

Automatically generated source code sequences are stored in files <model>_[f | c | py | sh | as].inc in the
current workspace $SE_WS. When using n factors x1 … xn in the experiment description file <model>.edf
the source code sequences have the following contents:

for Fortran:
file <model>_f.inc
 simenv_sts = simenv_ini_f ()
 simenv_sts = simenv_get_run_f (simenv_run_int , simenv_run_char)
 simenv_sts = simenv_get_f (‘x1’ , 0. , x1)
 …
 simenv_sts = simenv_get_f (‘xn’ , 0. , xn)

for C/C++:
file <model>_c.inc
 simenv_sts = simenv_ini_c ()
 simenv_sts = simenv_get_run_c (&simenv_run_int , simenv_run_char)
 simenv_sts = simenv_get_c (“x1” , &simenv_zero , &x1)
 …
 simenv_sts = simenv_get_c (“xn” , &simenv_zero , &xn)

for Python:
file <model>_py.inc
 from simenv import *
 simenv_ini_py ()
 simenv_run_int = int (simenv_get_run_py ())
 x1 = float (simenv_get_py (‘x1’ , 0.))
 …
 xn = float (simenv_get_py (‘xn’ , 0.))

-48- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

for the model interface at shell script level:
file <model>_sh.inc
 . $SE_HOME/simenv_ini_sh
 . $SE_HOME/simenv_get_run_sh
 factor_name='x1'
 factor_def_val=0.
 . $SE_HOME/simenv_get_sh
 …
 factor_name='xn'
 factor_def_val=0.
 . $SE_HOME/simenv_get_sh

for the model interface at ASCII level:
file <model>_as.inc
 . $SE_HOME/simenv_ini_sh
 . $SE_HOME/simenv_get_run_sh
 . $SE_HOME/simenv_get_as

The sequence of factors in the code sequences corresponds to the sequence of factors in the experiment
description file <model>.edf. For more than two factors the code sequences are enlarged accordingly.

For the Fortran/C/C++ model interface
• the variables simenv_sts, simenv_run_int, simenv_run_char, and simenv_zero are defined in the model

source code include file simenv_mod_[f | c].inc (see Section 10.3).
• model link files <model>.lnk can be declared in the current workspace to link the model anew using the

generated code sequences in the course of experiment preparation (only for service simenv.run, but not
for service simenv.rst).

The source code sequences are included in the model source code

for Fortran by include ‘<model>_f.inc’
for C/C++ by #include “<model>_c.inc”
for Python by from simenv import *
for the model interface at shell script level by . $SE_WS/<model>_sh.inc
for the model interface at ASCII level by . $SE_WS/<model>_as.inc

Examples can be found in Example 15.2 and Example 15.10.

5.11 Supported Model Structures

SimEnv supports performance of lumped, distributed and parallel models. Information about model structure
is specified in the model configuration file <model>.cfg (see Section 10.1) by the sub-keyword ‘structure’.
Lumped (standard) models are normally represented by one stand-alone executable. A distributed model in
SimEnv consists from a web of stand-alone sub-models, i.e., the model dynamics are computed by perform-
ing a set of stand-alone sub-models that normally interact with each other and exchange information. For a
parallel model each single run of an experiment needs a set of assign processors.

Lumped (standard) models use in the common sense SimEnv model interface functionality.

For distributed models each of the sub-models can use SimEnv model interface functionality, i.e.,
simenv_get_*, simenv_get_run_*, simenv_put_*, or simenv_slice_*. In each sub-model with SimEnv model
interface functionality simenv_ini_* and simenv_end_* calls have to be incorporated in. Sub-models can be
implemented in different programming languages. Additionally, the corresponding SimEnv model interface
functionality at shell script level (simenv_*_sh dot scripts) can be applied. As usual, the overall model is
wrapped into a shell script <model>.run (see Chapter 7).
The model output description file <model>.mdf collects all the model output variables from all sub-models
and the experiment description file <model>.edf collects all the factors from all sub-models.
Announce a distributed model to the simulation environment if

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -49-

• More than one sub-model uses SimEnv model interface functionality by the simenv_*_*-functions and
• Sub-models get factor data from and put model output data to SimEnv data files in parallel. A distributed

model where the sub-models are performed sequentially one by one in a cascade-like manner can run in
standard mode.

SimEnv interfaced sub-models of a distributed model can reside on different machines. The only prerequisite
is that the current workspace and the model output directory can be mapped to each of these machines.

To perform a parallel model within SimEnv simply use the same approach for wrapping a model by the shell
script file <model>.run as for standard and distributed models. Instead performing the model within
<model>.run submit the model to the load leveler LoadL by using the llsubmit command. Start an experiment
from a login-node of the compute cluster and run the experiment at the login machine. SimEnv submits from
the login machine all single runs to LoadL and directly finishes afterwards. The parallel operating environ-
ment POE and the load leveler LoadL then take responsibility to perform the single model runs.
For the parallel modus the temporary SimEnv files simenv_*.tmp are not deleted at experiment end, i.e. after
all single model runs are submitted. These files can be removed manually after finishing the last single run
by POE. Check the LoadL services for the end of the last parallel single model run.
To support bookkeeping of SimEnv applications on PIK’s parallel cluster machine please insert into the job
control file to submit a single model run (file my_parallel_model.jcf in the example below) the line

 # @ comment = SimEnv Application

To perform a parallel model in SimEnv the corresponding shell script <model>.run
(see Section 7.1 for more information) could have the following contents:

#! /bin/sh
. $SE_HOME/simenv_ini_sh

run a single run of the model:
llsubmit my_parallel_model.jcf

. $SE_HOME/simenv_end_sh

Example 5.7 Shell script <model>.run for a parallel model

Set the model sub-keyword ‘structure’ also to “parallel” if the model is to be started in the background (e.g.,
by my_model &) within <model>.run.

5.12 Using Interfaced Models Outside SimEnv

To run a model interfaced to SimEnv outside the simulation environment in its native mode as before code
adaptation the following simple changes have to be applied to the model:

• For Fortran and C/C++ models:

Link the model with the object library
$SE_HOME/libsimenvdummy.a

instead of
$SE_HOME/libsimenv.a.

For this library
• SimEnv model interface function values (return codes) are 0
• simenv_get_* forwards factor_def_val to factor_adj_val
• simenv_get_run_* returns integer run number 0 and character run string ‘ ‘ (six blanks).

-50- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

• For Python models:
Replace in the model source code

from simenv import *
by

from simenvdummy import *
For this module
• SimEnv model interface function values (return codes) are 0
• simenv_get_py forwards factor_def_val to factor_adj_val
• simenv_get_run_py returns run 000000.

• For Matlab and mathematica models:
No changes required

• For GAMS models:
Handle in the model source code the include statements
• $include <model>_simenv_get.inc
• $include <model>_simenv_put.inc
as comment.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -51-

6 Experiment Preparation

Experiment preparation is the first step in experiment performance of a model interfaced to the envi-
ronment. In an experiment description file <model>.edf all information to the selected experiment type and its
numerical equipment is gathered in a structured way.

6.1 General Approach - Experiment Description File <model>.edf

Pre-formed experiment types are the backbone of the SimEnv approach how to use models. They represent
in a generic way experiment tasks that have to be equipped with structural in formation from the model and
numerical information (see Chapter 4). An equipped experiment type is represented by an experiment de-
scription file <model>.edf.

<model>.edf is an ASCII file that follows the coding rules in Section 11.1 on page 135 with the keywords,
names, sub-keywords, and value as in Tab. 6.1.

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

descr o any <string> experiment description general <nil>
type m 1 [global sensitivity |

behaviour |
local sensitivity |
monte carlo |
optimization]

experiment type

descr o 1 <string> factor description
unit o 1 <string> factor unit
type m 1 see Tab. 6.2 factor adjustment type:

specifies how to adjust the
sampled values by the factor
default value in simenv_get_*
to get the resulting adjusted
factor value

default m 1 <real_val> factor default value
<factor_def_val>

factor <factor_
name>

sample c3 1 <experiment
specific>

specifies how to sample the
factor to get sampled values
<factor_smp_val>

specific <nil> <experiment
specific>

m <ex-
peri-
ment
spe-
cific>

<experiment
specific>

experiment specific informa-
tion

Tab. 6.1 Elements of an experiment description file <model>.edf

To Tab. 6.1 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• A factor name is the symbolic parameter / driver / initial value / boundary value name, corresponding to

factors of the investigated model. Correspondence is achieved by applying the SimEnv model interface
function simenv_get_* in the model.

-52- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

• Factor names must differ from model output variables and coordinate names in the model output de-
scription file (see Section 5.1) and from built-in and user-defined operator names for experiment post-
processing (see Section 8.5.4).

• To derive the adjusted value of a factor its default value as specified in <model>.edf and not its
default value from the model code is used in the model interface function simenv_get_*.

• For the factor adjustment types ‘multiply’ and ‘relative’ a default <real_val> = 0. is forbidden.
• All experiment specific information is explained in the appropriate sections.
• Specify at least one experiment factor.
• When preparing an experiment an experiment input file <model>.smp is generated with the sampled

values <factor_smp_val> according to the information in the sub-keyword ‘sample’. These values are
applied within the interface function simenv_get_* to the default values of the factors according to the
specified factor adjustment type (see Tab. 6.2 below) before finally influencing the dynamics of the
model.
The sequence of elements (columns) of each record of <model>.smp corresponds to the sequence of
factors in the factor name space (see Section 11.1 on page 135), the sequence of records corresponds
to the sequence of single model runs of the experiment.

• For each experiment a single model run with run number 0 (<simenv_run_int> = 0 and
<simenv_run_char> = ‘000000’) is generated automatically as the default (nominal) run of the model
without any factor adjustments. This run does not have an assigned record in <model>.smp.

Factor
adjustment type

Meaning:

 To derive the final adjusted factor value <factor_adj_val> to use in the model
 from the sampled value <factor_smp_val> (from <model>.smp) and
 the factor default value <factor_def_val> (as defined in <model>.edf)
 within the SimEnv model interface function simenv_get_*
 the sampled value is …
set … set to the adjusted factor value:

<factor_adj_val> = <factor_smp_val>
add … added to the factor default value:

<factor_adj_val> = <factor_smp_val> + <factor_def_val>
multiply … multiplied by the factor default value:

<factor_adj_val> = <factor_smp_val> * <factor_def_val>
relative … increased by 1 and afterwards multiplied by the factor default value:

<factor_adj_val> = (1. + <factor_smp_val>) * <factor_def_val>

Tab. 6.2 Factor adjustment types in experiment preparation

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -53-

6.2 Global Sensitivity Analysis

The experiment specific information for experiment description files in Tab. 6.1 on page 51 is defined for
local sensitivity analysis as follows:

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

factor <factor_
name>

sample m 1 <real_val1>:
<real_val2>

lower bound <real_val1> and
upper bound <real_val2> to
define the sensitivity range
where trajectories are posi-
tioned
<real_val1> <real_val2>
Factor values <fac-
tor_smp_val> are sampled
within this sensitivity range.

levels m 1 <int_val> number of levels p 2 to de-
fine a p-level grid in the factor
cube that is spanned up by
the sensitivity ranges of the
factors.

specific <nil>

trajectories m 1 <int_val> number of trajectories r 5 to
position randomly at the p-
level grid

Tab. 6.3 Experiment specific elements of an edf-file for a global sensitivity experiment

To Tab. 6.3 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• To ensure that trajectories do not have to share grid points the ratio between the number of available

grid points pk in the factor cube and the number of points of the trajectories r*(k+1) has to be greater
than 3: pk / r*(k+1) 3

6.2.1 Special Features in Global Sensitivity Analysis, Run Sequence

The sampling algorithm in preparing a global sensitivity experiment tries to avoid a multiple usage of grid
points for the construction of the trajectories. If this fails after 20 trials a sample will be used that has at maxi-
mum five grid points in common in trajectories. A warning will inform about this situation.

The sequence of the single simulation runs in the experiment is determined in the following manner:

loop over trajectories
 loop over over successive sampling points
 end loop
end loop

6.2.2 Example

(2) general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type global sensitivity analysis

-54- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

factor p1 descr parameter p1
factor p1 unit without
factor p1 type set
factor p1 default 1.
factor p1 sample -12:12 check sensitivity for factor p1 in <–12 , 12>

factor p2 type set
factor p2 default 2.
factor p2 sample 1:10
factor p3 type set
factor p3 default 3.
factor p3 sample -12:12
factor p4 type set
factor p4 default 4.
factor p4 sample 1:10

specific levels 4
specific trajectories 10

Example file: world.edf_2

Example 6.1 Experiment description file <model>.edf for an optimization experiment

6.3 Behavioural Analysis

The experiment specific information for experiment description files in Tab. 6.1 on page 51 is defined for
behavioural analysis as follows:

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

factor <factor_
name>

sample a 1 <val_list> value list of factor samples
<factor_smp_val>
(for syntax see Tab. 11.6)

specific <nil> comb m 1 [default |
<combination> |
file {<directory>/}
<file_name>]

information how to scan the
spanned factor space

Tab. 6.4 Experiment specific elements of an edf-file for behavioural analysis

To Tab. 6.4 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• For sub-keyword ‘comb’ the following rule holds:

value = [default | <combination>] for used sub-keyword ‘sample’
value = [file {<directory>/}<file_name>] for unused sub-keyword ‘sample’

• Values of a value list have to be unique for used sub-keyword ‘sample’ and each factor
Assigned values from file {<directory>/}<file_name> can be multiple defined for each factor.

The sequence of the single runs is determined by the sub-keyword ‘comb’.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -55-

6.3.1 Formalisation of the Inspection Strategy, Run Sequence

• The combination <combination> defines the way in which the space spanned by the experiment factors
will be inspected by SimEnv: This is done by concetenating all stated experiment factors by operators „*“
and „,“.
• The operator „*“ combines sampled values of different factors and so their resulting adjusted values

combinatorially (“for all mesh points in a grid”).
For example, compare with the experiment description file (a) from Example 6.2 below.

• The operator „,“ combines sampled values of different factors and so their resulting adjusted values
parallel (“on the diagonal”).
For the operator „,“ the factors must have the same number of sampled values.
For example, compare with the experiment description file (b) from Example 6.2 below.

• The operators „,“ and „*“ an be multiple used in <combination>. The operator „,“ has a higher priority
than the operator „*“. Parentheses are not allowed:
For example, x1 * x2 , x3 * x4 always combines factors x2 and x3 in parallel and this combinatorially
with factors x1 and x4. A parallel combination of x1 * x2 with x3 * x4 by (x1 * x2) , (x3 * x4) is not possible.
For example, compare with the experiment description file (3c) from Example 6.2 below.

• In <combination> each factor has to be used exactly once.
• By the default combination default all experiment factors are combined combinatorially in the sequence

of the declaration of the factors in the experiment description file: If factors x1 , x2 ,…, xn are defined in
this sequence then comb default is equivalent to comb x1 * x2 * … * xn.
• For example, comb default of the experiment description file (a) from Example 6.2 below is equivalent

to comb p1 * p2 .
• Specification of file is only allowed for unused sub-keywords ‘sample’ all over the edf-file.

• All factors are assumed to be combined in parallel.
• The sampled values are read from the sample data file {<directory>/}<file_name>.
• Each record of the sampled values data file represents one simulation run. The sequence of the sam-

ple (sequence of columns) in each record corresponds to the sequence of the factors in the factor
name space (see Section 11.1 on page 135).

• Consequently, the file has to have per record as much values as factors defined in <model>.edf. All
the other syntax rules for ASCII data files from Section 11.3 hold.

• Identical sample values for a factor are allowed.
• During experiment post-processing restricted capabilities for the operator behav apply for this ex-

periment layout.
• For example, compare with the experiment description file (3d) from Example 6.2 below. Combination

is implicitly as comb p1 , p2. Experiment description files (3b) and (3d) in Example 6.2 below de-
scribe the same experiment.

• To continue a combination <combination> at a following comb-line end the current comb-line by one of
the operators “*” or “,”.

The sequence of the single simulation runs in the experiment is determined in the following manner:
• For comb file {<directory>/}<file_name> :

The sequence corresponds to the sequence of the sampled factor values in the file <file_name>.
• For comb <combination>

with <combination> = <x1> * <x2> * … * <xn> and
<xi> = xi1 , xi2 ,…, xij :
loop over factor sample values for <xn>
 …
 loop over factor sample values for <x2>
 loop over factor sample values for <x1>
 end loop
 end loop
 …
end loop

• For comb default :
Is put down to comb <combination> (see above)

-56- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

6.3.2 Example

Experiment description file (3a) represents an experiment description according to Fig. 4.4 (a)
on page 18, (3b) and (3d) according to Fig. 4.4 (b) and (3c) according to Fig. 4.4 (c).

 Results in
 adjusted factor values

(3a) general descr Experiment description for the examples
general descr in the SimEnv User Guide (Fig. 4.4 (a))
general type behaviour

factor p1 descr parameter p1
factor p1 unit without
factor p1 type add
factor p1 default 1.
factor p1 sample list 1, 3, 7, 8 ... 2, 4, 8, 9 for p1

factor p2 descr parameter p2
factor p2 unit without
factor p2 type multiply
factor p2 default 2.
factor p2 sample list 1, 2, 3, 4 ... 2, 4, 6, 8 for p2

specific comb default

(3b) general descr Fig. 4.4 (b)
general type behaviour
factor p1 type multiply
factor p1 default 1.
factor p1 sample list 1, 3, 7, 8 ... 1, 3, 7, 8 for p1
factor p2 type multiply
factor p2 default 2.
factor p2 sample equidist_end 1(0.5)2.5 ... 2, 3, 4, 5 for p2
specific comb p1,p2

(3c) general descr Fig. 4.4 (c)
general type behaviour
factor p1 type set
factor p1 default 1.
factor p1 sample list 1, 3, 7, 8 ... 1, 3, 7, 8 for p1
factor p2 type set
factor p2 default 2.
factor p2 sample equidist_end 1(1)4 ... 1, 2, 3, 4 for p2
factor p3 type multiply
factor p3 default 3.
factor p3 sample list 2.0, 2.8, 3.3 ... 6.0, 8.4, 9.9 for p3
specific comb p2,p1*p3

(3d) general descr Fig. 4.4 (b)
general type behaviour file world.dat_3d:
factor p1 type multiply 1 0
factor p1 default 1. 3 1
factor p2 type add 7 2
factor p2 default 2. 8 3
specific comb file world.dat_3d ... (1,2), (3,3), (7,4),
 (8,5) for (p1,p2)

Example files: world.edf_3a to world.edf_3d

Example 6.2 Experiment description file <model>.edf for behavioural analysis

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -57-

6.4 Local Sensitivity Analysis

The experiment specific information for experiment description files in Tab. 6.1 on page 51 is defined for
local sensitivity analysis as follows:

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

factor <factor_
name>

sample f 0 sub-keyword is forbidden for
this experiment type

specific <nil> incrs m 1 <val_list> Increments that form a sam-
ple of factor values
<factor_smp_val> > 0.
<factor_smp_val> in
<val_list> has to be ordered in
a strictly monotonic increasing
manner.
(for syntax see Tab. 11.6)

Tab. 6.5 Experiment specific elements of an edf-file for local sensitivity analysis

To Tab. 6.5 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• For experiment type local sensitivity analysis only the factor adjustment types ‘add’ and ‘relative’ are

allowed.
• Values from the value list must be positive and unique.

6.4.1 Sensitivity Functions, Run Sequence

As an example, the absolute sensitivity function (see Tab. 4.2 on page 19) is as follows:

for adjustment type Add sens_abs(<factor_def_val>,±<factor_smp_val>) =

 z(<factor_def_val> ± <factor_smp_val>) – z(<factor_def_val>)
 ± <factor_smp_val>

for adjustment type Relative sens_abs(<factor_def_val>,±<factor_smp_val>) =

 z(<factor_def_val> * (1± <factor_smp_val>) – z(<factor_def_val>)
 ± <factor_def_val> * <factor_smp_val>

The sequence of the single simulation runs in the experiment is determined in the following manner:

loop over increment sequence
 loop over experiment factors
 end loop
end loop
loop over negative increment sequence
 loop over experiment factors
 end loop
end loop

-58- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

6.4.2 Example

(4) general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type local sensitivity

factor p1 descr parameter p1
factor p1 unit without
factor p1 type add
factor p1 default 1.

factor p2 type relative
factor p2 default 2.
factor p3 type relative
factor p3 default 3.

specific incrs list 0.001,0.01,0.05,0.1

Example file: world.edf_4

Example 6.3 Experiment description file <model>.edf for local sensitivity analysis

6.5 Monte Carlo Analysis

The experiment specific information for experiment description files in Tab. 6.1 on page 51 is defined for
Monte Carlo analysis as follows:

To Tab. 6.6 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• For <distribution> = <distr_shortcut> (<distr_param_1> { , <distr_param_2> }) check Tab. 6.7.
• For implicitly specified distributions according to Tab. 6.7 sample values <factor_smp_val> are gener-

ated from the distribution with the assigned distribution parameters.
• If an ASCII file {<directory>/}<file_name> is stated the sample values of any distribution are taken di-

rectly from this file. Each record of the ASCII file can hold only one sample value. For the other syntax
rules for ASCII data files check Section 11.3. Sample size has to be identical to <int_val> from the sub-
keyword ‘runs’.

• In random sampling, there is no assurance that sampling points will cover all regions of the selected
distribution. With Latin hypercube sampling LHS (McKay et al., 1979) this shortcoming is reduced: The
sampling range of the factor is divided into <int_val> (from the sub-keyword ‘runs’) intervals of equal
probability according to the selected distribution and from each interval exactly one sampling point is
drawn. For more information on LHS check Fig. 6.1 below and see also Iman & Helton (1998) and
Helton & Davis (2000).

• The number of runs must be greater than 10.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -59-

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

sample m 1 [<distribution> |
file {<directory>/}
<file_name>]

distribution and distribution
parameters to derive a sample
of values <factor_smp_val>
or
file name to import an external
sample of values
<factor_smp_val>

factor <factor_
name>

sample_
method

c4 1 [random |
latin hypercube]

sampling strategy:
random or latin hypercube
sampling LHS

runs m 1 <int_val> number of runs > 10 to be
performed for the experiment

specific <nil>

function o 0 <result> stopping function to use in a
stopping rule for the experi-
ment.
A 0-dimensional result formed
according to the rules of the
SimEnv post-processor. Do
not apply multi-run operators.
Stopping function definition
can be arranged at a series of
function-lines in analogy to
the rules for result expres-
sions (see Section 8.1.1).

Tab. 6.6 Experiment specific elements of an edf-file for Monte Carlo analysis

Latin hypercube sampling
for a sample size of
12 single simulation runs.

Factor x1 is normally distributed
Factor x2 is uniformly distributed.

Compare with random sampling in
Fig. 4.6 on page 20.

Fig. 6.1 Monte Carlo analysis: Latin hypercube sampling

-60- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

6.5.1 Distribution Functions and their Parameters, Stopping Rule

Distribution
function

distr_
shortcut distr_param_1 distr_param_2 Restriction

uniform U lower boundary upper boundary lower boundary <
upper boundary

normal N mean value variance variance > 0
lognormal L mean value of a

normally distributed
factor

variance of a nor-
mally distributed
factor

variance > 0

exponential E mean value --- mean value > 0

Tab. 6.7 Probability density functions and their parameters

For more information on the distribution functions see Section 4.4 and Tab. 4.4.

Be careful when specifying for a Monte Carlo analysis a factor adjustment type (see Tab. 6.2) that differs
from ‘set’. Values are sampled according to the specified distribution and its declared distribution parameters
and/or are used from the input files. Nevertheless, each value of the sample is modified according to the
factor adjustment type in simenv_get_*. So, for the factor adjustment type ‘add’ normally the mean value of
the sample will be shiftet by the specified factor default value <factor_def_val>. For the factor adjustment
types ‘multiply’ and ‘relative’ the specified distribution will be adulterated normally by the factor default value
<factor_def_val>.

Optionally, SimEnv enables definition of a stopping rule that can be helpful to limit the number of simulation
runs in an experiment. In a stopping rule statistical measures from all already performed single model runs of
the run ensemble are calculated after each single run to decide whether to stop the whole experiment. Sta-
tistical measures are computed from a 0-dimensional result res(z) (the stopping function) formed according
to the rules of the SimEnv post-processor. The stopping function is used as an indicator to stop the experi-
ment.

In SimEnv the point of change for the variance of the stopping function res(z) over the already perfomed
single runs is determined after each single run using the Pettitt test (Pettitt, 1979). If a point of change in the
sequence of the single runs over the already performed run ensemble is detected, it is assumed that the
variance of the stopping function does not change anymore significantly after the point of change. The first
half of the simulation runs of the experiment is perfomed without applying the test in order to generate a
stabilized stopping function sample res(z).

The whole experiment is stopped if
• the level significance of the Pettitt test is below 0.05 for the already performed run ensemble and
• there were at least <int_val>/5 single runs after that single run that represents the point of change.

<int_val> is the number of declarad runs in <model>.edf (see above).
The latter condition is introduced to avoid to run into a local point of change.

Monte Carlo experiments with a stopping function can not be re-started. Partial experiment performance is
not supported. The stopping condition is reported to the experiment log-file <model>.elog.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -61-

6.5.2 Example

(5) general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type Monte Carlo

factor p2 descr parameter p1
factor p2 unit without
factor p2 type multiply
factor p2 default 2.
factor p2 sample_method latin hypercube
factor p2 sample distr U(0.5,1.5) p2 is sampled from a uniform distrib.
 between 0.5 and 1.5. In simenv_get_*
 each value is multiplied by 2.

factor p1 type add
factor p1 default 1.
factor p1 sample_method random
factor p1 sample distr N(0,0.4) p1 is sampled from a normal distribution
 with mean = 0. and variance = 0.4.
 In simenv_get_* each value is increased
 by 1.

factor p3 type set
factor p3 default 3.
factor p3 sample file world.dat_5 sample for p3 is read from file
 world.dat_5

specific runs 250
specific function avg(atmo_g) avg(atom_g) as stopping function

Example file: world.edf_5

Example 6.4 Experiment description file <model>.edf for Monte Carlo analysis

-62- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

6.6 Optimization

The experiment specific information for experiment description files in Tab. 6.1 on page 51 is defined for
local sensitivity analysis as follows:

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

factor <factor_
name>

sample m 1 <real_val1>:
<real_val2>

lower bound <real_val1> and
upper bound <real_val2> to
define the factor range where
the cost function is to be mini-
mized on.
<real_val1> <real_val2>
Values <factor_smp_val> are
sampled in this factor range.

function m 1 <result> cost function to minimize.
A 0-dimensional result formed
according to the rules of the
SimEnv post-processor. Do
not apply multi-run operators.
Cost function definition can be
arranged at a series of func-
tion-lines in analogy to the
rules for result expressions
(see Section 8.1.1).

specific <nil>

runs m 1 <int_val> number of single runs to end
the experiment without check-
ing the other optimization
method related stopping crite-
ria.

Tab. 6.8 Experiment specific elements of an edf-file for an optimization experiment

To Tab. 6.8 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.

6.6.1 Special Features in Optimization

• This is the only experiment type where the sample for the factors of the single runs are not determined
before the experiment but in the course of the experiment by the optimization algorithm. Consequently,
only the header of the file <model>.smp is created during experiment preparation. The records belong-
ing to the performed single runs are written during experiment performance.

• In parallel to the file <model>.smp an ASCII file <model>.fct is written during experiment performance
with the value of the cost function for each of the single runs.

• The optimization algorithm itself is controlled by additional technical parameters and options that are
normally fixed by SimEnv. To modify these settings copy the ASCII file simenv.opt_opt from the
SimEnv home directory to <model>.opt_opt in the current workspace and edit this file. During the ex-
periment the edited file is used instead of the file with the default constellation in the SimEnv home direc-
tory. The description of the options and parameters can be found in Ingber (2004).

• Optimization experiments can not be restarted by the SimEnv service simenv.rst.
• The values for the sub-keywords ‘begin_run’ and ‘end_run’ in the configuration file <model>.cfg are ig-

nored for an optimization experiment. The experiment always starts with run number 0 and ends if one of
the criteria in the file [<model> | simenv].opt_opt (see above) is fulfilled or the explicitly stated end run
number from the sub-keyword ‘runs’ in <model>.edf is reached.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -63-

• As the results of the optimization experiment the optimization return code, the optimal factors, the corre-
sponding value of the cost function and the number of the corresponding single run are documented at
the end of the model interface log-file <model>.mlog.

• A protocol from the optimization procedure is made available by SimEnv in the ASCII file <model>.olog.

6.6.2 Example

(6) general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type optimization

factor p1 descr parameter p1
factor p1 unit without
factor p1 type set
factor p1 default 1.
factor p1 sample -12:12 minimize cost function for p1є <–12 , 12>

factor p2 type set
factor p2 default 2.
factor p2 sample 1:10
factor p3 type set
factor p3 default 3.
factor p3 sample -12:12
factor p4 type set
factor p4 default 4.
factor p4 sample 1:10

specific function -sum(bios) maximize sum(bios) over land masses
specific runs 700

Example file: world.edf_6

Example 6.5 Experiment description file <model>.edf for an optimization experiment

-64- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -65-

7 Experiment Performance

After experiment preparation experiment performance is the second step in running a model inter-
faced to SimEnv. Each multi-run experiment can be performed sequentially or in a multi-processor hardware
environment. Besides experiment performance from scratch a restart after an experiment interrupt or only for
an experiment slice can be handled by SimEnv.

7.1 General Approach

SimEnv enables performance of an experiment on the login-machine or in a job class controlled by the the
parallel operating environment POE and the load leveler LoadL. Experiment performance on the login-
machine is organized in a way that the single runs of the experiment are performed sequentially. Experiment
control by POE and LoadL enables assignment of the simulation load of the single runs of the experiment to
a number of processors in distributed, parallel or sequential mode.

Experiments may be performed partially only for a slice out of the run ensemble. Experiment slices are con-
trolled by the general configuration file <model>.cfg by a range of single run numbers.

For successive performance of experiment slices and/or after abnomal experiment interrupt experiments can
be re-startet. The experiment log-file <model>.elog is analyzed to identify these single runs out of the run
ensemble that have to be performed the first time and/or anew and the corresponding output data structure
is appended to the output data that already exists for this experiment.

For all experiment settings the user model has to be wrapped in a shell script <model>.run (see also Fig.
5.1).

• The model variables to be output during experiment performance are declared in the model output de-

scription file <model>.mdf
• The type and the factors of the experiment to be performed are declared in the experiment description

file <model>.edf
• Mapping between experiment factors and factors in the model source code is achieved by application of

the generic SimEnv model interface function simenv_get_* in the model code or at shell script level.
• Output of model variables declared in <model>.mdf into SimEnv structures is achieved by the application

of the generic SimEnv model interface function simenv_put_* (and simenv_slice_*) in the model source
code.

• Model output from run number <simenv_run_int> is stored in the file <model>.out<simenv_run_char>.[
nc | ieee] if the value if the out_separation sub-keyword in <model>.cfg is set to ‘yes’. Otherwise, model
output from the complete experiment is stored in <model>.outall.[nc | ieee].

• For all experiment types a run number 0 with the default values of all experiment factors will is declared
additionally to the runs declared in the experiment description file <model>.edf.

• During experiment performance a model interface log-file <model>.mlog is written where the adjusted
experiment factor values are logged. All model output to the terminal is re-directed within SimEnv to the
experiment model native output log-file <model>.nlog.

• During experiment performance an experiment log-file <model>.elog is written with the minutes of the
experiment.

• Do not start / restart / submit another experiment from a workspace where an experiment is still running.
• After the experiment has been finished an e-mail is send on demand (check Section 10.1) to the address

as specified in <model>.cfg.
• The status of any running experiment can be acquired by the SimEnv service simenv.sts. For more in-

formation check Tab. 10.3.
• For more information check Section 5.1 and Fig. 5.1 and Fig. 7.1.

-66- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

7.2 Model Wrap Shell Script <model>.run,
Experiment-Specific Preparation and Wrap-Up Shell Scripts

• The model to be applied within the SimEnv experiment has to be wrapped in the shell script

<model>.run. <model>.run is performed for each single run within the run ensemble.
• Make sure that in <model>.run

• #! /bin/sh is the first line
• . $SE_HOME/simenv_ini_sh is performed always and as the first SimEnv dot script
• . $SE_HOME/simenv_end_sh is performed always and as the last SimEnv dot script
(see Tab. 5.8 on page 43 and Example 7.1 below).

• To cancel the whole experiment after the performance of the current single run <simenv_run_int>
due to any condition of this run make sure a file $SE_WS/<model>.err<simenv_run_char> exists
as an indicator to stop. Create this file in the model or in <model>.run. For the latter
• Perform . $SE_HOME/simenv_get_run_sh to get the current run number <simenv_run_int> and

<simenv_run_char> (see Tab. 5.8 on page 43 and Example 7.1 below).
• Touch the file $SE_WS/<model>.err<simenv_run_char>

• Terminal output from <model>.run is redirected to the log-file <model>.nlog.
• For GAMS models <model>.run has a pre-defined structure. Check Section 5.7.1 for more informa-

tion.

• The user can define an optional model specific experiment preparation shell script <model>.ini that is

performed additionally after standard experiment preparation and before setting up a new experiment.
For experiment restart <model>.ini is performed only on request (see Section 7.3 below).
In <model>.ini additional settings / checks can be performed. For return codes unless 0 from <model>.ini
the experiment will not be started.
Terminal output from <model>.ini is also re-directed to the log-file <model>.nlog.
For Python and GAMS models <model>.ini is a mandatory shell script with standardized contents.
Check Sections 5.5.1 and 5.7.1 for more information.

• After the experiment has been finished the native model specific output from the experiment can be
wrapped up with the optional model specific shell script <model>.end.
Terminal output from <model>.end is re-directed to the log-file <model>.nlog.
For GAMS models <model>.end. is a mandatory shell script with standardized contents. Check Section
5.7.1 for more information.

• All of these three shell scripts have to have execute permission. Ensure this by the Unix / Linux com-

mand
chmod u+x <model>.[run | ini | end]

For the shell script world_f.run the following contents could be defined:

#! /bin/sh

perform always and as the first $SE_HOME/simenv_*_sh dot script:
. $SE_HOME/simenv_ini_sh

run the model:
world_f

assuming a model return code 0 as an indicator to stop
the whole experiment for any reason.
Touch the file below in the current workspace $SE_WS
as an indicator to SimEnv for this.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -67-

if test $? –ne 0
then
 . $SE_HOME/simenv_get_run_sh
 touch $SE_WS/world_f.err$simenv_run_char
fi

perform always and as the last $SE_HOME/simenv_*_sh dot script:
. $SE_HOME/simenv_end_sh

Example file: world_f.run

Example 7.1 Shell script <model>.run to wrap the user model

For the shell script world_*.ini the following contents could be defined:

coarse 0.5° x 0.5° land-sea mask from file land_sea_mask.05x05
in the current directory
to a 4° x 4° resoluted land-sea-mask in file land_sea_mask.coarsed
in the current directory to use for all single runs
land_sea_mask 4 4
rc_land_sea_mask=$?

exit from world_*.ini with return code 0
as an indicator not to start the experiment
exit $rc_land_sea_mask

Example files: world_[f | c | cpp | py | sh].ini

Example 7.2 Shell script <model>.ini for user-model specific experiment preparation

For the shell script world_f.end the following contents could be defined:

remove the file of the coarsed land-sea mask
rm –f land_sea_mask.coarsed

Example file: world_[f | c | cpp | py | sh].end

Example 7.3 Shell script <model>.end for user-model specific experiment wrap-up

7.3 Experiment Parallelization

According to the general SimEnv approach how to use a model the single runs of an experiment are inde-
pendent from each other. The only exception is the experiment type optimization where the sample values
for the current single run are determined on the outcomes of previous single runs. Keeping this in mind,
SimEnv enables the parallelization of the experiment in the sense that several single runs can be performed
in parallel without influencing each other. This opens an approach for a computer network or a compute clus-
ter of connected machines
• to distribute the single runs of an experiment acroos the network / on the cluster
• to perform the single runs there and

-68- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

• to collect after the end of the single model run the model output data and related information

SimEnv supports distribution of single runs from an experiment for IBM’s cluster architectures. These clus-
ters are managed by the parallel operating environment POE and the load leveler LoadL. The processors of
a compute cluster are assigned to job classes where jobs can be submitted to.

Three different distribution stategies are offered by the simulation environment:

Perform the single runs of an experiment …
• … on all the processors of a job class (dis - distributed strategy)

The single runs are submitted to the job class as single jobs in a way that all available processors of the
class can be used. Due to controlling the submit process dynamically, the job class will not be over-
loaded by the single run jobs of the experiment but the submit process will wait on demand. The submit
process itself is started in the background.
The experiment performance will start when a processor of this job class is free.
Use this strategy for best utilization of all job class processors.

• … on pre-allocated processors of a class (par - parallel strategy)
A number of processors are assigned to the experiment during experiment preparation and one parallel
job is submitted to the job class. During the experiment one communication processor is responsible for
experiment management while the other processors serve as simulation processors for the single runs.
The experiment performance will start when the assigned number of processors are free in this class.
Use this strategy to make sure to run an experiment in a certain time.

• … sequentially on one processor of a class (seq - sequential strategy)
One processor of the job class is assigned to the whole experiment and the experiment is performed sin-
gle run by single run on this processor as a SimEnv experiment performance on the login machine.
The experiment performance will start when one processor of this job class is free.
Use this strategy when the other two strategies are impossible (e.g., for an optimization experiment) and
you want to use the hardware sessources of the compute cluster.

For an experiment performance controlled by the parallel operating environment POE and the load leveler
LoadL make sure that the environment variables SE_HOME is set in the file $HOME/.profile correctly.

After the experiment is submitted to the load leveler the current login session can be closed.

Default job control files are supplied by SimEnv to ensure communication with POE and the load leveler.
These job control files may be copied to the current workspace, can be modified and will then be used in-
stead of the default job control files to start an experiment at a parallel or sequential job class.
If necessary, copy the ASCII job control files simenv.jcf_[dis | par | seq] from the SimEnv home directory
to <model>.jcf_[dis | par | seq] in the current workspace, modify the file(s) according to the needs of the
experiment one want to perform and / or the machine one want to use and start afterwards simenv.run
and/or simenv.rst. If available in the current workspace, these modified job control files are used instead of
the original files in the SimEnv home directory.
[<model> | simenv].jcf_dis submits a job in distributed mode, [<model> | simenv].jcf_seq in sequential
mode, and [<model> | simenv].jcf_par in parallel mode.

Default job control files enable automatic restart of the experiment by the load leveler after an interrupt of the
job caused by POE, the load leveler, or the operating system. The user does not need to restart the experi-
ment manually after such an event.

For parallel models itself see Section 5.11.

7.4 Experiment Restart

When an experiment was interrupted / has failed due to any reason or in the case of partial experiment per-
formance (see Section 7.5 below) it can be restarted:
• Simply restart the experiment by simenv.rst without changing any of the SimEnv files describing the

experiment and/or the model. The only exception may be the values for the sub-keywords of the key-
word ‘experiment’ in the general model configuration file <model>.cfg.

• simenv.rst has the same usage as simenv.run

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -69-

• Restart can be launched on an other machine / in an other job class than that of the interrupted experi-
ment.

• Dependent on the experiment log-file <model>.elog, written by the interrupted / previous new-start ex-
periment a single model run from the complete run ensemble in the restart experiment will be
• Performed if this run has neither a start nor a finish information in the elog-file
• Not performed if this run has a start and a finish information in the elog-file
• Performed anew if the run has a start information but no finish information in the elog-file.

• For the latter case a model restart shell script <model>.rst can be provided by the user optionally to
prepare restart of this single model run (e.g., by deleting non-SimEnv temporary or output files).
Make sure that in <model>.rst
• #! /bin/sh is the first line
• . $SE_HOME/simenv_ini_sh is performed always and as the first SimEnv dot script
• . $SE_HOME/simenv_end_sh is performed always and as the last SimEnv dot script
(see Tab. 5.8 on page 43 and Example 7.4 below).
Make sure that <model>.rst has execute permission by the Unix / Linux command

chmod u+x <model>.rst.
After running $SE_HOME/simenv_get_run_sh the shell script variables simenv_run_int and
simenv_run_char are available in <model>.rst (see Tab. 10.9).
Terminal output from <model>.rst is re-directed to the log-file <model>.nlog.

• Experiment restart works without standard SimEnv experiment preparation. Instead, experiment prepa-
ration files and other information from the interrupted experiment will be used.

• For a restart, the optional experiment preparation shell script <model>.ini will be performed only on
demand. This request is specified in the configuration file <model>.cfg with the sub-keyword ‘restart_ini’
and its value “yes”.
For Python and GAMS models interfaced to SimEnv <model>.ini has to be performed mandatorily. Con-
sequently, the value of restart_ini has to be set to “yes” (check Sections 5.5.1 and 5.7.1)

• <model>.cfg will be checked anew for experiment restart. Do not change for a restart any of the infor-
mation related to the keyword ‘model’ in <model>.cfg.

• Minutes of the restarted experiment will be appended to the log-files <model>.mlog, <model>.nlog, and
<model>.elog, respectively from the interrupted experiment.

• Restart can be applied to an experiment several times successively.
• Experiment restart can be performed also as an partial experiment, independently on the partial status of

the original model
• Experiment re-start is not possible for the experiment type optimization.

For the model world_sh (check Example 15.8 on page 170) the following contents could be
defined for the restart shell script world_sh.rst:

#! /bin/sh

perform always and as the first $SE_HOME/simenv_*_sh dot script:
. $SE_HOME/simenv_ini_sh

get run number
. $SE_HOME/simenv_get_run_sh

remove all files from the temporary directory and the directory itself
if test –d run$simenv_run_char
then
 rm -fR run$simenv_run_char
fi

perform always and as the last $SE_HOME/simenv_*_sh dot script:
. $SE_HOME/simenv_end_sh

Example file: world_sh.rst

Example 7.4 Shell script <model>.rst to prepare model performance during experiment restart

-70- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

7.5 Experiment Partial Performance

• SimEnv enables to perform an experiment partially by performing only a run slice out of the whole run
ensemble.

• Therefor assign appropriate run numbers to the corresponding sub-keywords ‘begin_run’ and ‘end_run’
in <model>.cfg.

• Make sure that begin run number and end run number represent run number from the experiment (in-
cluding run number 0) and that begin run number end run number.

• A partial experiment performance is also possible for an experiment restart.
• For more information check Fig. 7.1.
• Experiment partial performance is not possible for the experiment type optimization.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -71-

7.6 Experiment Related User Shell Scripts and Files

Shell script /
file

Explanation

Used for
(*)

Exist
status

Shell scripts (terminal output is re-directed to <model>.nlog) (**)

<model>.run model shell script to wrap the model executable
Model interface dot scripts at shell script level simenv_*_sh
can / have to be applied in <model>.run:
• $SE_HOME/simenv_ini_sh has to be performed always

and as the first SimEnv dot script simenv_*_sh
• $SE_HOME/simenv_end_sh has to be performed always

and as the last SimEnv dot script simenv_*_sh
• Pre-defined contents for GAMS models

S R mandatory

<model>.rst model shell script to prepare single model run restart for such
single runs that were started but not finished during the previ-
ous experiment start / restart
• $SE_HOME/simenv_ini_sh has to be performed always

and as the first SimEnv dot script simenv_*_sh
• $SE_HOME/simenv_end_sh has to be performed always

and as the last SimEnv dot script simenv_*_sh
• $SE_HOME/simenv_get_run_sh can be used

R optional

<model>.ini model shell script to prepare simulation experiment addition-
ally to standard SimEnv preparation
• Experiment will be not performed if return code from this

shell script is unequal 0
• For experiment re-start <model>.ini will be performed only

on request
• Pre-defined contents for Python and Gams models

S (R)

optional,
for Python
and GAMS
models
mandatory

<model>.end model shell script to clean up simulation experiment from non-
SimEnv files
• Pre-defined contents for GAMS models

S R optional

Files

<model>.err
<simenv_run_char>

touch such a file during performing the model, in <model>.run
and/or in <model>.rst as an indicator to stop the complete
experiment after single run <simenv_run_int> has been fin-
ished

A optional

<model>.jcf_
[dis | par | seq]

model-specific job control file to submit an experiment in dis-
tributed, parallel and/or sequential mode by the LoadL
• Copy from general file $SE_HOME/simenv.jcf_[par | seq]

on demand

L optional

<model>.opt_opt model-specific control and option file for experiment type Op-
timization
• Copy from general file $SE_HOME/simenv.opt_opt on

demand

O optional

Tab. 7.1 Experiment related user shell scripts and files
 (*): shell script applied for
 R: Restart of an experiment by simenv.rst <model>
 S: Start of an experiment by simenv.run <model>
 file applied for
 A: All experiment perform. at the login machine or by load leveler submission
 L: Load leveler experiment submission
 O: Optimization experiment performance

(**): make sure by the Unix / Linux command chmod u+x <model>.<ext>
 that the shell script <model>.<ext> has execute permission

-72- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Fig. 7.1 Flowcharts for performing simenv.run and simenv.rst
 First and last single run always refer to the corresponding settings in <model>.cfg

simenv.run <model> simenv.rst <model>

<model>.run

<model>.end

exists
<model>.<run_char>.err

<run> = last single run

stop

no

no

<run> =
first single run

yes

yes

no

return code = 0
from <model>.ini

<model>.ini

yes

start

<run> =
<run> + 1

single run completed
 in previous experiments

<model>.run

<model>.end

exists
<model>.<run_char>.err

<run> = last single run

stop

no

no

yes

yes

<run> =
 first single run

<model>.rst

single run unfinished
 in previous experiments

yes

no

no

yes

start

<run> =
<run> + 1

return code = 0
from <model>.ini

<model>.ini

restart_ini = yes
in <model>.cfg

no

yes

no

yes

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -73-

7.7 Saving Experiments

To save experiments for later use, e.g., by SimEnv experiment post-processing, make sure to store the fol-
lowing files:
• <mdel>.out[all | <simenv_run_char>].[nc | ieee] from the model output directory
• <model>.cfg from the current workspace
• <model>.mdf from the current workspace
• <model>.edf from the current workspace
• <model>.smp (for optimization) from the current workspace
• <model>.fct (for optimization and

 Monte Carlo with stopping rule) from the current workspace
• <model>.elog (optional) from the current workspace
• <model>.mlog (optional) from the current workspace
• <model>.nlog (optional) from the current workspace
• <model>.jcf_ [dis | par | seq] (optional) from the current workspace
• <model>.olog (optional, for optimization) from the current workspace
• <model>.opt_opt (optional, for optimization) from the current workspace

Do not modify after the experiment in
• <model>.cfg the information assigned to the keyword ‘model’
• <model>.[mdf | edf] all information including the sequence of the model output variables and/or
 experiment factors

-74- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -75-

8 Experiment Post-Processing

Goal of experiment post-processing is to navigate within the model / experiment output space by de-
riving interactively output functions / data that are to be visualized in experiment evaluation afterwards.
Therefor SimEnv supplies operators that can be applied to model output and reference data. There are built-
in basic and advanced operators and built-in experiment specific operators. The user can define its own
private operators and easily couple them to the post-processor. Additionally, composed operators can be
derived from both built-in and user-defined operators. Operator chains and recursions are possible. Macros
can be defined as abbreviations for operator chains.

8.1 General Approach

8.1.1 Post-Processor Results

In SimEnv experiment post-processing post-processor results (synonym: output functions) are derived from
model output of the experiment and from reference data. A post-processor result is specified by a post-
processor expression, optionally prefixed by a result description and a result unit string:

 <result> = { { <result_description> } { [<result_unit>] } := } <result_expression>

<result> by the string “Enter a result” the user is asked to enter a result.

Input lines with a character # as the first non-white space character are treated as
comments.
The experiment post-processing session is finished by entering <ret> or a sequence
of white spaces instead of a result.
For case sensitivity of <result> check Tab. 10.12 on page 131.

<result_description> must not contain an apostrophe character “‘”.
<result_unit> characters “[” and “]” belong to the syntax and
 are not part of the this document convention as defined in Tab. 1.1
 Result description and/or unit together with the separator “:=” have to be specified in

the first input line. The result expression itself may follow at the following input line.
<result_expression> is a chain of SimEnv operators applied to model output variables and/or reference

data.
 Can be continued on a new input line (continue expression:) if the current input line

ends on one of the operators “+” , “-” , “*” , “/”, or “**” or on the operand separator “,”
in operators.
White spaces are filtered out from the result expression string, also from character
arguments.

<result_description> or <result_unit> are used to describe the result in the corresponding result output file
(see Chapter 12). For the case one of these entities is not specified SimEnv analyses the result expression:
For a result expression formed without any operator or only from one operator and using exactly one model
output variable and/or one experiment factor <result_description> and/or <result_unit> is copied from the
corresponding information for the sub-keyword ‘descr’ in <model>.mdf (for a model output variable as an
operand of this operator) and/or from <model>.edf (for an experiment factor as an operand of this operator).
The only operator used in this expression must not transform the contents of the operand in general (must
be invariant with respect to description and unit). For all other cases <result_description> is set to the string
res_<xy> and <result_unit> is undefined.

-76- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Having a model output variable definition as in Example 5.1 on page 31 then in experiment
post-processing

abs(atmo)+3 applies operator abs to atmo and adds 3
 (multi-operator result expression)
 <result_description> = ‘res_<xy>’
 <result_unit> undefined
Energy [MWh] := abs(atmo)+3 as above, but:
 <result_description> = ‘Energy’
 <result_unit> = ‘MWh’
Energy [MWh] := as above
abs(atmo)+
3
[MWh] := abs(atmo)+3 as above, but:
 <result_description> = ‘res_<xy>’
 <result_unit> = ‘MWh’
sign(atmo) applies operator sign to atmo
 (operator sign is not invariant w.r.t. the contents of its
 operand)
 <result_description> = ‘res<xy>’
 <result_unit> undefined
abs(atmo) applies operator abs to atmo
 (operator abs is invariant w.r.t. the contents of its operand)
 <result_description> = ‘aggregated atmospheric state’
 (according to <model>.mdf)
 <result_unit> = ‘without’
 (according to <model>.mdf)
Energy := abs(atmo) applies operator abs to atmo
 <result_description> = ‘Energy’
 (according to <model>.mdf)
 <result_unit> = ‘without’
 (according to <model>.mdf)

Example 8.1 Addressing results in experiment post-processing

8.1.2 Operands

Operands in result expressions can be
• Model output variables as defined in <model>.mdf

In the following abbreviated by arg
Example: atmo

• Experiment factors as defined in <model>.edf
In the following abbreviated by arg
Example: p1

• Constants <int_val> or <real_val>
In the following abbreviated by int_arg and/or real_arg
Example: 12 and -12 and 12.34 and -1.234e+1

• Character strings <string>, enclosed in single quotation marks
In the following abbreviated by char_arg
Example: ‘tie_avg’

• Operator results
In the following abbreviated by arg
Example: abs(atmo) and atmo+3.

• Macros as defined in <model>.mac (see Section 8.7)
Example: equ_100yrs_m

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -77-

• Wildcard operands (see Section 8.8)
Example: &v&

As for model output variables (see Section 5.1) also to each operand (with the exception of character string
operands)

• Dimensionality dim(operand) and
Extents ext(operand,i) with i=1 ,..., dim(operand)
Coordinates coord(operand,i) with i=1 ,..., dim(operand)

are assigned to. The dimensionality is the number of dimensions, an extent is related to each dimension
and represents the number of elements in that dimension. Extents are always greater than 1. To each
dimension a coordinate is assigned to. Coordinates have a name and from all coordinate values the co-
ordinate is defined for a subset is assigned to the extent of the dimension of the operand. Coordinate
specification for operands follows that for model output variables. For more information see Section 5.1.

• Operators transform dimensionality, dimensions, and coordinates of the their non-character operator
arguments into unique dimensionality, dimensions and coordinates of the operator result (see Section
8.1.4).

• Consequently, the output of an operator and finally a post-processor result as a sequence of operators
applied to operands also has unique dimensionality, extents and coordinates.

• Experiment factors and constants always have a dimensionality of 0.
• Operands of dimensionality 0 and character string operands do not have a coordinate assignment.

8.1.3 Model Output Variables

• A variable of dimensionality n corresponds to a n-dimensional array and is defined at an n-dimensional
grid, spanned up from the coordinate values of the assigned coordinates The complete data field of a
model output variable or parts of it can be addressed in experiment post-processing (see below). Di-
mensionality, dimensions and coordinate description of this data field is derived from the model output
variable description in <model>.mdf.

• Model output variables are specified in the ASCII model output description file <model>.mdf (see Tab.
5.3 on page 29) by their
• Name
• Dimensionality
• Extents
• Coordinate assignment to each dimension
• Data type (see Tab. 5.4 on page 30).
• Use the service simenv.chk to check variables description in model output description file

<model>.mdf
• Addressing of model output data fields or parts of it is done in experiment post-processing by corre-

sponding model output variables names.
• For variables with a dimensionality greater than 0 it is possible to address only a part of the whole vari-

able field by
• Specifying for a dimension an index range i by

i = <index_value1> { : <index_value2> }
<index_value1> <index_value2>
<index_value2> = <index_value1> if <index_value2> is missing.
i= stands for index addressing

• Specifying for a dimension a coordinate range c by
c = <coordinate_value1> { : <coordinate_value2> }
<coordinate_value1> <coordinate_value2> for strictly increasing coordinate values
<coordinate_value1> <coordinate_value2> for strictly decreasing coordinate values
<coordinate_value1> = <coordinate_value2> if <coordinate_value2> is missing
c= stands for coordinate addressing

• Index and coordinate ranges are separated from each other by a comma, the sequence of ranges
for all dimensions is enclosed in brackets and is appended after the variable name.

• For one variable c= and i= can be used in mixed mode for different dimensions.
* denotes the complete range of a dimension.
c= * is identical to i= * is identical to *

-78- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

• In the general SimEnv configuration file <model>.cfg (see Section 10.1 on page 119) a global default
for index and/or coordinate addressing is established for the whole experiment post-processing ses-
sion. This global default can be overwritten locally by using c= and/or i=.

Having a model output variable definition as in Example 5.1 on page 31 then in experiment
post-processing result expressions can be

atmo and
atmo(*,*,*,*) and
atmo(c=*,*,i=*,*) and
atmo(c=88:-88,c=-178:178,c=1:16,c=1:20) and
atmo(i=1:45,i=1:90,i=1:4,i=1:20) and
atmo(i=1:45,c=-178:178,*,*) and
atmo(1:45,1:90,1:4,1:20) and (with address_default = index in model.cfg)
atmo(1:45,c=-178:178,1:4,1:20) and (with address_default = index in model.cfg)
 all address all 45*90*4*20 values and

 the following holds for this addressed variable:
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 20
atmo(*,*,*,c=11:20) addresses all values of last 10 decades
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 10
atmo(*,*,c=1,c=1) addresses all values of the first decade for level 1
 Dimensionality = 2
 Coordinates = lat , lon
 Extents = 45 , 90
atmo(c=0,*,1,i=20) addresses all values of level 1for the last decade at
 equator
 Dimensionality = 1
 Coordinates = lon
 Extents = 90
atmo(i=23,*,1,i=20) addresses all values of level 1for the last decade at
 equator
 Dimensionality = 1
 Coordinates = lon
 Extents = 90
atmo(c=0,c=2,c=1,c=20) addresses the value for the last decade at
 (lat,lon,level,time) = (0°,2°,1,20)
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
atmo(c=0,c=1:9,c=1,c=20) addresses the values for the last decade at
 (lat,lon,level,time) = (0°,2°,1,20) and (0°,6°,1,20)
 Dimensionality = 1
 Coordinates = lon
 Extents = 2
atmo(c=0,c=1,c=1,c=20) error in addressing: c=1 for lon does not exist

Example file: world.post_bas

Example 8.2 Addressing model output variables in experiment post-processing

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -79-

8.1.4 Operators

• Operators transform dimensionality, dimensions, and coordinates of the their non-character operator
arguments into unique dimensionality, dimensions and coordinates of the operator result (check Section
8.1.2).
There are
• Single-argument operators that replicate dimensionality, dimensions and coordinates from the only

argument to the operator result
Example: sin(atmo)

• Multi-argument operators that demand a certain relation between dimensionalities, dimensions and
coordinates of their arguments
Example: mod(atmo(c=84:-56,*,c=1,*),bios)

• Operators that increase the dimensionality of the operator result and assign new coordinates to the
additional dimensions (check Tab. 10.11) or form new coordinates from resulting factor adjustments
Example: ens(atmo)

• SimEnv experiment post-processing operators may have two special types of arguments:
• Character arguments char_arg:

Only character strings enclosed in ‘ ‘ are valid as arguments. Some built-in operators (e.g., count)
have a pre-defined set of valid character argument strings (e.g., for operator count strings all, def,
and undef). Some built-in operators allow an empty string (e.g., behav)
Example: count(‘undef’,atmo)
 behav(‘ ’,atmo)

• Integer or real (float) constant arguments int_arg or real_arg:
Only constants in appropriate format are valid as arguments. Model output variables of dimensional-
ity 0 or general operands with dimensionality 0 are invalid.
Example: move_avg(‘0001’,‘lin’,3,atmo)
 qnt(33.333,atmo)

• If character and integer/real constant arguments are defined for an operator then there is always the
following sequence of the operator arguments:
{ char_arg } { int_arg } { real_arg } { arg }
Example: hgr_l(‘1000’,’bin_mid’,20,0.,0.,atmo)

• Operators are generic with respect to the data types of their operands: Each non-character and non-
constant argument can be used with operands of all defined data types (see Section 5.1). Internally, ar-
guments of any type are converted to a float representation. This may lead to undefined arguments of
type double in float representation.

• Results of SimEnv experiment post-processing operators are always of the type float.
• SimEnv post-processing follows the standard approach for description of operators for basic as well as

advanced built-in or user-defined operators.
Advanced built-in or user-defined operators
• Have a unique name and a number of operands
• The sequence of operands is enclosed in parentheses directly after the operator name
• Operands are separated from each other by a comma.
• Recursions of the same operator (also for user-defined operators) are possible.

Example: log10(min_n(3 , min_n(log10(atmo(*,*,1,c=20)) , 400) , 10*bios_g))
• Elemental operators use the common form of notation:

Example: atmo_g + 345

-80- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

8.1.5 Operator Classification, Flexible Coordinate Checking

Tab. 8.1 lists for all built-in operators a classification of argument restrictions and result description that are
used in the following for the explanation of built-in operators.

Argument
restriction(s) /

result
description

Argument restriction(s)

Result description
(check Section 8.1.2 for syntax)

(1)

dimensionality, extents and coordinates of the
only non-character / non-constant argument arg
can be arbitrary

same dimensionality, extents and
coordinates as the only non-character
/ non-constant argument:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j

(2.1)

all non-character / non-constant arguments arg
with same dimensionality, extents and coordi-
nates (*)

same dimensionality, extents and
coordinates as all the non-character /
non-constant arguments:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j

(2)

(2.2)

some non-character / non-constant arguments
arg with same non-zero dimensionality, extents
and coordinates (*), all the other non-character
arguments with dimensionality 0

same dimensionality, extents and
coordinates as all the non-character /
non-constant arguments with non-
zero dimensionality:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j
the 0-dimensional argument is applied
to each element of the non-zero di-
mensional argument

(3)
dimensionality, extents and coordinates of the
only non-character / non-constant argument
can be arbitrary

dim(res) = 0

(4.1)
all non-character / non-constant arguments with
same dimensionality, extents and coordinates
(*)

dim(res) = 0

(4)

(4.2)

some non-character / non-constant arguments
with same non-zero dimensionality, extents and
coordinates (*), all the other non-character /
non-constant arguments with dimensionality 0

dim(res) = 0
the 0-dimensional argument is applied
to each element of the non-zero di-
mensional argument

(5)

dimensionality, extents and coordinates of the
first non-character / non-constant argument arg
can be arbitrary, all the other following argu-
ments have to have dimensionalities, extents
and coordinates (*) of this argument or have to
have dimensionality 0

same dimensionality, extents and
coordinates as the first non-character
/ non-constant argument:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j

(6) Only character arguments or without arguments dim(res) = 0

Tab. 8.1 Classified argument restriction(s) / result description
 (*): for the different levels of checking a coordinate description see below

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -81-

The requirement for a lot of operators to have same coordinates for same dimensions may restrict applica-
tion of experiment post-processing especially for hypothesis checking heavily. To enable a broader flexibility
with respect to this situation a general solution is provided by SimEnv post-processing: With the sub-
keyword ‘coord_check’ in the general configuration file <model>.cfg three different modi can be assigned
globally to the SimEnv complete post-processing session:
• coord_check = strong

To ensure for two arguments with same dimensionalities and extents to have same coordinates it is
necessary that
• Assigned coordinate values for corresponding dimensions are unique
• Assigned coordinate names for corresponding dimensions are unique
coord_check = strong is the default

• coord_check = weak
To ensure for two arguments with same dimensionalities and extents to have same coordinates it is
necessary that
• Assigned coordinate values for corresponding dimensions are unique
• Assigned coordinate names may differ.
Coordinate description of the appropriate operator result is delivered from its first non-character / non-
constant operand.

• coord_check = without
To ensure for two arguments with same dimensionalities and extents to have same coordinates
• Neither coordinate names nor coordinate values for corresponding dimensions are checked
Coordinate description of the appropriate operator result is delivered from its first non-character / non-
constant operand.

Check Example 8.3 for examples.

Having a model output variable definition as in Example 5.1 on page 31 then the checking rules
for coordinates are applied in the following manner to operands with dimensionality 1:

Same coordinates for
coord_check = Result expression

strong

weak

without

bios(*,*,*) + atmo(c=84:-56,*,c=1,*)
(same coordinate names, same coordinate values) yes yes yes

atmo_g(*) + hgr(‘bin_no’,20,0.,0.,atmo)
(differing coordinate names, same coordinate values) no yes yes

atmo_g(c=6:16) + atmo_g(c=8:18)
(same coordinate names, differing coordinate values)

no no yes

atmo_g(c=20) + atmo(c=0,c=2,c=1,c=1)
(two operands with dimensionality 0) yes yes yes

While determination of coordinate information is unique for coord_check = strong,
coordinate information is determined by the first summand for coord_check = [weak | without].

Example 8.3 Checking rules for coordinates

-82- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

8.2 Built-In Generic Standard Aggregation / Moment Operators

The generic operators in Tab. 8.2 can be applied during experiment post-processing to derive aggregations
and moments from operands in different ways by appending suffixes (_n, _l, _e, without suffix) to the generic
operator name or by incorporating them into the filter argument for experiment specific operators of bahav-
ioural analysis:

Generic
aggregation and
moment operator

Meaning

max maximum of values
min minimum of values
sum sum of values
avg arithmetic mean of values
var variance of values
avgg geometric mean of values
avgh harmonic mean of values
avgw weighted mean of values
hgr histogram of values
count number of values
maxprop maximal, suffix related property of values
minprop minimal, suffix related property of values

Tab. 8.2 Built-in generic standard aggregation / moment operators

For more information check Sections 8.3.3 and 8.4.1.

8.3 Built-In Elemental, Basic, and Advanced Operators

8.3.1 Elemental Operators

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 80)

Argument
value

restriction
Precedence

(left parenthesis - first
) right parenthesis - first
arg1 ** arg2 exponentiation (2) arg1 > 0 second
arg1 * arg2 multiplication (2) third
arg1 / arg2 division (2) arg2 0 third
arg1 + arg2 addition (dyadic +) (2) fourth
arg1 – arg2 subtraction (dyadic -) (2) fourth
+ arg identity (monadic +) (1) fourth
– arg negation (monadic -) (1) fourth

Tab. 8.3 Built-in elemental operators

• n-dimensional matrix algebra of built-in elemental operators is performed element by element
Example: atmo(*,*,1,*) * bios(*,*,*) = “atmo(i,j,1,k) * bios(i,j,k)” for all addressed (i,j,k)

• If an argument value restriction is not fulfilled for an operand element the corresponding element of the
operator result is undefined.

• For examples check Section 8.3.5.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -83-

8.3.2 Basic and Trigonometric Operators

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 80)

Argument
value

restriction
Example

Basic operators

abs(arg) absolute value (1) abs(-3) = 3.
dim(arg1,arg2) positive difference (2) dim(10,5) = 5.

dim(5,10) = 0.
exp(arg) exponential function (1) exp(1.) = 2.7183
int(arg) truncation value (1) int(7.6) = 7.

int(-7.6) = -7
log(arg) natural logarithm (1) arg > 0 log(2.7183) = 1.
log10(arg) decade logarithm (1) arg > 0 log10(10) = 1.
mod(arg1,arg2) remainder (2) arg2 0 mod(10,4) = 2.
nint(arg) round value (1) nint(7.6) = 8.
sign(arg) sign of value (1) sign(-3) = -1.

sign(0) = 0.
sqrt(arg) square root (1) arg 0 sqrt(4) = 2.

Trigonometric operators

sin(arg) sine (1) sin(0) = 0.
cos(arg) cosine (1) cos(0) = 1.
tan(arg) tangent (1) arg π/2±n*π tan(0) = 0.
cot(arg) cotangent (1) arg ±n*π cot(1.5708) = 0.
asin(arg) arc sine (1) abs(arg) 1 asin(0) = 0.
acos(arg) arc cosine (1) abs(arg) 1 acos(1) = 0.

atan(arg) arc tangent (1) atan(0) = 0.
acot(arg) arc cotangent (1) acot(0) = 1.5708
sinh(arg) hyperbolic sine (1) sinh(0) = 0.
cosh(arg) hyperbolic cosine (1) cosh(0) = 1.
tanh(arg) hyperbolic tangent (1) tanh(0) = 0.
coth(arg) hyperbolic cotangent (1) arg 0 coth(3.1416) = 1.

Tab. 8.4 Built-in basic and trigonometric operators

The following explanations hold for the operators in Tab. 8.4:
• All operators are applied to each element of the argument(s). These operators deal with an unfulfilled

argument value restriction for an operand element in a way that the corresponding element of the opera-
tor result will be undefined.

• For examples check Section 8.3.5.

-84- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

8.3.3 Standard Aggregation / Moment Operators

The generic standard aggregation / moment operators in Tab. 8.2 can be applied during experiment post-
processing to derive aggregations and moments from operands in different ways by appending suffixes to
the generic operator name:
• Appending no suffix:

Aggregate the only non-character / non-constant argument
Result is a scalar (an operator result of dimensionality 0) for all but operators hgr, minprop and maxprop.
For operator hgr dimensionality of the result is 1, the extent is the specified number of bins for the histo-
gram and the coordinate assigned has the name bin. Coordinate values are equidistant with 1 as the
first value and an increment of 1.
For operators minprop and maxprop dimensionality of the result is 1. For argument dimensionality
greater / equal 1 extent of the result is equal to the argument dimensionality. Assigned coordinate name
is index. Coordinate values are equidistant with 1 as the first value and an increment of 1. For argument
dimensionality 0 result dimensionality is 0.

• Appending suffix _n (for n arguments)
Aggregate an arbitrary number of non-character / non-constant arguments with argument restriction(s) /
result description according to (2) in Tab. 8.1 on page 80 element by element
Currently, only operators min_n and max_n are implemented.
Result has same dimensionality, extents and coordinates as the arguments

• Appending suffix _l (for loop)
Aggregate the only non-character / non-constant argument separately for selected dimensions. Dimen-
sions to select are described by an additional loop character argument (corresponds to the group by-
clause of the standard query language SQL of relational database management systems).
Result has a lower dimensionality as the only non-character argument according to the loop character
argument.
For operator hgr_l, dimensionality is increased additionally by one, the additional extent is the specified
number of bins for the histogram and the additional coordinate assigned to has the name bin. Coordi-
nate values are equidistant with 1 as the first value and an increment of 1.

For operators minprop_l and maxprop_l dimensionality is modified in the same manner like for operators
minprop and maxprop, respectively.

• For examples check Section 8.3.5.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -85-

Aggregation and
moment operator

Argument restriction(s) /
result description (Tab. 8.1, page 80)

max(arg)
min(arg)
sum(arg)
avg(arg)
var(arg)
avgg(arg)
avgh(arg)

(3)

avgw(arg1,arg2) (4.1)
arg2 = weight

hgr(char_arg1,int_arg2,
 real_arg3,real_arg4,
 arg5)

dim(res) = 1
ext(res,dim(res)) = number of bins
for char_arg1 = ‘bin_no’ (bin number):
coord(res,dim(res)) = name = bin_no
 values = equidist_end 1(1) number of bins
for char_arg1 = ‘bin_mid’ (bin mid):
coord(res,dim(res)) = name = bin_mid
 values = equidist_end 1st bin mid (bin width) number of bins
char_arg1 see above
int_arg2 = number of bins: 4 int_arg2 number_of_values or
 = 0: automatic determination:
 number of bins = max(4,number_of_values_of_arg5/10)
real_arg3 left bin bound for bin number 1
real_arg4 right bin bound for bin number int_arg2
real_arg3 = real_arg4 = 0.: determine bounds by min(arg5) and max(arg5)
 min(arg5) = max(arg5): all result values are undefined

count(char_arg1,arg2) (3)
char_arg1 = [all | def | undef]

maxprop(arg)

minprop(arg)

dim(res) = 1 for dim(arg) > 1
ext(res,1) = dim(arg)
dim(res) = 0 else
return the index of that element of arg where the extreme is reached the first
time according to the processing sequence of the argument field arg by the
Fortran storage model (see Section 15.7 - Glossary).

Tab. 8.5 Built-in standard aggregation / moment operators without suffix

Aggregation and
moment operator

Argument restriction(s) /
result description (Tab. 8.1, page 80)

max_n(arg1 ,..., argn)
min_n(arg1 ,..., argn)

(4)

maxprop_n(arg1 ,..., argn)

minprop_n(arg1 ,..., argn)

(4)
return per result element the argument position (1 ,..., n) where the extreme is
reached the first time. Processing sequence starts with arg1.

Tab. 8.6 Built-in standard aggregation / moment operators with suffix _n

-86- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Aggregation and
moment operator

Argument restriction(s) /
result description

min_l(char_arg1,arg2)
max_l(char_arg1,arg2)
sum_l(char_arg1,arg2)
avg_l(char_arg1,arg2)
var_l(char_arg1,arg2)
avgg_l(char_arg1,arg2)
avgh_l(char_arg1,arg2)

avgw_l(char_arg1,arg2,
 arg3)

dim(arg2) = dim(arg3)
ext(arg2,i) = ext(arg3,i)
arg3 = weight

hgr_l(char_arg1,
 char_arg2,int_arg3,
 real_arg4,real_arg5,
 arg6)

dim(res) = 1 + dim(res)
 of all other operators
ext(res,dim(res)) = number of bins
for char_arg2 = ‘bin_no’ (bin number):
coord(res,dim(res)) = name = bin_no
 values = equidist_end
 1(1) number of bins
for char_arg2 = ‘bin_mid’ (bin mid):
coord(res,dim(res)) = name = bin_mid
 values = equidist_end
 1st bin mid (bin width)
 number of bins
char_arg2 see above
int_arg3 number of bins
 4 int_arg3 number_of_
 values_of_arg6
 or
 0: automatic determination
 = max(4,number_of_values/10)
real_arg4 left bin bound for bin number 1
real_arg5 right bin bound for bin number
 int_arg3
real_arg4 = real_arg5 = 0.: de-
termine bounds by
 min(arg6) and max(arg6)
 min(arg6) = max(arg6):
 all result values are undefined

count_l(char_arg1,
char_arg2,arg3)

dim(argi) > 1
ext(argi) = arbitrary
dim(res), ext(res,i) according to
char_arg1 and argi

char_arg2 = [all | def | undef]

minprop_l(char_arg1,
 arg2)

maxprop_l(char_arg1,
 arg2)

as above, but:
dim(res) is increased by 1 w.r.t.
above.
ext(res,dim(res)) = dim(arg2)
coord(res,dim(res)): name = index
 values =
 equidist_end 1(1)”n”

return the indices of those elements of
arg2 where the extreme is reached the first
time according to char_arg1 and to a For-
tran-like processing sequence / storage
model (see Section 15.7 - Glossary) of the
argument field arg2.

Tab. 8.7 Built-in standard aggregation / moment operators with suffix _l

The loop character argument char_arg1 is characterised as follows:
• The length of the string is equal to the dimensionality of the non-character argument
• The string consists of 0 and 1
• 0 at position n means: aggregate over the corresponding dimension n of the argument
• 1 at position n means: do not aggregate over the corresponding dimension n of the argument
• Loop character arguments completely formed of 0 or 1 are forbidden

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -87-

8.3.4 Advanced Operators

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 80)

Argument
value

restriction
Example

classify(int_arg1,
 real_arg2,
 real_arg3,arg4)

classify arg4 into int_arg1
classes;
potentially restrict classi-
fication to interval
(real_arg2 , real_arg3).

(1)
dim(arg4) > 0
int_arg1 = number of classes
 2 int_arg1
 number of values of arg4
 = 0: automatic
 determina tion:
 number of classes =
 max(2,number ofvalues/10)
real_arg2 = minimum bound for
 values in class # 1
real_arg3 = maximum bound for
 values in class # int_arg1
arg2 = 0. and arg3 = 0.:
 automatic bound
 determination

classify(
(10,0.,0.,atmo)

clip(char_arg1,
 arg2)

clip arg2 according to
char_arg1

dim(arg2) > 0
dim(res), ext(res,i) depend on
char_arg1 and arg2
char_arg1 = clip range

clip(
‘0,*,1,10’,
atmo)

cumul(char_arg1,
 arg2)

cumulate arg2 according
to char_arg1

(1)
dim(arg2) > 0
char_arg1 = cumulation indicator
 per dimension

cumul(‘0001’,
atmo)

flip(char_arg1,
 arg2)

flip arg2 according to
char_arg1

(1), but coordinates are also flipped
dim(arg2) > 0
char_arg1 = flip indicator per
 dimension

flip(‘0001’,
atmo)

get_data(
 char_arg1,
 char_arg2,
 char_arg3,
 arg4)

get data from an external
file

dimensionality, extents and coordi-
nates according to char_arg3 and
char_arg4
char_arg1 = data file format
 = [netcdf | ascii]
char_arg2 = data file name
char_arg3 = coordinate specification
 / transformation file
 name
char_arg4 = variable to get from the
 data file

get_data(
‘ascii’,
‘data.asc’,
‘data.def’,
variable)

get_experiment(
 char_arg1,
 char_arg2,
 char_arg3,
 arg4)

include an other
experiment

(1) but
coordinates according to char_arg3
char_arg1 = experiment directory
char_arg2 = model experimented with
char_arg3 = coordinate transfor-
 mation file
arg4 = result from the other
 experiment

get_experiment(
‘mod_res’,
‘mod’,
‘mod.ctf’,
avg(atmo)-400.)

get_table_fct(
 char_arg1,
 arg2)

apply table function with
linear interpolation of table
char_arg1 to arg2

(1)
char_arg1 = file name

get_table_fct
(‘table.usr’,
atmo)

-88- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 80)

Argument
value

restriction
Example

if(char_arg1,
 arg2,arg3,arg4)

conditional if-construct (5)
char_arg1 = comparison operator
arg2 = comparator
arg3, arg4 = new assignments

if(‘<’,atmo,400,
atmo)

mask(char_arg1,
 arg2,arg3)

mask values of arg2
(set them undefined) by
comparing arg2 and arg3
using operator char_arg1

(5)
char_arg1 = comparison operator

mask(‘<’,atmo,
400)

matmul(arg1,
 arg2)

matrix multiplication dim(arg1) = dim(arg2) = dim(res)
 = 2
ext(res,i) according to matrix
 multiplication rules

matmul(
atmo(*,*,1,1),
transpose(‘21’,
atmo(*,*,1,1)))

move_avg(
 char_arg1,
 char_arg2,
 int_arg3,arg4)

moving average of arg4 (1)
dim(arg4) > 0
char_arg1 = moving average
 sequence per dimension
char_arg2 = average type
 = lin: linear
 exp: exponential
int_arg3 = running length
 for average
 int_arg3 > 1
 int_arg3 = 0:
 automatic determination:
 = max(3, ext(arg4,i)/20.

move_avg(‘001’,
‘lin’,0,atmo)

rank(char_arg1,
 arg2)

assign rank numbers to
arg2 according to ranking
type argument char_arg1

(1)
dim(arg2) > 0
arg1 = ranking type
 [tie_plain | tie_min |
 tie_avg]

rank(‘tie_avg’,
atmo)

regrid(char_arg1,
 arg2)

assign completely or par-
tially new coordinates to
arg2

(1), but
coordinates according to char_arg1
char_arg1 = file how to transform
 coordinates of arg2
arg2 result to transform
 coordinates

regrid(‘mod.ctf’,
atmo_g-13)

run(char_arg1,
 arg2)

values of arg 2 for the
selected single run
number explicitly or implic-
itly coded in char_arg1

(1)
char_arg1 = run number selection
 for all experiment
 types:
 = <run_number>
 0 char_arg1
 number_of_runs
 addit. for behavioural and
 local sensitivity analysis:
 = <filter argument>
 same as filter argument
 of operator behav,
 (check Sections 8.4.3
 and 8.4.4)

run(‘0’,atmo)
run(‘sel_t(p1(4))
’,atmo)

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -89-

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 80)

Argument
value

restriction
Example

run_info(
 char_arg)

number of single runs
and/or run number in the
experiment

(6)
char_arg1 = run information type
 = run_nr
 for current run number
 = nr_of_runs
 for number of runs of the
 experiment

run_info(
‘run_nr’)

transpose(
 char_arg1,
 arg2)

transpose arg2 according
to sequence in char_arg1

dim(arg2) > 1
dim(res) = dim(arg2)
ext(res,i) = ext(arg2,j) (re-sorted)
char_arg1 = transpose sequence

transpose
(‘3142’,atmo)

undef() undefined value (6) undef()

Tab. 8.8 Built-in advanced operators

The following explanations hold for the operators in Tab. 8.8:
• All operators but experiment and matmul are applied to each element of the argument(s). These

operators deal with an unfulfilled argument value restriction for an operand element in a way that the cor-
responding element of the operator result will be undefined.

• The operator classify transforms the values of an operand arg4 that has dimensionality > 0 into the

class numbers 1 ,..., int_arg1 of int_arg1 classes. Classes are assumed to be equidistant.
If both arguments real_arg2 and real_arg3 are 0. then min(arg4) forms the lower boundary of class
number 1 and max(arg4) forms the upper boundary of class number int_arg1. For min(arg4) = max(arg4)
all result values of the operator classify are undefined.
For real_arg2 0. or real_arg3 0 real_arg2 and real_arg3 are used as boundaries for the classification
and all of those result values are undefined where values of argument arg4 are outside the specified
boundary range.

• The operator clip clips an operand arg2 that has dimensionality > 0. The portion to clip from the oper-

and arg2 is described by the argument char_arg1. The argument char_arg1 uses syntax for model out-
put variable addressing (see Section 8.1.3 on page 77). Note, that for all dimensions of argument arg2
lower bound index is 1. This applies also to model output variables where the lower bound index is un-
equal 1 in the model output description file. In general, extents differ between the result of the operator
clip and the argument arg2. Clip reduces the dimensionality of the result with respect to the argument
arg2 to clip if the portion to be clipped is limited to one value for at least one dimension.
A character argument char_arg1 = ‘* ,..., *’ results for operator clip in the identity of argument arg2.

• The operator cumul cumulates an operand arg2 that has dimensionality > 0. Cumulation is performed

for all values of the argument arg2 from the first addressed index position up to the current index posi-
tion. With the character argument char_arg1 these dimensions are identified that are to be cumulated.
Character 1 at position i means cumulation across dimension i while a 0 stands for no accumulation.
cumul(‘0...0’,arg2) results in the identity to arg2.

• The operator flip enables flipping of variable fields. For a one-dimensional field (a vector) flip changes

the value of the first index position with the value of the last position, the value of the second position
with that of the last but one position, etc. With the character argument char_arg1 these dimensions are
identified that are due to flip. Character 1 at position i means flipping also for dimension i while a 0
stands for no flipping at this dimension. Flipping includes adaptation of coordinates and the assigned
grid. flip(‘0...0’,arg2) results in the identity to arg2.

• With the operator get_data data from external files can be included in post-processing. Character ar-

gument char_arg1 specifies the data file format. Character argument char_arg2 addresses the data file.
Character argument char_arg3 is used to define or transform structure information and coordinates from

-90- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

the data file. Argument arg4 holds the variable that is to be extracted from the data file. For restrictions in
the path to the directory of the character arguments char_arg2 and char_arg3 check Tab. 11.3. Cur-
rently, ASCII and NetCDF files are supported (char_arg1 = [‘ascii’ | ‘netcdf’).
For ASCII data files the file syntax rules from Section 11.3 are valid. Since the ASCII data file itself does
not come with any structure and coordinate information the character agument char_arg3 specifies this
information. For ASCII data files this argument is a mandatory one. It follows the same rules as for any
coordinate transformation file (see Section 11.2). Keywords ‘general’, ‘assign’, and ‘coordinate’ and the
appropriate sub-keywords from Tab. 11.5 can be used to structure the data file and to assign coordi-
nates and coordinate values. Consequently, the keyword ‘modify’ is not allowed. See Example 8.4 for
more information. For ASCII files it is assumed that the file holds only the values for one variable in a
sequence according to the Fortran storage model (see Section 15.7 – Glossary). For ASCII files argu-
ment arg4 is only a dummy placeholder.
For NetCDF files argument 4 addresses the variable name to extract from the data file. The character
argument char_arg3 is an optional argument. Unlike for ASCII data files, the keyword ‘modify’ is allowed.

Having a model output variable definition as in Example 5.1 on page 31 and assuming

a data file data.asc as
data file with 6 values
10 , 20 , 30
40 , 50 , 60

and a file data.def to define data structure and coordinates as
general descr structure for data.asc
assign as second dimension coordinate time
(already defined in world_*.mdf)
assign 2 coord time
assign 2 coord_extent 11:13
assign as first dimension a new coordinate new_coord
assign 1 coord new_coord
assign 1 coord_extent 100:110
coordinate new_coord values list 100,110

then
get_data(‘ascii’,‘data.asc’,‘data.def’,dummy)
 has Dimensionality = 2
 Coordinates = new_coord , time
 Extents = 2 , 3

and the result of this operator is a 2 x 3 matrix 10 30 50
 20 40 60

To get same dimensionality, coordinates and extents but result values as the “original matrix”
in data.asc
- exchange coordinate numbers in data.def: 1 by 2 and 2 by 1 and
 - apply transpose(‘21’,get_data(‘ascii’,‘data.asc’,‘data.def’,dummy))
 It has Dimensionality = 2
 Coordinates = new_coord , time
 Extents = 2 , 3

and the result of this operator chain is a 2 x 3 matrix 10 20 30
 40 50 60

Example 8.4 Experiment post-processing operator get_data and coordinate transformation file

• The operator get_experiment is to access to external SimEnv model output from the same or an other
model performed with the same or another experiment type and stored in the same or in an other model

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -91-

output format. Model output variables can differ from that used for the current model. Use for the ex-
periment directory char_arg1 always that workspace the external experiment was started from. The ex-
ternal experiment is always post-processed completely over all single runs. Argument char_arg3 is the
coordinate transformation file. It can be used to transform coordinates from the external result for usage
in the current result of the current experiment. If no coordinate transformation file is to be used argument
char_arg3 is empty (‘ ‘). If after potential application of a coordinate transformation file the imported re-
sult has same coordinate names as defined in the original experiment coordinate descriptions are
checked against each other, otherwise coordinate descriptions are imported from the external into the
original experiment. For syntax of coordinate transformation files check Section 11.2. For restrictions in
the path to the directory of the character arguments char_arg1 and char_arg3 check Tab. 11.3.
Attention:
Make sure
• no SimEnv service is running from the directory char_arg1 of the external experiment before apply-

ing this operator
• to have full access permissions to the experiment directory char_arg1
• the experiment directory char_arg1 differs from the current workspace
In the experiment directory a file simenv_get_experiment.exc is used to exchange information between
the external and the current experiment.

• With the operator get_table_fct a table function char_arg1 is applied to each element of the operand

arg2. If necessary, table values are interpolated linearly. Outside the definition range of the table func-
tion the first and/or the last table value is used. File char_arg1 has to hold the table function and must be
an ASCII file with two columns: The first column of each line is the argument value x associated with the
elements of the operand arg2, the second column is the function value f(x) of the table associated with
the elements of the operator result. Argument values x have to be ordered in a strictly increasing man-
ner. Syntax rules for comments and separators in the table function file are the same as for user defined
files (check Section 11.3). For restrictions in the path to the directory of the character argument
char_arg1 see Tab. 11.3. Check the table function world.dat_tab in the example directory
$SE_HOME/../examples of SimEnv for more information.

• The operator if supplies a general conditional if-construct. It operates for each element of the operand

arg2 in the following way:
if (condition(char_arg1,arg2)) then

res=arg3
else

res=arg4
endif

with
condition(char_arg1,arg2): arg2 < 0 (char_arg1 = ‘<’)

 arg2 0 (char_arg1 = ‘<=’)
 arg2 > 0 (char_arg1 = ‘>’)
 arg2 0 (char_arg1 = ‘>=’)
 arg2 = 0 (char_arg1 = ‘==’)
 arg2 0 (char_arg1 = ‘!=’)
 arg2 def (char_arg1 = ‘def’)
 arg2 undef (char_arg1 = ‘undef’)

• The operator mask supplies a method to mask values. It operates for each element of the operand arg2

in the following way:
if (condition(char_arg1,arg2,arg3)) then

res=undef()
else

res=arg2
endif

with
condition(char_arg1,arg2,arg3): arg2 < arg3 (char_arg1 = ‘<’)

 arg2 arg3 (char_arg1 = ‘<=’)
 arg2 > arg3 (char_arg1 = ‘>’)
 arg2 arg3 (char_arg1 = ‘>=’)

-92- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

 arg2 = arg3 (char_arg1 = ‘==’)
 arg2 arg3 (char_arg1 = ‘!=’)

• The operator matmul performs a simple matrix multiplication for 2-dimensional arguments arg1 and

arg2.

• The operator move_avg performs a moving average operation successively for selected dimensions of

the argument arg4.
For a vector (a1 , a2 ,..., alen) the moving average of running length rl is a vector (ma1 , ma2 ,..., malen)
with elements

 j

i

)1rli,1max(j
iji

)1rli,1max(j
ij

i aw

w

ma ⋅⋅= ∑
∑ +−=

+−=

1

where wij are weights. Value mai is averaged from the rl values ai , ai-1 ,..., ai-rl+1. Accordingly, the first rl-
1 values ma1, ma2 ,..., marl-1 are averaged from less than rl values.

For the linear moving average the weight is 1wij = and)i,rlmin(w
i

)1rli,1max(j
ij =∑

+−=

,

for the exponential moving average the weight is rl

ji

ij ew
−

−
= .

While the moving average is normally applied to time-dependent one-dimensional data vectors the op-
erator move_avg allows processing of multi-dimensional data fields in a general and succesive manner.
For example, if arg4 is the three-dimensional variable bios(1:lat,1:lon,1:time) then the linear moving av-
erage could be applied to the dimension time successively for all combinations of lat and lon. This
means that (lat1 = 1 ,..., lat) * (lon1 = 1 ,..., lon) = lat*lon moving averages will be performed for the vec-
tor

 (bios(lat1,lon1,1) , bios(lat1,lon1,2) ,..., bios(lat1,lon1,time)).
Afterwards this moving averaged temporary result tmp could be moving averaged for all values of lat:
(lon1 = 1 ,..., lon) * (time1 = 1 ,..., time) = lon*time moving averages will be performed for the vector

 (tmp(1,lon1,time1) , tmp(2,lon1,time1) ,..., tmp(lat,lon1,time1)).

The operator that allows for this double averaging would have the arguments

 move_arg(‘201’ , ’lin’ , 0 , bios) .

The character argument char_arg1 supplies those dimensions that are to be involved in the moving av-
erage operation. If the n-th digit of char_arg1 is a digit > 0 then the moving average for dimension n of
argument arg4 is performed at position number “digit” (i.e. after performing moving averages for those
dimensions that correspond to digits smaller than the current one). If the n-th digit of arg1 is 0 then the
moving average for the dimension n of arg4 will not be performed.
Keep in mind that the sequence of moving averages for single coordinates influences the result of the
operator.

• The operator rank transforms all values of the operand arg2 that has dimensionality > 0 into their ranks.

Small values get low ranks, large values get high ranks. The smallest rank is 1. Character argument
char_arg1 determines how to rank ties, i.e., values arg 21 and arg22 of arg2 that are identical or have a
maximum relative difference of 10-6 (abs(arg21-arg22)/arg21) < 10-6):
Assume an argument arg2 with 6 values (4., 2., 4., 4., 4., 8.).

Then char_arg1 = ‘tie_plain’ returns ranks (2 , 1 , 2 , 2 , 2 , 3)
 four times rank 2; next rank is 3,
 does not take into account the number of identical
 values

 char_arg1 = ‘tie_min’ returns ranks (2 , 1 , 2 , 2 , 2 , 6)
 four times rank 2; next rank is 6,
 takes into account the number of identical values

 char_arg1 = ‘tie_avg’ returns ranks (3.5 , 1 , 3.5 , 3.5 , 3.5 , 6)
 four times mean rank 3.5 = (2+3+4+5)/4; next rank is 6,
 takes into account number of identical values

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -93-

• The operator regrid can be used to assign new coordinates to argument arg2. Character argument
char_arg1 is the name of the coordinate transformation file that holds the information how to transform
the coordinates. The keyword ‘modify’ and the corresponding sub-keywords are not allowed. For syntax
of coordinate transformation files check Section 11.2. For restrictions in the path to the directory of the
character arguments char_arg1 check Tab. 11.3.

• The operator run selects a single run from the run ensemble. The operator run must not contain ex-

periment specific (multi-run) operators as operands, since these operators may refer to the operator run.
Additionally, run must not contain itself as an argument.
The character argument char_arg1 can hold the run number string explicitly. An explicit run number
string in character argument char_arg1 is allowed forall experiment types. Additionally, for behavioural
and local sensitivity analysis a run number unequal 0 can be selected implicitly by applying a filter of the
corresponding operators (see Sections 8.4.3 and 8.4.4) as char_arg1 of the operator run.
The file <model>.smp holds the sampled factor values to be adjusted by the default values for the cur-
rent experiment. Run number n corresponds to record number n+1 of this file. Single run number 0 cor-
responds to the default single run 0. For more information on <model>.smp check Section 6.1 on page
51. For examples see Example 8.7 and Example 8.9.

• The operator run_info returns for the character argument ‘run_nr’ the run number of the current single

run of the experiment. For the character argument ‘nr_of_runs’ the number of performed single runs of
the current post-processed experiment without the run number 0 is returned.

• The operator transpose enables to transpose an operand that has a dimensionality > 1. Sequence of

extents of the transposed result is described by character argument char_arg1: It consists of digits 1 ,...,
dim(arg2) where the digit sequence corresponds to the re-ordered sequence of the operator result ex-
tents.
A character argument char_arg1 = ‘123...’ results for the operator transpose in the identity of argument
arg2.

• The operator undef supplies a 0-dimensional result as undefined. This operator can be used as an

argument for the if-operator.

• For examples of the described operators check Section 8.3.5.

8.3.5 Examples

Having a model output variable definition as in Example 5.1 on page 31 and
assuming address_default=coordinate in world_*.cfg then in experiment post-processing

atmo_g+2*atmo_g value of result 3*atmo_g
 Dimensionality = 1
 Coordinates = time
 Extents = 20
sqrt(atmo_g) square root of atmo_g
 Dimensionality = 1
 Coordinates = time
 Extents = 20
clip(‘i=23,*,1,19:20’,atmo) last two decades for level 1 at equator
 equivalent with atmo(i=23,*,1,19:20)
 Dimensionality = 2
 Coordinates = lon , time
 Extents = 90 , 2
atmo – get_experiment(‘./other_dir’,‘other_model’,‘ ’,atmo)
 Difference for atmo between the current experiment and
 another model other_model, located in directory ./other_dir
 without application of an coordinate transformation file

-94- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = according to definition of atmo in other_model
get_table_fct(‘world.dat_tab’,atmo)
 Operator table_fct with table world.dat_tab applied to
 each element of atmo
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 20
if(‘<’,atmo-10,10,atmo) maximum from atmo and 10 for each element of atmo
 equivalent with max_n(atmo,10)
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 20
avg(atmo(*,*,*,19:20)) global all-level mean over the last two decades
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
maxprop(atmo) indices of this element of atmo where the maximum of atmo
 is reached the first time
 Dimensionality = 1
 Coordinates = index
 Extents=4
min_n(atmo(84:-56,*,1,19:20),10.)
 minimum per grid cell for level 1 without polar regions
 for the last two decades from atmo and 10
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 36 , 90 , 2
min_l(‘10’,atmo(20:-20,*,1,20))
 zonal tropical minima of atmo for the last decade and
 level 1
 Dimensionality = 1
 Coordinates = lat
 Extents = 11
minprop_l(‘10’,atmo(20:-20,*,1,20))
 zonal tropical indices of those elements of
 atmo for the last decade and level 1 where the minimum is
 reached the first time
 Dimensionality = 2
 Coordinates = lat , index
 Extents = 11 , 2
hgr_l(‘10’,‘bin_no’,8,0.,0.,atmo(20:-20,*,1,20))
 zonal tropical histograms with 8 bins of atmo for the
 last decade and level 1. Bin bound extremes are deviated
 from the values of atmo
 Dimensionality = 2
 Coordinates = lat , bin_no
 Extents = 11 , 8
avg_l(‘100’,min_l(‘1011’,atmo(20:-20,*,*,*)))
 temporally averaged all-level zonal tropical minima
 Dimensionality = 1
 Coordinates = lat
 Extents = 11

Example file: world.post_adv

Example 8.5 Experiment post-processing with advanced operators

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -95-

8.4 Built-In Experiment Specific Operators

• Experiment specific operators are to navigate and process in the experiment space.
• Experiment specific operators must not be applied recursively.
• Addressing a variable within an experiment specific operator normally results in application of the opera-

tor on the whole run ensemble or parts of it and in aggregating across the run ensemble according to the
operator.

• Addressing a variable outside an experiment specific operator results in application of the basic, ad-
vanced and/or user-defined operator on the variable for the default run number 0 of the experiment.

• If the dimensionality of an operator result is higher than that of one of its operands the additional dimen-
sions of the result are appended to the dimensions of the operand. Examples for such operators are ens
(for Monte Carlo analysis post-processing) and behav (for certain constellations of behavioural analysis
post-processing).

8.4.1 Standard Aggregation / Moment Operators

Tab. 8.9 summarises multi-run standard aggregation / moment operators for behavioural analysis, Monte
Carlo analysis and optimization. They work on the whole run ensemble (for Monte Carlo analysis and optimi-
zation) or parts of it (for certain constellations of behavioural analysis post-processing). They are used with
suffix _e for Monte Carlo analysis and optimization and without any suffix for behavioural analysis. For a
definition of these operators check Tab. 8.2 on page 82.

Aggregation and
moment operator

Argument restriction(s) /
result description (Tab. 8.1, page 80)

min(arg)
max(arg)
sum(arg)
avg(arg)
var(arg)
avgg(arg)
avgh(arg)

(1)

avgw(arg1,arg2) (2.1)
arg2 = weight

hgr(char_arg1,int_arg2,
 real_arg3,real_arg4,
 arg5)

(heuristic probability
density function)

dim(res) =dim(arg2)+1
ext(res,dim(res)) = number of bins
for char_arg1 = ‘bin_no’ (bin number):
coord(res,dim(res)) = name = bin_no
 values = equidist_end 1(1) number of bins
for char_arg1 = ‘bin_mid’ (bin mid):
coord(res,dim(res)) = name = bin_mid
 values = equidist_end 1st bin mid (bin width) number of
 bins
char_arg1 see above
int_arg2 = number of bins
 4 int_arg2 number_of_runs or
 0: automatic determination = max(4,number_of_runs/10)
real_arg3 left bin bound for bin number 1
real_arg4 right bin bound for bin number arg2
real_arg3 = real_arg4 = 0.: determine bounds by min(ens(arg5)) and
 max(ens(arg5))
 min(ens(arg5)) = max(ens(arg5)): all result values are
 undefined

count(char_arg1,arg2) (1)
arg1 = [all | def | undef]

minprop(arg)

maxprop(arg)

(1)
return the run number where the extreme is reached the first time.
Processing sequence starts with run number 1.

Tab. 8.9 Multi-run standard aggregation / moment operators

-96- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

8.4.2 Global Sensitivity Analysis

Name Meaning

Argument
restriction(s) /

result description

Argument value
restriction

morris(arg) get global sensitivity measures
for argument arg

dim(res) = dim(arg) + 2
ext(res,dim(res)-1) =
 number_of_factors
coord(res,dim(res)-1):
 name =
 factor_sequ
 values =
 equidist_end 1(1)
 number_of_factors
ext(res,dim(res)) = 2
coord(res,dim(res)) =
 name =
 stat_measure
 values =
 equidist_end 4(1)5

same as for
Monte Carlo
analysis

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

Tab. 8.10 Experiment specific operator for global sensitivity analysis

The operator morris appends two additional dimensions to the to dimensionality of its argument. The first
corresponds to the number of factors and the second to the derived statistical measures. According to the
coordinate values as described above the second additional dimension has the extent 2 and according to
Tab. 10.11 the first index of this dimension holds the averages µabs and the second index the variances σ to
describe the importance of the corresponding factors.

Additionally, this experiment type allows to post-process the whole run ensemble as a Monte Carlo analysis.
Keep in mind that the factors do not follow a pre-defined distribution

Having a model output variable definition as in Example 5.1 on page 31.
Assume the experiment description file (2) from Tab. 6.3 on page 53
then in result-processing

morris(max(atmo)) importance measures µabs and σ
 for max(atmo) for the four defined factors
 Dimensionality = 2
 Coordinates = factor_sequ , stat_measure
 Extents = 4 , 2
rank('tie_plain',-clip('*,i=1',morris(max(atmo))))
 ranks the importance measure µabs
 (rank 1 for the most important factor)
 for max(atmo) for the four defined factors
 Dimensionality = 1
 Coordinates = factor_sequ
 Extents = 4

Example file: world.post_h

Example 8.6 Experiment post-processing operators for local sensitivity analysis

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -97-

8.4.3 Behavioural Analysis

There is only one experiment specific operator for behavioural analysis. With this operator behav
• A single run can be selected from the run ensemble
• The complete run ensemble can be addressed
• Sub-spaces from the experiment space can be addressed and
• Sub-spaces can be projected by aggregation and moment operators
dependent on the way the experiment factor space was to be scanned according to the sub-keyword ‘comb’
in the experiment description file.

To show the power of the operator behav the simple experiment layouts as described in Fig. 4.4 on page 18
are used as examples.
• With the operator behav it is possible to address for any operand a single run out of the run ensemble by

fixing values of experiment factors p1 and p2 (for Fig. 4.4 (a)), a value of the parallel factors p1 or p2 (for
Fig. 4.4 (b)), and values of factors p3 and p1 or p2 (for Fig. 4.4 (c)). Dimensionality and extents of the
operator result is the same as that of the operand.

• Without any selection in the factor experiment space (p1,p2) and/or (p1,p2,p3) the dimensionality of the
operator result is formed from the dimensionality of the operand enlarged by the dimensionality of the
experiment space. Two additional dimensions are appended to the operand for Fig. 4.4 (a), one addi-
tional dimension for Fig. 4.4 (b), and two additional dimensions for Fig. 4.4 (c). For the latter two cases it
is important which of the axis p1 and p2 is used for further processing and/or output of the operator re-
sult. The extents of the appended dimensions are determined by the number of sampled values.

• As a third option it is possible to select only a sub-space out of the experiment space to append to the
operand. For Fig. 4.4 (a) this could be the sub-space formed from the first until the third sampled value
of p1 and all adjusted values of p2 between 3 and 7. Dimensionality of the operator result increases by 2
and extents of these additional dimensions are 3 and 2 with respect to the corresponding Example 6.2
(3a) in Section 6.3.2 on page 56.

• The operator behav also enables to aggregate operands in the experiment space. In correspondence
with the example in the last bullet point for Fig. 4.4 (a) the operand could be aggregated (e.g., averaged)
over the first until the third sampled value of p1 autonomously for all runs with different values of p2 and
afterwards this intermediate result (that now depends only on p2) could be summed up for all adjusted
values of p2 between 3 and 7. Consequently, the result has the same dimensionality as the operand of
behav. Sequence of performing aggregations is important.

Name Meaning

Argument
restriction(s) /

result description

Argument value
restriction

behav(char_arg1,
 arg2)

navigation and aggregation in the
experiment space for arg2 ac-
cording to char_arg1

char_arg1= selection /
 aggregation filter
 according to
 Tab. 8.14
dim(res) = dim(arg2) +
 appended dimensions
 according to char_arg1

Tab. 8.11 Experiment specific operator for behavioural analysis

-98- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Placeholder

Explanation

<filter> ‘ { <operator1> {, <operator2> ... {, <operatorn> } ... } } ‘
<operator> [<select_operator> | <aggreg_operator> | <show_operator>]
<select_operator> sel { _<factor_val_type>} (<factor_name> { <factor_val_range> })
<aggreg_operator> <aggreg_type> {_<factor_val_type>} (<factor_name> { <factor_val_range> })
<show_operator> show(<factor_name>)
<factor_name> name of the experiment factor according to the experiment description file
<factor_val_type> specification how to interpret <factor_val_range>:

i as a range of position indices of factor values (always count from 1)
s as a range of sampled factor values <factor_smp_val>
a as a range of adjusted factor values <factor_adj_val>

<factor_val_range> [(<val1> { : <val2> }) | (*)]
for <val2> = <nil> : <val2> = <val1>
* : use all values from <factor_name>
<vali> = <int_vali> for <factor_val_type> = i
<vali> = <real_vali> else

<aggreg_type> an aggregation / moment operator from Tab. 8.9 on page 95.
The following restrictions apply:
• aggregations avgw and hgr can not be used
• aggregation count has a differing syntax:
 count_<factor_value_type> ([all | def | undef] ,
 <factor_name> { <factor_value_range> })

Tab. 8.12 Syntax of the filter argument 1 for operator behav

The following rules hold for the operator behav:
• Generally, by the filter argument arg1 those runs from the run ensemble are selected and/or aggregated

(here interpreted as filtered) that are used for the formation of the result.
Consequently, if no filter is specified all runs are used:
behav(‘ ’,atmo_g)
The select operator has to be specified only if values are to be restricted by a corresponding factor value
range.
For the aggregation and the select operator the factor value type is redundant if the value range repre-
sents the full range of values by <factor_name> or <factor_name>(*):
sel(p1) = sel(p1(*)) =
sel_i(p1) = sel_s(p1) = sel_a(p1) =
sel_i(p1(*)) = sel_s(p1(*)) = sel_a(p1(*))
and all these select operators are redundant.

• The show-operator can be used to force a certain experiment factor to be used in the result of the opera-
tor behav if this factor is used in parallel with other factors. By default, the first factor of a parallel factor
sub-space as declared in the comb-line of the experiment description file is used in the behav-result.

• Aggregation operators reduce dimensionality of the covered experiment factor space in the behav-result.
The sequence of aggregation operators the first argument of the operator behav influences the result:
Computation starts with the first aggregation operator and ends with the last:
avg(p1), min(p2) normally differs from min(p2), avg(p1)

• An unused experiment factor in the selection and aggregation filter contributes with an additional dimen-
sion to arg2 to the result of the operator behav. The extent of this additional dimension corresponds to
the number of sampled values of this factor in the experiment description file.
A factor that is restricted by any of the select operators also contributes with an additional dimension to
the result of the operator behav if the number of selected values is greater than 1. The extent of the ad-
ditional dimension corresponds to the number of selected values of this factor by the select operator.
Consequently, an empty character string arg1 forces to output the operand arg2 over the whole factor
space of the experiment.

• The name of the coordinate that is assigned to an additional dimension is the name of the corresponding
factor. Coordinate description and coordinate unit (see 5.1 on page 25) are associated with the corre-
sponding information for the factor from the experiment description file.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -99-

Coordinate values are formed from adjusted factor values. For strictly ordered factor sampled values in
the experiment description file and finally for strictly ordered factor adjusted values the coordinate values
are ordered accordingly in an increasing or decreasing manner. Unordered factor sampled values and
finally unordered factor adjusted values are ordered in an increasing manner for coordinate usage.
The result of the operator behav is always arranged according to ascending coordinate values for all ad-
ditional dimensions.

• Independently from the sequence of the applied aggregation-, select- and show-operators the factors
that contribute to additional dimensions of the result of the operator behav are appended to the dimen-
sions of the operand arg2 of behav according to the sequence they are declared in the experiment de-
scription file (and not to the sequence they are used in the comb-line of the experiment description file).
From parallel changing factors that factor is used in this sequence that is addressed explicitly or implicitly
by the show-operator.

• For experiment factors that are changed in the experiment in parallel, that increase dimensionality of the
result and where a show-operator is missing the first factor from this parallel sub-space in the comb-line
is used in the result.

• For experiments that use a sample file (<model>.edf: specific comb file ...) instead of explicite sample
definitions (<model.edf>: specific comb [default | <combination>]) all experiment factors are assumed
to be combined in parallel.

Having a model output variable definition as in Example 5.1 on page 31 and
assuming address_default = coordinate in world_*.cfg
Assume the experiment layout in Fig. 4.4 (c) on page 18 and
the corresponding experiment description file from Example 6.2 (3c) on page 56
then in result-processing

behav(‘ ’,bios(*,*,20)) last time step of bios dependent on (p2,p1) and p3
 Dimensionality = 4
 Coordinates = lat , lon , p2 , p3
 Extents = 36 , 90 , 4 , 3
behav(‘show(p1)’,bios(*,*,20))
 last time step of bios dependent on (p1,p2) and p3
 Dimensionality = 4
 Coordinates = lat , lon , p1 , p3
 Extents = 36 , 90 , 4 , 3
behav(‘sel_a(p2(4)),sel_i(p3(1))’,atmo(*,*,1,*))
 select the single run out of the run ensemble for level 1
 p2 = 4 and p3 = 3.3
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 20
behav(‘sel_i(p2(1:3)),sel_s(p3(2:3))’,atmo(*,*,1,20))
 last time step of atmo for level 1 depend. on (p2,p1) and p3
 use only runs for p2 = 1, 2, 3 and for p3 = 6.0, 8.4
 Dimensionality = 4
 Coordinates = lat , lon , p2 , p3
 Extents = 45 , 90 , 3 , 2
behav(‘avg_i(p2(1:3)),sel_i(p3(2:3))’,atmo(*,*,1,*))
 mean of atmo for level 1 and for runs with p2 =1, 2, 3
 for each value of p3 = 8.4, 9.9
 Dimensionality = 4
 Coordinates = lat , lon , time , p3
 Extents = 45 , 90 , 20 , 2
behav(‘min(p2),max(p3)’,avg(atmo(*,*,1,19:20)))
 determine single minima of avg(atmo) for level 1 and the
 last two decades for each value of p2
 afterwards determine from that the maximum over all p3.

-100- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
behav(‘max(p3),min(p2)’,avg(atmo(*,*,1,19:20)))
 Result differs normally from min(p2),max(p3)
 (previous result expression)
behav(‘count(def,p3),sel_i(p2=1)’,bios(*,*,20))/3
 determine single numbers of defined values of
 bios for last decade for runs with p2=1.
 Result consists of values 0 (for water) and 1 (for land)
 Dimensionality = 2
 Coordinates = lat , lon
 Extents = 36 , 90
behav(‘ ’,atmo(*,*,1,20)-run(‘sel_i(p1(1)),sel_i(p3(3))’,
 atmo(*,*,1,20)))
 deviation of the last time step of atmo for level 1
 from the run with p1=1, p2=1, p3=6
 dependent on (p2,p1) and p3
 Dimensionality = 4
 Coordinates = lat , lon , p2 , p3
 Extents = 45 , 90 , 4 , 3

Example file: world.post_c

Example 8.7 Experiment post-processing operator behav for behavioural analysis

8.4.4 Local Sensitivity Analysis

Tab. 8.13 shows the experiment specific operators for local sensitivity analysis that can be used in post-
processing. For a definition of these operators check Tab. 4.2 on page 19.

Name Meaning

Argument
restriction(s) /

result description

Argument value
restriction

sens_abs(
 char_arg1,
 arg2)

absolute sensitivity measure for
arg2 according to char_arg1

sens_rel(
 char_arg1,
 arg2)

relative sensitivity measure for
arg2 according to char_arg1

lin_abs(
 char_arg1,
 arg2)

absolute linearity measure for
arg2 according to char_arg1

lin_rel(
 char_arg1,
 arg2)

relative linearity measure for arg2
according to char_arg1

sym_abs(
 char_arg1,
 arg2)

absolute symmetry measure for
arg2 according to char_arg1

sym_rel(
 char_arg1,
 arg2)

relative symmetry measure for
arg2 according to char_arg1

arg1 = selection /
 aggregation filter
dim(res) = dim(arg2) +
 appended
 dimensions
 according to
 char_arg1

Tab. 8.13 Experiment specific operators for local sensitivity analysis

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -101-

Placeholder

Explanation

<filter> ‘ { <select_operator1> {, <select_operator2> ... {, <select_operator3> } ... } } ‘
<select_operator> [self | seli | sels] { _<factor_val_type>} (<factor_val_range>)

 with self = select factor range
 seli = select increment range
 sels = select sign range (only for sens_abs and sens_rel)

<factor_val_type> specification how to interpret <val_range>
 i as a range of position indices (always count from 1) for self and seli
 s as a range of sampled increment values for seli
 n as a range of factor names (sequ. as in <model>.edf) for self
 as a range of signs for sels

<factor_val_range> [(<val1> { : <val2> }) | (*)]
for <val2> = <nil> : <val2> = <val1>
(*) : use all values from <factor_name>
<vali> = <int_vali> for <val_type> = i
<vali> = <real_vali> for <val_type> = s
<vali> = <factori> for <val_type> = n (self)
<val1> = [+ | -] and <val2> = <nil> for <val_type> = n (sels)

Tab. 8.14 Syntax of the filter argument 1 for local sensitivity operators

The following rules hold for the filter argument in local sensitivity operators:
• Generally, by the filter argument char_arg1 those runs from the run ensemble are selected (here inter-

preted as filtered) that are used for the formation of the result.
Consequently, if no filter is specified all runs are used:
sens_abs(‘ ’,atmo_g)
The filter operator has to be specified only if values are to be restricted by corresponding factor values,
increment values and/or sign ranges.

• For the above three select operators self, seli and sels the factor value type is redundant if the factor
value range represents the full range of values by [self | seli | sels] (*):
self(*) = self_n(*) = self_i(*) and all are redundant.

• Each select operator can be applied only once within the filter argument.
• For <val_type> = i, i.e. if a factor value range is specified by position indices those factors are selected

for self and/or those increments are selected for seli that correspond to the specified position indices.
Position indices are assigned from index 1 to the factors and or increments according to their specifica-
tion sequence in the corresponding experiment description file <model>.edf.

• If more than one factor, increment value and/or sign was selected by the filter argument arg1 it contrib-
utes with an additional dimension to the result of the local sensitivity operator:
• For factors an additional dimension factor_sequ
• For increments an additional dimension incr
• For signs an additional dimension sign
is appended to the dimensions of the argument arg2 to form the result of the local sensitivity operator.
The extent of this additional dimension corresponds to the defined and/or selected number of factors, in-
crement values and/or signs. For a definition of the additional dimensions check Tab. 10.11.
Firstly, dimension factor_sequ is appended on demand, secondly dimension incr and thirdly dimension
sign.

Having a model output variable definition as in Example 5.1 on page 31 and
assuming address_default=coordinate in <model>.cfg
Assume the experiment description file (4) from Example 6.3 on page 58
then in result-processing

sens_abs(‘ ’,atmo_g) absolute sensitivity measure for atmo_g
 for all factors, increments and signs
 Dimensionality = 4
 Coordinates = time , factor_sequ , incr , sign
 Extents = 20 , 3 , 4 , 2

-102- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

sens_rel(‘sels_n(+),self_i(1)’,atmo_g)
 relative sensitivity measure for atmo_g
 for factor p1 and all positive increments
 Dimensionality = 2
 Coordinates = time , incr
 Extents = 20 , 4
sens_abs(‘seli_s(0.001:0.05)’,atmo_g)
 absolute sensitivity measure for atmo_g
 for all factors, increment values 1 to 3 and all signs
 Dimensionality = 4
 Coordinates = time , factor_sequ , incr , sign
 Extents = 20 , 3 , 3 , 2
lin_abs(‘seli_s(0.001:0.05)’,atmo_g)
 absolute linearity measure for atmo_g
 for all factors and increment values 1 to 3
 Dimensionality = 3
 Coordinates = time , factor_sequ , incr , sign
 Extents = 20 , 3 , 3

Example file: world.post_f

Example 8.8 Experiment post-processing operators for local sensitivity analysis

8.4.5 Monte Carlo Analysis

Tab. 8.15 shows experiment specific operators for Monte Carlo analysis that can be used in post-processing
besides the general multi-run aggregation operators listed in Tab. 8.9 on page 95 and supplemented with a
suffix _e.

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 80)

Argument value
restriction

cnf(real_arg1,
 arg2)

positive distance of confidence
measure from mean avg_e(arg2)

(1)
real_arg1 probability of
 error

arg1 = [0.001 | 0.01 |
 0.05 | 0.1]

cor(arg1,arg2) correlation coefficient between
arg1 and arg2

(2.1)

cov(arg1,arg2) covariance between arg1 and
arg2

(2.1)

ens(arg) whole Monte Carlo run ensemble dim(res) = dim(arg)+1
ext(res,dim(res)) =
 number_of_runs
coord(res,dim(res)) =
 name = run
 values =
 equidist_end 1(1)
 number_of_runs

krt(arg) kurtosis (4th moment) (1)
med(arg) median (1)
qnt(real_arg1,
 arg2)

quantile of arg2 (1)
real_arg1 quantile value

0. arg1 100.

reg(arg1,arg2) linear regression coefficient
to forecast arg2 from arg1

(2.1)

rng(arg) range = max_e(arg) - min_e(arg) (1)

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -103-

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 80)

Argument value
restriction

skw(arg) skewness (3rd moment) (1)
stat_full(
 real_arg1,
 real_arg2,
 real_arg3,
 real_arg4,arg5)

full basic statistical measures of
arg5

dim(res) = dim(arg)+1
ext(res,dim(res)) = 10
coord(res,dim(res)) =
 name =
 stat_measure
 values =
 equidist_end 1(1)10

arg1, arg2 = [0.001 |
 0.01 | 0.05 | 0.1]
arg1 < arg2
probability of error for
confidence distance
measure
0. arg3 < arg4 100.
quantile values

stat_red(
 real_arg1,
 real_arg2,arg3)

reduced basic statistical meas-
ures of arg3

dim(res) = dim(arg)+1
ext(res,dim(res)) = 7
coord(res,dim(res)) =
 name =
 stat_measure
 values =
 equidist_end 1(1)7

arg1, arg2 = [0.001 |
 0.01 | 0.05 | 0.1]
arg1 < arg2
probability of error for
confidence distance
measure

Tab. 8.15 Experiment specific operators for Monte Carlo analysis
(without standard aggregation / moment operators)

The following explanations hold for the operators in Tab. 8.15:
• The operators stat_full and stat_red supply basic statistical measures for their last argument. Both

operators are stand-alone operators: They must not be operands of any other operator. Contrary, their
last argument can be composed from other non-multi-run operators. To store the statistical measures,
dimensionality of both operators is that of their last argument, appended by an additional dimension with
an extent of 10 and/or 7. Appended coordinate description is pre-defined by SimEnv (check Tab. 10.11).

These ten data fields (for operator stat_full) and/or seven data fields (operator stat_red) correspond to
the following statistical measures:
 1. Deterministic run (run number 0)
 2. Run ensemble minimum
 3. Run ensemble maximum
 4. Run ensemble mean
 5. Run ensemble variance
 6. Run ensemble positive distance of confidence measure from run ensemble mean for probability of

error real_arg1
 7. Run ensemble positive distance of confidence measure from run ensemble mean for probability of

error real_arg2
Only for operator stat_full:

 8. Run ensemble median
 9. Run ensemble quantile for quantile value real_arg3
10. Run ensemble quantile for quantile value real_arg4

The operator stat_red was introduced because computation of the median and quantiles consumes a lot
of auxiliary storage space. For the definition of the statistical measures check the corresponding single
operators in Tab. 8.9 and Tab. 8.15. Both operators were designed for application of an appropriate
visualization technique in result evaluation in future.

-104- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Having a model output variable definition as in Example 5.1 on page 31 and
assuming address_default=coordinate in world_*.cfg
Assume the Monte Carlo experiment from Example 6.4 (5) on page 61
then in experiment post-processing

avg_e(p1*atmo(*,*,1,19:20)) global run ensemble mean of p1*atmo for level 1

 and the last two decades
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 2
avg(atmo(*,*,1,19:20)) global mean of atmo for level 1 and the last two decades
 for run number 0
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
ens(atmo(*,*,1,20) run ensemble values of atmo for level 1 and the last decade
 Dimensionality = 3
 Coordinates = lat , lon , run
 Extents = 45 , 90 , 250
minprop_e(atmo(*,*,1,19:20)) run ensemble run number for level 1 and the last two
 decades
 where the minimum of atmo is reached the first time
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 2
var_e(atmo(*,*,1,19:20))–atmo(*,*,1,19:20)
 anomaly for run ensemble variance from the default
 (nominal) run for level 1 the last two decades
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 2
var_e(atmo(*,*,1,19:20)-run(‘0’,atmo(*,*,1,19:20)))
 global run ensemble variance of the anomaly of atmo for
 level 1 and the last two decades.
 Differs normally from the previous result expression
 Dimensionality 4
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 4 , 20
hgr_e(‘bin_no’,0,0.,0.,min_l(‘10’,atmo(20:-20,*,1,20)))
 histogram with 25 bins for the zonal tropical minima
 for level 1 and the last decade. Bin bound extremes are
 derived from the values of the last argument of the operator
 hgr_e.
 Dimensionality = 2
 Coordinates = lat , bin_no
 Extents = 11 , 25
stat_full(0.01,0.05,25,75, min_l(‘10’,atmo(20:-20,*,1,20)))
 full basic statistical measures for the zonal tropical minima
 of atmo for level 1 and the last decade
 Dimensionality = 2
 Coordinates = lat , stat_measure
 Extents = 11 , 10

Example file: world.post_e

Example 8.9 Experiment post-processing operators for Monte Carlo analysis

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -105-

8.4.6 Optimization

The goal of an optimization experiment is to minimize a cost function by determining the corresponding op-
timal point in the factor space. Nevertheless, the specified model output from all single runs is stored during
the experiment.

Name Meaning

Argument
restriction(s) /

result description

Argument value
restriction

same as for
Monte Carlo
analysis

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

Tab. 8.16 Experiment specific operator for the optimization experiment type

While the single run that corresponds to the optimal cost function can be post-processed in the single-run
modus, the whole experiment can be post-processed as a Monte Carlo analysis. Keep in mind that the fac-
tors do not follow a pre-defined distribution.

8.5 User-Defined and Composed Operators / Operator Interface

Besides application of built-in operators during experiment post-processing SimEnv enables construction
and application of user-defined and composed post-processing operators. A user-defined operator is sup-
plied by the user in the form of a stand-alone executable that is to perform the operator. Contrarily, a com-
posed operator can be derived from both built-in and user-defined operators to generate more complex op-
erators. User-defined and composed operators are announced to the environment in a user-defined operator
description file <model>.odf by their names and the number of character, integer constant, real constant and
“normal” arguments. This information is used to check user-defined and composed operators syntactically
during experiment post-processing and by the SimEnv service simenv.chk. Sequence of the operator argu-
ments types follows the same rule as for built-in operator (see Section 8.1.4).

A user-defined operator itself is a stand-alone executable that is executed during the check and the compu-
tation of the operator chain. While the main program of this executable is made available by SimEnv the user
has to supply two functions in C/C++ or Fortran with pre-defined names that represent the check and the
computational part. For declaration of both functions SimEnv comes with a set of operator interface func-
tions. They can be used among others to get dimensionality, length, extents and coordinates of an argument
and to get and check argument values and to put operator results.

For a composed operator the operator description file <model>.odf simply holds the definition of the corre-
sponding operator chain composed from built-in and user-defined operators and using formal arguments.

8.5.1 Declaration of User-Defined Operator Dynamics

User-defined operators consist of a declarative and a computational part, that are described in one source
file in two C/C++ or Fortran functions (see Tab. 8.17):
• Function simenv_check_user_def_operator

This is the declarative part of the operator. The consistency of the non-character operands can be
checked with respect to dimensionality, dimensions and coordinates as well as the values of character
arguments can be checked. Dimensionality, extents and coordinates of the result have to be defined,
normally in dependence on the argument information.

• Function simenv_compute_user_defined_operator
This is the computational part of the operator. In the computational part the result of the operator in de-
pendency of its operands is computed.

-106- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
description

Functions to host the declarative and computational part in usr_opr_<opr>.[f | c | cpp]

simenv_
check_user_
def_operator
(
)

check consistency
of operator argu-
ments and defines
dimensionality and
dimensions of
result

integer*4
simenv_
check_user_
def_operator
(function value)

return code
= 0 ok
 0 inconsistency between operands

real*4
res(1)
(output)

result vector of the operator simenv_
compute_user_
def_operator
(
res
)

compute result of
the operator in
dependency on
operands integer*4

simenv_
compute_user_
def_operator
(function value)

return code
= 0 ok
 0 user-defined interrupt of calculation

Operator results of a dimensionality > 1 have to
be stored to the field res using the Fortran
storage model (see Section 15.7 - Glossary).

Tab. 8.17 Operator interface functions for the declarative and computational part

A function value 0 of simenv_check_user_def_operator() should be set according to the following rules:
• If appropriate, forward function value from the operator interface function simenv_chk_2args_[f | c] (see

below) to the function value of simenv_check_user_def_operator(). The corresponding error message is
reported automatically by the experiment post-processor. Return code 4 from simenv_chk_2args_[f | c]
is only an information and no warning and is not reported.

• Other detected inconsistencies between operands have to be reported to the user by a simple print-
statement within simenv_check_user_def_operator. The corresponding return code has to be greather
than 5.

Tab. 8.18 summarizes these SimEnv operator interface functions that can be applied in the declarative and
computational part written in Fortran or C/C++ (postfix f for Fortran, c for C/C++) to get and put structure
information. In this table the input and output data types are documented for functions used in Fortran. For
C/C++ the corresponding data types are valid. Implementation of the functions for C/C++ is based on a call
by reference for the function arguments.

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
Description

Functions to get and put structure information in the declarative and computational part

integer*4
iarg
(input)

argument number

character*(*)
char
(output)

string of the character argument
Declare char with a suffficient length.

simenv_
get_char_arg_
[f | c]
(
iarg,
char
)

get string and
string length of a
character argu-
ment

integer*4
simenv_
get_char_arg_
[f | c]
(function value)

length of character argument

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -107-

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
Description

integer*4
iarg
(input)

argument number, 0 for result

integer*4
iext(9)
(output)

extents of argument / result
iext(1) ... iext(simenv_get_dim_arg_[f | c]...)

simenv_
get_dim_arg_
[f | c]
(
iarg,
iext
)

Iarg > 0:
get dimensionality
and extents of an
argument
iarg = 0:
get dimensionality
and extents of the
result

integer*4
simenv_
get_dim_arg_
[f | c]
(function value)

dimensionality of argument / result

integer*4
iarg
(input)

argument number, 0 for result simenv_
get_len_arg_
[f | c]
(
iarg
)

Iarg > 0:
get length of an
argument
iarg = 0:
get length of the
result

integer*4
simenv_
get_len_arg_f
(function value)

length of argument / result

simenv_
get_nr_arg_
[f | c]
(
)

get number of
arguments of the
current operator

integer*4
simenv_
get_nr_arg_
[f | c]
(function value)

number of arguments

integer*4
iarg
(input)

argument number, 0 for result simenv_
get_type_arg_
[f | c]
(
iarg
)

Iarg > 0:
get data type of an
argument
iarg = 0:
get data type of
the result

integer*4
simenv_
get_type_arg_f
(function value)

type of argument / result
= -1 byte = 4 float
= -2 short = 8 double
= -4 int

simenv_
get_co_chk_
modus_
[f | c]
(
)

get level of coordi-
nate check for
arguments
according to
<model>.cfg

integer*4
simenv_
get_co_chk_
modus_
[f | c]
(function value)

level of coordinate check for arguments
= 0 without
= 1 weak
= 2 strong

integer*4
iarg
(input)

argument number

integer*4
ico_nr(9)
(output)

formal numbers of the coordinates
ico_nr(1) ... ico_nr(simenv_get_dim_
 arg_[f | c]...)

integer*4
ico_beg_pos(9)
(output)

formal begin value positions of the coordinates
ico_beg_pos(1) ... ico_beg_pos(simenv_get_dim_
 arg_[f | c]...)

character*20
co_name(9)
(output)

coordinate names
co_name(1) ... co_name(simenv_get_dim_
 arg_[f | c]...)

simenv_
get_co_arg_
[f | c]
(
iarg,
ico_nr,
ico_beg_pos,
co_name
)

get formal coordi-
nate numbers and
formal coordinate
begin value posi-
tions of an argu-
ment

integer*4
simenv_
get_co_arg_
[f | c]
(function value)

return code
= 0 ok

-108- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
Description

integer*4
ico_nr
(input)

formal number of the coordinate
(from simenv_get_co_arg_[f | c])

integer*4
ico_pos
(input)

formal position within all coordinate values of the
value to get.
The smallest ico_pos to use corresponds to the
value ico_beg_pos from the function
simenv_get_co_arg_[f | c]

real*4
co_val
(output)

coordinate value
For non-monotonic coordinate values:
Do not get value number ico_pos but the (ico_pos)
th smallest value (sort values in increasing manner)

simenv_
get_co_val_
[f | c]
(
ico_nr,
ico_pos,
co_val
)

get for a coordi-
nate a coordinate
value at a speci-
fied position

Application of this
function in
simenv_check_
user_def_operator
for coordinate
bin_mid results in
an error

integer*4
simenv_
get_co_arg_
[f | c]
(function value)

return code
= 0 ok
= 1 ico_pos out of range
= 2 storage exceeded

integer*4
iarg1
(input)

argument number

integer*4
iarg2
(input)

argument number

simenv_
chk_2args_
[f | c]
(
iarg1,
iarg2
)

check two argu-
ments on same
dimensionality,
extents and coor-
dinates

If appropriate
forward return
code 0 to the
function value of
simenv_check_
user_def_
operator()

integer*4
simenv_
chk_2args_
[f | c]
(function value)

return code
= 0 ok
= 1 differing dimensionalities
= 2 differing extents
= 3 differing coordinates according to the sub-
 keyword ‘coord_check’ in <model>.cfg
= 4 iarg1 = iarg2

integer*4
inplace
(input)

potential inplace-indicator for result.
result can be computed in-place with the following
non-character arguments
= -1 all
= 0 none
> 0 e.g. = 135 with arguments 1, 3 and 5

integer*4
idimens (input)

dimensionality of the result

integer*4
iext(9)
(input)

only for idimens > 0:
extents of the result
iext(1) ... iext(idimens)

integer*4
ico_nr(9)
(input)

only for idimens > 0:
formal coordinate numbers of the result
ico_nr(1) ... ico_nr(idimens)

integer*4
ico_beg_pos(9)
(input)

only for idimens > 0:
formal coordinate begin position for formal coordi-
nate number ico_nr of the result
ico_beg_pos(1) ... ico_beg_pos(idimens)

simenv_
put_struct_res_
[f | c]
(
inplace,
idimens
{,
iext,
ico_nr,
ico_beg_pos
}
)

put
- potential in-

place-storage
- dimensionality
- extents
- formal coordi-

nate number
- formal coordi-

nate value begin
number

of the result

Currently, only
coordinates from
the arguments can
be assigned to the
result.

Must be applied
in the declarative
part and only
there.

integer*4
simenv_
put_dim_res_
[f | c]
(function value)

return code
= 0 ok
 0 inconsistency between operands

Tab. 8.18 Operator interface functions to get and put structural information

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -109-

All of these operator interface functions return -999 as an error indicator if an argument iarg is invalid. Output
arguments are set to -999 as well.

Tab. 8.19 summarizes these SimEnv operator interface functions that can be applied in the computational
part written in Fortran or C/C++ (postfix f for Fortran, c for C/C++) to get and check argument values and put
results. In this table the input and output data types are documented for functions used in Fortran. For C/C++
the corresponding data types are valid. Implementation of the functions for C/C++ is based on a call by ref-
erence for the function arguments.
To handle real*4 underflow and overflow during computation of the operator results with real*4 argument
values it is advisible to compute operator results temporarily as real*8 values and afterwards to transform
these values back to the final real*4 operator result by the function simenv_clip_undef_[f | c].

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
Description

Functions to get and check argument values and to put results in the computational part

integer*4
iarg
(input)

argument number

integer*4
index
(input)

vector index of an argument

simenv_
get_arg_
[f | c]
(
iarg,index
)

get value of a non-
character argu-
ment with index
index

real*4
simenv_
get_arg_
[f | c]
(function value)

value of argument iarg at index index

Operands of any type are transferred by
simenv_get_arg_[f | c] to a real*4 / float repre-
sentation.
Operands of a dimensionality > 1 are forwarded
to user-defined operators as one-dimensional
vectors, using the Fortran storage model (see
Section 15.7 - Glossary). Adjust the second
argument of simenv_get_arg_[f | c] (index)
accordingly.

real*8
value
(input)

value to be checked simenv_
clip_undef_
[f | c]
(
value
)

overflow:
set a real*8 value
to an undefined
real*4 result
if appropriate
underflow:
set a real*8 value
to real*4 0.
if appropriate

real*4
simenv_
clip_undef_
[f | c]
(function value)

Example:
res(i)=simenv_clip_undef_[f | c]
 (value)

real*4
value
(input)

argument value to be checked simenv_
chk_undef_
[f | c]
(
value
)

check whether
value is undefined
before processing
it integer*4

simenv_
is_undef_
[f | c]
(function value)

= 0 value is defined
= 1 value is undefined

simenv_
put_undef_
[f | c]
(
)

set a result value
as undefined

real*4
simenv_
put_undef_
[f | c]
(function value)

Example:
res(i)=simenv_put_undef_[f | c] ()

Tab. 8.19 Operator interface functions to get / check / put arguments and results

-110- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

• In SimEnv the declarative and computational part of a user-defined operator <opr> is hosted in a source
file usr_opr_<opr>.[f | c | cpp]. The assigned executable has the name <opr>.opr and has to be located
in that directory that is stated in <model>.cfg as the hosting directory opr_directory for user-defined op-
erators.

• The include file simenv_opr_f.inc and simenv_opr_c.inc from the SimEnv home directory can be used in
user-defined operators to declare the SimEnv operator interface functions for Fortran and/or C/C++ (see
also Tab. 10.5).

• Apply the shell script
 simenv_opr_[f | c | cpp].lnk <opr>
from the SimEnv home directory to compile and link from usr_opr_<opr>.[f | c | cpp] an executable
<opr>.opr that represents the user-defined operator <opr>. Like the main program for the operator also
the object $SE_HOME/simenv_opr.o is supplied by SimEnv. This object file has to be linked with
usr_opr_<opr>.o and the object library $SE_HOME/libsimenv.a.

• Tab. 15.13 lists the additionally used symbols when linking a user-defined operator.
• In Section 15.3 on page 175 implementation of the user-defined operator matmul_[f | c] is described in

detail. It corresponds to the built-in operator matmul. Additionally, check the user-defined operators from
Tab. 15.6 and apply them during experiment post-processing.

8.5.2 Undefined Results in User-Defined Operators

Check always by the SimEnv operator interface function simenv_chk_undef(val) (see Tab. 8.19) whether
an argument value val is undefined before it is processed.

Set a result to be undefined by the SimEnv operator interface function simenv_put_undef() (see Tab. 8.19)
Check usr_opr_matmul_[f | c].[f | c] in Section 15.3 or usr_opr_div.f in the example directory
$SE_HOME/../examples of SimEnv for more detailed examples.

If things go so wrong that computation of the whole result expression has to be stopped it is possible to al-
ternatively
• Set all elements of the results to be undefined
• Set simenv_compute_user_def_operator 0 (otherwise set it always = 0)
• In both cases application of the following operators in the operator chain of the result expression will be

suppressed and consequently computation of the result expression will be stopped
• Check usr_opr_char_test.f for a detailed example

8.5.3 Composed Operators

A composed operator is an operator chain composed from built-in and user-defined operators. The concept
of composed operators enables construction of more complex operators from built-in and user-defined ones.
A composed operator is defined with formal arguments that are used in the operator chain as arguments.
Formal arguments are replaced by current arguments when applying a composed operator during experi-
ment post-processing. In this sense, the definition of a composed operator in SimEnv corresponds to the
definition of a function in a programming language: When calling the function formal arguments are replaced
by current arguments. Consequently, composed operators offer the same flexibility as built-in or user-defined
operators.

Like built-in and user-defined operators, a composed operator can have nine formal arguments at maximum.
Sequence of these arguments is also the same as for the other operators: Character arguments followed by
integer constant arguments, real constant arguments and normal arguments.

For composed operators the operand set (see Section 8.1.2) to form the operator by a chain of operators is
restricted to
• Constants in integer and real / float notation
• Character strings
• Operator results from built-in and user-defined operators
Not allowed as operands are
• Model output variables
• Experiment factors

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -111-

• Composed operators
• Macros
Additionally have to be used
• Formal arguments arg1 ,…, arg9

Check the following Example how to specify composed operators.

composed character “normal” composed operator
operator name argument argument definition
--
rel_count (arg1 , arg2) = 100 * count(arg1,arg2) /
 count(‘all’,arg2)
error_1 (arg1 , arg2) = count(arg1,arg2) *
 hgr(arg1,0,0.,0.,arg2)
error_2 (arg1) = arg1 *
 hgr(‘bin_mid’,10,0.,0.,arg1)

Having a model output variable definition as in Example 5.1 on page 31
then for example, the operator rel_count can be applied by

rel_count(‘def’,bios)
rel_count(‘def’,bios(c=20:-20,*,1))
rel_count(‘undef’,100*bios)

Example 8.10 Composed operators

Composed operators are checked syntactically by the SimEnv service simenv.chk. When performing
simenv.chk validity of the following information is not cross-checked between formal arguments:
• Character arguments of operators

Example: The composed operator error_1 is considered by simenv.chk to be valid though
 argument 1 of operator count is limited to values [‘all’ | ‘def’ | ‘undef’] and
 argument 1 of operator hgr is limited to values [‘bin_no’ | ‘bin_mid’]

• Use of “normal” formal arguments in the operator chain with respect to their dimensionality, extents and
coordinates
Example: The composed operator error_2 in is considered by simenv.chk to be valid though
 the dimensionality of the operator hgr in this constellation is always higher than that of the

argument arg1 and consequently, multiplication between arg1 and hgr(.) is impossible.

8.5.4 Operator Description File <model>.odf

<model>.odf is an ASCII file that follows the coding rules in Section 11.1 on page 135 with the keywords,
names, sub-keywords, and values as in Tab. 8.20. <model>.odf announces the user-defined and composed
operators by their names, and the number of character, integer constant, real constant, and normal argu-
ments that belong to an operator. Additionally, <model>.odf hosts for composed operators the corresponding
operator chain using formal arguments. <model>.odf is expoited to check a user-defined and/or composed
operator syntactically when performing it during experiment post-processing.

-112- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

keyword name sub-
keyword

Line
type

Max.
line

nmb.

values Explanation

general <nil> descr o any <string> general operator descriptions
descr o 1 <string> operator description opr_

defined
<user_
defined_
operator_
name>

arguments m 1 <int_val1>,
<int_val2>,
<int_val3>,
<int_val4>

number of arguments defined
for the operator:
<int_val1> 0:
character arguments
<int_val2> 0:
integer constant arguments
<int_val3> 0:
real constant arguments
<int_val4> > 0:
“normal” arguments

descr o 1 <string> operator description
arguments m 1 <int_val1>,

<int_val2>,
<int_val3>,
<int_val4>

number of arguments defined
for the operator.
Explanations and restrictions
are the same as for a user-
defined operator

opr_
composed

<composed_
operator_
name>

define m 1 <string> operator definition string
Operator definition can be
arranged at a series of define-
lines in analogy to the rules
for result expressions (see
Section 8.1.1).

Tab. 8.20 Elements of an operator description file <model>.odf

To Tab. 8.20 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• The sequence of the four integer values <int_val1> ,…, <int_val4> follows the sequence of arguments in

built-in, user-defined and composed operators.
• The sum <int_val1> +…+ <int_val4> has to be less equal 9.
• Use the SimEnv service simenv.chk to check user-defined and composed operators.

general descr Operator description for the
general descr examples in the SimEnv User Guide

opr_defined matmul_f descr matrix multiplication (in Fortran)
opr_defined matmul_f arguments 0,0,0,2

opr_defined matmul_c descr matrix multiplication (in C)
opr_defined matmul_c arguments 0,0,0,2

opr_defined corr_coeff descr correlation coefficient r
opr_defined corr_coeff arguments 0,0,0,2

opr_defined div descr arithmetic division
opr_defined div arguments 0,0,0,2

opr_defined simple_div descr division without undefined-check
opr_defined simple_div arguments 0,0,0,2

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -113-

opr_defined char_test descr test character arguments
opr_defined char_test arguments 2,0,0,1

opr_composed rel_count descr relative count [%]
opr_composed rel_count arguments 1,0,0,1
opr_composed rel_count define 100*count(arg1,arg2)/
opr_composed rel_count define count('all',arg2)

Example files: world_[f | c | cpp | py | sh].odf

Example 8.11 Operator description file <model>.odf

8.6 Undefined Results

By performing operator chains and due to possibly unwritten model output during simulation parts of the
intermediate and/or final result values can be undefined within the float data representation.

If an operand is completely undefined the computation of the result is stopped without evaluating the follow-
ing operands and operators.

For undefined / nodata value representation check Tab. 10.13.

8.7 Macros and Macro Definition File <model>.mac

• In experiment post-processing a macro is an abbreviation for a result expression, consisting of an opera-
tor chain applied on operands.

• Generally, they are model related and they are defined by the user.
• Macros are identified in experiment post-processing expressions by the suffix _m.
• A macro is plugged into a result expression by putting it into parentheses during parsing:

Example: equ_100yrs_m*test_mac_m
 from Example 8.12 below is identical to
 (avg(atmo(c=20:-20,*,c=1,c=11:20))-400)*(1+(2+3)*4)

• Macros must not contain macros.
• Use simenv.chk to check macros. During the macro check validity of the following information is not

checked:
• Un-pre-defined character arguments of built-in operators (check Tab. 15.10)
• Integer or real constant arguments of built-in operators (check Tab. 15.11)
• Character arguments of user-defined operators
• Operators with respect to dimensionality and dimensions of its operands

In SimEnv macros are defined in the file <model>.mac. <model>.mac is an ASCII file that follows the coding
rules in Section 11.1 on page 135 with the keywords, names, sub-keywords, and values as in Tab. 8.21.
<model>.mac describes the user-defined macros.

-114- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

general <nil> descr o any <string> general macro descriptions
descr o 1 <string> macro description
unit m 1 <string> unit of the value of the macro

macro <macro_
name>

define m 1 <string> macro definition string
macro definition can be ar-
ranged at a series of define-
lines in analogy to the rules
for result expressions (see
Section 8.1.1).

Tab. 8.21 Elements of a macro description file <model>.mac

To Tab. 8.21 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• Values for sub-keywords ‘descr’ and ‘unit’ are not evaluated during parsing a result expression.

general descr Macro definitions for the
general descr examples in the SimEnv User Guide

macro equ_100yrs descr 2nd century tropical level 1 average
macro equ_100yrs unit without
macro equ_100yrs define avg(atmo(c=20:-20,*,c=1,c=11:20))

macro tst descr test macro
macro tst define 1+(2+3)*
macro tst define 4

Example files: world_[f | c | cpp | py | sh].mac

Example 8.12 User-defined macro definition file <model>.mac

8.8 Wildcard Operands &v& and &f&

In SimEnv, wildcard operands offer a convenient approach to compute a result expression successively for
all defined model output variables and experiment factors. Wildcard operands are used in the same manner
as normal operands when defining a result expression. There are two wildcard operands at disposal:

 &v& wildcard operand for any model output variable
 &f& wildcard operand for any experiment factor

When applying in a result expression only one wildcard type (i.e., either &v& or &f&) the result expression is
performed repetitively where the wildcard is replaced successively by all model output variables and experi-
ment factors, respectively. When applying both &v& and &f& in a result expression the result expression is
performed for the Cartesian product of all model output variables and experiment factors.

Wildcard operands must not be used in macro definitions (see Section 8.7). The wildcard operand &v& for
model output variables can not be restricted to a portion of the variable by appending a sub-specification in
brackets as explained in Section 8.1.3 (e.g., &v&(i=3:10) is not allowed).

Note that the strings &v& and &f& are only substituted in the result string by model variables and/or model
factors if they are

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -115-

• prefixed by [(| + | - | / | * | begin of result string] and
• postfixed by [(| + | - | / | * | end of result string]

Having a model output variable definition as in Example 5.1 on page 31 and
assuming the experiment description file (3b) from Example 6.2 on page 56
then in result-processing

behav(‘ ’,sin(&v&)) results in
 behav(‘ ‘,sin(atom))
 behav(‘ ‘,sin(bios))
 behav(‘ ‘,sin(atmo_g))
 behav(‘ ‘,sin(bios_g))
behav(‘ ’,&v&*&f&) results in
 behav(‘ ‘,atmo*p1)
 behav(‘ ‘,bios*p1)
 behav(‘ ‘,atmo_g*p1)
 behav(‘ ‘,bios_g*p1)
 behav(‘ ‘,atmo*p2)
 behav(‘ ‘,bios*p2)
 behav(‘ ‘,atmo_g*p2)
 behav(‘ ‘,bios_g*p2)

Example 8.13 Experiment post-processing with wildcard operands

8.9 Saving Results

The result files <model>.res<simenv_res_char>.[nc | ieee | ascii] and <model>.inf<simenv_res_char>.[ieee
| ascii] contain all the model and experiment information for further processing of results.

-116- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -117-

9 Visual Experiment Evaluation

Experiment evaluation is based on application of visualization techniques to the output data, com-
puted during experiment post-processing and stored in NetCDF format. Currently, a preliminary version is
implemented.

Analysis and evaluation of post-processed data selected and derived from large amount of relevant model
output benefits from visualization techniques. Based on metadata information of the post-processed experi-
ment type, the applied operator chain, and the dimensionalities of the post-processor output pre-formed
visualization modules are evaluated by a suitability coefficient how they can map the data in an appropriate
manner.
The visualization modules offer a high degree of user support and interactivity to cope with multi-dimensional
data structures. They cover among others standard techniques such as isolines, isosurfaces, direct volume
rendering and a 3D difference visualization techniques (for spatial and temporal data visualization). Further-
more, approaches to navigate intuitively through large multi-dimensional data sets have been applied, in-
cluding details on demand, interactive filtering and animation. Using the OpenDX visualization platform tech-
niques have been designed and implemented, suited in the context of analysis and evaluation of simulated
multi-run output functions.

Currently, visual experiment evaluation is the only SimEnv service that comes with a graphical user inter-
face. In this user interface a help-services is implemented that should be used to gather additional informa-
tion on how to select post-processed results for visualization and on visualization techniques provided by
SimEnv.

To get access permission to the SimEnv visualization server under Unix use the SimEnv service simenv.key
one time. Check Section 10.2 for more information.

-118- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -119-

10 General Control, Services, User Files, and Settings

In a general configuration file <model>.cfg the user controls general settings for the simulation envi-
ronment. Besides simulation performance and experiment post-processing SimEnv supplies a set of auxil-
iary services to check status of the model, to dump model and post-processor output and files and to clean a
model from output files. General settings reflect case sensitivity, nodata values and other information related
to SimEnv.

10.1 General Configuration File <model>.cfg

In the ASCII file <model>.cfg general SimEnv control variables can be declared. <model>.mdf is an ASCII
file that follows the coding rules in Section 11.1 on page 135 with the keywords, names, sub-keywords, and
info as in Tab. 10.1.

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

descr o any <string> general configuration
description

general <nil>

message_level o 1 [info | warning |
error]

specifies which message types
to show

out_directory o 1 <directory> model output directory
out_format o 1 [netcdf | ieee] model output format
out_separation o 1 [yes | no] indicates whether to store

model output in a single file
per single run or in one file
per experiment

auto_interface o 1 [no | all | f | c |
py |sh]

indicates to generate include
source code files for the semi-
automated model interface for
the corresponding languages

model <nil>

structure o 1 [standard |
distributed |
parallel]

indicates model structure with
respect to experiment per-
formance

restart_ini o 1 [no | yes] perform <model>.ini for ex-
periment re-start

begin_run o 1 <int_val> begin single run number
end_run o 1 [last | <int_val>] end single run number

experiment <nil>

email o 1 <string> email notification address
out_directory o 1 <directory> experiment post-processing

output directory
out_format o 1 [netcdf | ieee |

ascii]
experiment post-processing
output format

address_default o 1 [coordinate |
index]

experiment post-processing
address default for model
output variables

coord_check o 1 [strong | weak |
without]

post-processing coordinate
check by operators

postproc <nil>

opr_directory o 1 <directory> directory the post-processors
expects user-defined operator
executables

-120- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

visualization o 1 [yes | no] determine whether to directly
visualize an entered result
during experiment post-
processing

Tab. 10.1 Elements of a general configuration file <model>.cfg

To Tab. 10.1 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• For keyword ‘general’, sub-keyword ‘message_level’:

Message output is controlled by this information.
Specify info to output errors and warnings and additional information
 warning to output errors and warnings
 error to output errors
during any SimEnv service.

• For keyword ‘model’, sub-keyword ‘out_separation’:
Specify here whether SimEnv model output data for the whole run ensemble is stored into one file
<model>.outall.[nc | ieee] or in single output files <model>.out<simenv_run_char>.[nc | ieee].

• For keyword ‘model’, sub-keyword ‘auto_interface’:
Check Section 5.10.

• For keyword ‘model’, sub-keyword ‘structure’:
Check Section 5.11.

• For keyword ‘experiment’, sub-keyword [‘begin_run’ | ‘end_run’]:
With the exception of an optimization experiment SimEnv enables to perform an experiment partially by
performing only an experiment slice out of the whole run ensemble (see Section 7.5 on page 70). There-
for assign appropriate run numbers to these two descriptors. Make sure that begin and end run repre-
sent run number from the experiment (including run number 0) and that begin run end run. The value
string “last” always represents the last simulation run of the whole run ensemble.
For an optimization experiment these two sub-keywords are ignored.

• For keyword ‘experiment’, sub-keyword ‘email’:
After performing an experiment an email is sent to the email address specified in <string>. Specify al-
ways a complete address.

• For keyword ‘postproc’, sub-keyword ‘address_default’:
During experiment post-processing portions of multi-dimensional model output variables can be ad-
dressed by coordinate (c= ...) or index (i= ...) reference. A default is established here.

• For keyword ‘postproc’, sub-keyword ‘coord_check’:
During experiment post-processing feasibility of application of an operator on its operands is checked
with respect to the coordinate description of the operands. Different levels of this check are possible. A
default is established here.

• For keyword ‘postproc’, sub-keyword ‘visualization’:
Specifies whether to directly visualize an entered result during experiment post-processing.

Please keep in mind to ensure consistency of control settings in <model>.cfg across different SimEnv ser-
vices. As an example one has to run experimentation, experiment post-processing and dump with the same
value for out_separation in <model>.cfg.

Tab. 10.2 lists the default values in the general configuration file in the case of absence of the appropriate
sub-keyword.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -121-

keyword sub-keyword

Default value
(*)

For more
information see

descr <nil> above general
message_level info above
out_directory ./ above
out_format NetCDF Chapter 12
out_separation yes above
auto_interface no Section 5.10

model

structure standard Section 5.11 and above
restart_ini no Section 7.3
begin_run 0 Section 7.1 - 7.5
end_run last Section 7.1 - 7.5

experiment

email <nil> Section 7.1
out_directory ./ above
out_format NetCDF Chapter 12
address_default coordinate Section 8.1.3 and above
coord_check strong Section 8.1.5 and above
opr_directory ./ Section 8.5

postproc

visualization yes above

Tab. 10.2 Default values for the general configuration file
 (*): in the case of absence of the appropriate sub-keyword

general descr General configuration file for the
general descr examples in the SimEnv User Guide
general message_level info

model out_directory mod_out
model out_format netcdf
model out_separation yes
model auto_interface f
model structure standard

experiment begin_run 0
experiment end_run last

postproc out_directory res_out
postproc out_format netcdf
postproc address_default index
postproc coord_check strong
postproc opr_directory ./
postproc visualization no

Example 10.1 User-defined general configuration file <model>.cfg

10.2 Main and Auxiliary Services

The following SimEnv service commands are available from the SimEnv home directory $SE_HOME. Be-
sides experiment performance and experiment post-processing there are additional auxiliary SimEnv ser-
vices to set the SimEnv environment, to check input information consistency, to monitor the status of a run-
ning simulation experiment, to dump files of model and experiment post-processor output and to wrap up the
SimEnv workspace.

-122- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

SimEnv
service

Use to

Main Services

simenv.run
<model>

prepare and run an experiment
(see Section 7.1)

simenv.rst
<model>

restart an experiment
(see Section 7.3)

simenv.res
<model>
{ [new | append |
 replace] }
{<simenv_run_int>}

perform experiment result post-processing for run number <simenv_run_int> or for
the whole run ensemble (<simenv_run_int> = -1, default).
Before entering experiment post-processing those output files
<model>.res<simenv_res_char>.[nc | ieee | ascii] and
<model>.inf<simenv_res_char>.[ieee | ascii] with the highest two-digit number
<simenv_res_char> are identified and new result files for <res+1> are written / the
results are appended / or the result files are replaced by a new ones.

simenv.vis
<model>
{ [latest |
<simenv_res_int>] }

perform visual post-processor output visualization for that NetCDF post-processor
output file with the highest two digit number <simenv_res_char>
(<simenv_res_char> = latest, default) or with the file number <simenv_res_char>.
Visualization runs on a remote server.

Auxiliary Services

simenv.chk
<model>

check on model script files (<model>.run, <model>.rst, <model>.ini, <model>.end)
check <model>.cfg <model>.edf
 <model>.odf <model>.gdf
 <model>.mdf <model>.mac
 existing model and post-processor output files
generate pre-experiment output statistics

simenv.sts
<model>
{ <sleep> }

get the current status of an active simulation experiment.
Start this service from the workspace the active simulation experiment was started
from. This is the only service that can be started from a workspace where another
service is active.

simenv.dmp
<model>
<dmp_modus>

dump SimEnv model output or experiment post-processor output files
Files to dump have to match the SimEnv file name convention for model and/or post-
processor output and are expected to be in the directories as stated in <model>.cfg.
Model output variables and post-processor results in IEEE and/or ASCII format with
a dimensionality greater than 1 are listed according to Fortran storage model for
multi-dimensional fields (see Section 15.7 - Glossary).

simenv.cpl
<model>
{ <simenv_run_int> }
{ <file> }

complete sequence of SimEnv services
 simenv.chk, simenv.run, simenv.res, simenv.vis, simenv.dmp
simenv.res is performed with input file <file> (if available) and interactively, for both
optionally only for single run <simenv_run_int>.

simenv.cln
<model>

clean up model and experiment post-processor output files
Deletes all model output files, post-processor output files, log-files, and auxiliary files
of a model according to the settings in <model>.cfg

simenv.cpy
<model>

copy all SimEnv example files <model>* from the example directory
$SE_HOME/../examples to the current directory.
Additionally, example files of user-defined operators and for models world_[f | c |
cpp | py | sh]* common user defined files are copied. All files are only copied if they
do not already exist in the current workspace.

simenv.hlp
<topics>

acquire basic SimEnv help information for the specified topics

simenv.key
<user_name>

generate a ssh(2)-key to get password-free access to the visualiz. server under
Unix.
Start this service only one time before the first access to simenv.vis and/or
simenv.res or if the ssh(2)-key does not work properly. An email will be sent from
SimEnv when the password-free server access is possible.

Tab. 10.3 SimEnv services

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -123-

• With the exception of the simenv.cpy, simenv.hlp and simenv.key:
Start a service only from the current workspace.

• With the exception of simenv.sts:
A SimEnv service can not be started from a workspace where an other SimEnv service is active.

10.3 Model Interface Scripts, Include Files, Link Scripts

Tab. 10.4 lists all these dot scripts and shell scripts that can / must be used in <model>.[ini | run | end].

Dot script

Use status Used for See
Section

<model>.ini
simenv_ini_gams mandatory experiment init for GAMS models 5.7
simenv_ini_py mandatory experiment init for Python models 5.5

<model>.run
simenv_ini_sh mandatory init for any model 5.8
simenv_get_sh optional get a factor value as script variable 5.8
simenv_get_as optional get all factor names and adj. values to an ASCII file 5.9
simenv_run_gams mandatory run a GAMS model 5.7
simenv_run_matlab mandatory run a Matlab model 5.6
simenv_run_mathematica mandatory run a Mathematica model 5.6
simenv_put_as (*) optional put ASCII file to SimEnv model output 5.9
simenv_put_as_simple (*) optional put ASCII file to SimEnv model output (simple mode) 5.9
simenv_end_sh mandatory end for any model 5.8
<model>_[sh | as].inc optional semi-automated model interface at shell script /

ASCII level (see also Tab. 10.5)
5.10

<model>.end
simenv_end_gams mandatory experiment end for GAMS models 5.7

Tab. 10.4 Shell scripts and dot scripts that can be used in <model>.[ini | run | end]
For built-in shell script variables in <model>.run see Tab. 10.9
(*): this is not a dot script but a normal script with two arguments

In Tab. 10.5 all that include files and link scripts are compiled that are provided by the simulation environ-
ment or generated by the user and/or automatically during performing a SimEnv service.

File /
location

Used in /
generated during Explanation

simenv_mod_
[f | c | cpp].lnk

$SE_HOME

used in:
stand alone

shell script to compile and link an interfaced model
source code for experiment performance
If necessary copy it to $SE_WS and modify it

simenv_opr_
[f | c | cpp].lnk

$SE_HOME

used in:
stand alone

shell script to compile and link a user-defined op-
erator source code for experiment post-processing
If necessary copy it to $SE_WS and modify it

simenv_mod_
[f | c].inc

$SE_HOME

used in:
interfaced Fortran/C/C++
models

ASCII include file for an interfaced model source
code to define SimEnv interface functions and to
declare auxiliary variables for the semi-automated
model interface

simenv_opr_
[f | c].inc

$SE_HOME

used in:
interfaced Fortran/C/C++
models

include file for a user-defined operator source code
to define SimEnv interface functions

-124- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

File /
location

Used in /
generated during Explanation

<model>_
[f | c | py | sh | as].inc

$SE_WS

generated during:
experiment preparation
(only for service run,
not for service re-start,
only for auto_interface no
in <model>.cfg)

ASCII include file for semi-automated model inter-
face
The files can be used directly in the interfaced
model source code (for Fortran, C/C++, and Py-
thon) or as a dot script in <model>.run (for the shell
script and ASCII interface)

Tab. 10.5 SimEnv include files and link scripts

10.4 User-Defined Files and Shell Scripts, Temporary Files

Tab. 10.6 lists the mandatory or optional shell scripts and files the user has to provide for running SimEnv
services.

Shell script / file
(in the current

workspace
$SE_WS)

Explanation Exist status

For more
information
see Section

<model>.cfg ASCII user-defined general configuration file optional 10.1
<model>.mdf ASCII user-defined model (variables) description file mandatory 5.1
<model>.edf ASCII user-defined experiment description file mandatory 6.1
<model>.mac ASCII user-defined macro description file optional 8.7
<model>.odf ASCII user-defined operator description file optional 8.5.4
<model>.gdf ASCII user-defined GAMS model output description

file
for GAMS
models
mandatory

5.7.2

<model>.run (*) model shell script to wrap the model executable mandatory 7.6
<model>.rst (*) model shell script to prepare single model run restart optional 7.6
<model>.ini (*) model shell script to prepare simulation experiment

additionally to standard SimEnv preparation
optional,
for Python
and GAMS
models
mandatory
and stan-
dardized

7.6

<model>.end (*) model shell script to wrap up simulation experiment optional,
for GAMS
models
mandatory
and stan-
dardized

7.6

<model>.lnk (*) model shell script to link an interfaced C/C++/Fortran
model. Used in the course of experiment preparation
for experiment run (not re-start) if a semi-automated
model interface (auto_interface no) was declared in
<model>.cfg for the appropriate programming lan-
guages. Can also be used stand alone for non-semi-
automated model interface. Is normally based on
$SE_HOME/simenv_mod_[f | c | cpp].lnk

optional 5.10

<model>.jcf_
[dis | par | seq]

user-specific job control file to submit a job by the load
leveler in distributed / parallel / sequential mode

optional 7.6

<model>.opt_opt user-specific control and option file for experiment
type optimization

optional 6.6.1

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -125-

Shell script / file
(in the current

workspace
$SE_WS)

Explanation Exist status

For more
information
see Section

<model>.err
<simenv_
run_char>

touch / create this file in the model or in <model>.run
as an indicator to stop the complete experiment after
<model>.run has been finished for the single model
run <simenv_run_int>

optional 7.6

<opr>.opr (*)
(in the
opr_directory
according to
<model>.cfg)

executable for user-defined operator <opr> optional 8.5

Tab. 10.6 User files and shell scripts to perform any SimEnv service
(*): make sure by the Unix / Linux command chmod u+x <file>
 that a file <file> has execute permission

Tab. 10.7 lists the temporary or permanent files that are created during a SimEnv service.

File /
location

Generated in Explanation

Permanent files

<model>.smp

$SE_WS

experiment preparation
(all but optimization)

experiment performance
(optimization)

ASCII sample input file for the run ensemble de-
rived from <model>.edf
Record no. n+1 corresponds to single run no. n.
Column no. m of each record is the sampled value
for experiment factor no. m in the edf-file

<model>_
[f | c | py | sh | as].inc

$SE_WS

experiment preparation

(if auto_interface no
in <model>.cfg)

ASCII include files / dot scripts for semi-automated
model interface

<model>.out
<simenv_run_char>
.[nc | ieee]

model out_directory

experiment performance

(if out_separation = yes
in <model>.cfg)

model output of run number <simenv_run_int> of
the experiment
to be processed by the experiment post-processor

<model>.outall
.[nc | ieee]

model out_directory

experiment performance

(if out_separation = no
in <model>.cfg)

model output of all runs of the experiment
to be processed by the experiment post-processor

<model>.elog

$SE_WS

experiment performance ASCII minutes file of experiment performance
(simenv.run and all successive simenv.rst)

<model>.mlog

$SE_WS

experiment performance ASCII minutes file of model interface functions
performance
(simenv.run and all successive simenv.rst)
<model>.mlog is organized single run by single run

<model>.nlog

$SE_WS

experiment performance ASCII minutes file of native
- model specific experim. prepar. by <model>.ini
- single runs model output by <model>.run
- single run restart preparation by <model>.rst
- model specific experim. wrap-up by <model>.end
performances, redirected from terminal
(simenv.run and all successive simenv.rst)
<model>.nlog is organized single run by single run

-126- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

File /
location

Generated in Explanation

run<simenv_run_char>

$SE_WS

experiment performance

(only for GAMS models)

sub-directory for GAMS model performance that
are kept according to the sub-keyword ‘keep_runs’
in <model>.gdf

<model>.olog

$SE_WS

experiment performance

(only for experiment type
optimization)

ASCII minutes file of optimization experiment per-
formance

<model>.fct

$SE_WS

experiment performance

(only for experiment types
optimization and Monte
Carlo with stopping rule)

ASCII file of function values.
Record no. n+1 corresponds to single run no. n.

<model>.res
<simenv_res_char>
.[nc | ieee | ascii]

postproc out_directory

experiment post-processing output file of an experiment post-processing ses-
sion

<model>.inf
<simenv_res_char>
.[ieee | ascii]

postproc out_directory

experiment post-processing output structure description file of an experiment
post-processing session

Temporary files
(do not delete during performing the corresponding service)

<model>.
out<simenv_run_char>
.[nc | ieee]

model out_directory

experiment performance

(if out_separation = ‘no’
in <model>.cfg)

if the experiment is performed by the load leveler in
distributed or parallel mode

<model>.
as<simenv_run_char>

$SE_WS

experiment performance

(only for simenv_get_as)

ASCII file with all factor names and their adjusted
values

asa_opt
asa_out
asa_usr_out

$SE_WS

experiment performance

(only for experiment type
optimization)

auxiliary files for experiment type optimization

run<simenv_run_char>

sub-direct. of $SE_WS

experiment performance

(only for Matlab, Mathe-
matica and GAMS models)

sub-directory for Matlab, Mathematica and GAMS
model performance

<model>_
[pre | main | post].inc

$SE_WS

experiment performance

(only for GAMS models)

auxiliary files
<model> = GAMS main and all interfaced sub-
models

<model>.res00.nc

$SE_WS

experiment post-processing NetCDF representation of the current result for
visualization during experiment post-processing
(only for value “yes” of sub-keyword ‘visualization’
in <model>.cfg)

simenv_get_experiment
.exc

$SE_WS

experiment post-processing auxiliary file for operator get_experiment

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -127-

File /
location

Generated in Explanation

simenv_*.tmp

$SE_WS

all services auxiliary files

Tab. 10.7 Files generated during performance of SimEnv services
 For the current workspace $SE_WS see Tab. 10.14.

Fig. 10.1 sketches usage of main SimEnv user shell scripts and files in the course of model interfacing, ex-
periment preparation and performance, experiment post-processing, and visual evaluation of post-processed
results.

-128- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Experiment
Post-

processing

Experiment
Performance

Experiment
Preparation

Model
Interface

<model>.mdf !
<model>.run !
<model>.rst
<model>.ini

<model>.end
<model>.gdf

Model

description

<model>.edf !

Experiment
description

<model>.elog
<model>.mlog
<model>.nlog
<model>.smp
<model>.olog
<model>.fct

Experiment

logs

<model>.mac
<model>.odf

User macros

and operators

<model>.out*.*

Experiment
outputs

<model>.res*.*
<model>.inf*.*

Post-pro-

cessor output

<model>.cfg !

General
configuration

Experiment
Evaluation

Visualize
results

NetCDF (CF)
IEEE binary

ASCII

ASCII

Supported formats:

 ! = mandatory file

<operator>.opr

Fig. 10.1 SimEnv user shell scripts and files

10.5 Built-In Names

SimEnv has a number of built-in model output variable, shell script variable and coordinate names that can
not be used for corresponding user-defined names.

Tab. 10.8 lists the built-in (pre-defined) model variables that are output during experiment performance to
SimEnv model output structures and are available in experiment post-processing without defining them in
the model output description file <model>.mdf and without using the corresponding model interface coupling
functions simenv_put_* in the model.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -129-

Built-in
model output
variable name

Dimen-
sionality Extents Data type Meaning

sim_time 0 float elapsed simulation time in seconds (rounded
to two decimal places) when performing
<model>.run

Tab. 10.8 Built-in model output variables

Tab. 10.9 lists the built-in (pre-defined) shell script variables that are defined / used by the model coupling
interface dot scripts $SE_HOME/simenv_*_sh and simenv_run_[matlab | mathematica | gams] and that are
finally available in <model>.run.

Built-in
shell script

variable name

Meaning

simenv_run_int current run number as integer
simenv_run_char current run number as 6-character string

with leading zeros
factor_name factor name for simenv_get_sh
factor_def_val default factor value for simenv_get_sh
simenv_hlp_* auxiliary variables

Tab. 10.9 Built-in shell script variables in <model>.run

Tab. 10.10 lists the variables that are declared by the include file simenv_mod_[f | c].inc that can be imple-
mented in interfaced Fortran and/or C/C++ model source code.
Additionally, the functions simenv_[ini | get | get_run | put | slice | end]_[f | c] are declared by simenv_
mod_[f | c].inc as integer*4 / int functions.

Variable

Data type Used for

simenv_sts integer*4 / int SimEnv interface function value
simenv_run_int integer*4 /int single run number
simenv_run_char character*6 / char[6] 6 digit single run number string
simenv_zero real*4 / float auxiliary variable, set to 0.

Tab. 10.10 Built-in variables by simenv_mod_[f | c].inc
(without declaration of interface functions)

Tab. 10.11 lists the built-in (pre-defined) coordinates that are used in experiment post-processing when addi-
tional dimensions are generated by an operator.

Built-in
coordinate name

Generated by operator Meaning Definition
(check Tab. 11.6)

bin_mid hgr
hgr_e
hgr_l

bin mid values equidist_end <xx>(<yy>)
 999999
with <xx> = first bin mid
 <yy> = bin width

bin_no hgr
hgr_e
hgr_l

bin numbers equidist_end 1(1)999999

-130- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Built-in
coordinate name

Generated by operator Meaning Definition
(check Tab. 11.6)

incr lin_abs
lin_rel
sens_abs
sens_rel,
sym_abs
sym_rel

increment values dependent on experiment
description and operator
arguments

index maxprop
maxprop_l
minprop
minprop_l,

index number equidist_end 1(1)999999

run ens run numbers equidist_end 1(1)999999
sign sens_abs

sens_rel
signs of incremental change:
- 1: -ε
+1: +ε

equidist_end -1(2)1

stat_measure stat_full
stat_red

basic statistical measures:
1: deterministic case
2: minimum
3: maximum
4: mean
5: variance
 positive distance from

mean of confidence meas-
ure …

6: …. 1
7: …. 2
8: median
9: quantile of quantile value 1

10: quantile of quantile value 2

equidist_end 1(1)10

factor_sequ morris
lin_abs
lin_rel
sens_abs
sens_rel,
sym_abs
sym_rel

sequence of factors:
1: 1st factor in edf-file
2: 2nd factor in edf-file
...

equidist_end 1(1)999999

<factor_name> behav factor values dependent on experiment
description and operator
arguments

Tab. 10.11 Built-in coordinates for experiment post-processing

10.6 Case Sensitivity

As stated in Tab. 10.12 all names used in SimEnv are case insensitive. Internally, they are mapped on a
lowercase representation and this lowercase representation is used also for model and/or experiment post-
processor output files in NetCDF, IEEE and/or ASCII format.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -131-

Where? Entity

Case
sensitivity

Example

overall • model name sensitive simenv.chk World_f
• keyword
• name
• sub-keyword

insensitive experiment END_RUN last user-defined files
(see Section
11.1)

• information <value> insensitive experiment end_run LAST
general descr This is ...

model interface • variable and factor name insensitive call simenv_put_f(‘ATMO’,atmo)

factor_name=‘P1’
factor_value=1.
. $SE_HOME/simenv_get_sh

• optional result description
and unit

sensitive Energy [kW] = my_opr(atmo)

• variable and factor name
• operator name
• number
• macro name
• macro identifier _m

insensitive 3e-6*exp(atmo) +
3E-6*EXP(ATMO)

• character arguments
of built-in operators
with pre-defined values
(check Tab. 15.10)

insensitive count(‘ALL’ , atmo)

• character arguments
of built-in operators
without pre-defined values

check
Tab. 15.10

get_table_fct(‘MyFile.dat’ ,
 atmo)
get_experiment(‘../’ ,
 ‘Model_f’ ,‘ ’,
 atmo)

experiment
post-processing

• character arguments
of user-defined operators

sensitive char_test(‘arg11’ , ‘Arg21’ ,
 atmo)

Exceptions

information
<value> in
user-defined files

• <directory> and
<file_name>
- for <sub-keyword> =
 ‘<string>_directory’
- and in <val_list>

• <value> for
<sub-keyword> =
[‘descr’ | ‘unit’])

sensitive model out_dir MyDir
factor p1 file MyFile

factor p1 unit kWh

<model>.edf
(for Matlab and
Mathematica
models)

• <name>” sensitive as
in the
Matlab /
Mathematica
model

factor p1 list 1,2,3
factor P1 list 3,4,5

<model>.gdf
(for GAMS
models)

• GAMS model file name sensitive model sub_m1 type sub
model sub_M1 type sub

Tab. 10.12 Case sensitivity of SimEnv entities

-132- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

10.7 Nodata Representation

For model output with the SimEnv model coupling interface functions and for experiment post-processor
output the following data type specific nodata values are used to represent undefined (unwritten) model out-
put or undefined post-processor output:

Data type

Nodata value

byte = 127
short = 32767
int = 2147483648
float 3.4E+38
double 1.79D+308

Tab. 10.13 Data type related nodata values

10.8 Operating System Environment Variables

The following operating system environment variables are used by SimEnv.
Additionally, make sure that in the shell the noclobber option is not set.

Environment
variable

Meaning Explanation

Set by the user

SE_HOME SimEnv home
directory

Value = has to be defined by the user
recommended value = /usr/local/simenv/bin
for other values check Tab. 15.1

PATH operating system
path to executa-
bles

Value = machine dependent
Mandatory:
Include the path to ncdump in PATH to dump NetCDF files.
Normally, value is /usr/local/bin for AIX and /usr/bin for Linux
Optional:
include the path to $SE_HOME to access to a SimEnv ser-
vice without prefixing it by $SE_HOME/

DISPLAY machine / screen
that the X11-
system uses for
displaying win-
dows

Value = machine dependent
has to be defined by the user only for visualization matters in
SimEnv services simenv.res and simenv.vis:
Specify also explicitly when logged in at a machine by using
a secure socket shell client ssh(2)

Set automatically by SimEnv for any SimEnv service
(check $SE_HOME/simenv_dot_os.env for values)

PYTHONPATH path to search
Python files

Value = dependent on Python installation
Expanded by $SE_HOME

PYTHON_
VERSION

Python version Value = dependent on Python installation

PYTHON_
ROOT

Python root di-
rectory

Value = dependent on Python installation

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -133-

Environment
variable

Meaning Explanation

Set automatically by SimEnv

SE_GUI identificator for
GUI / non-GUI
version

for any SimEnv service
Value = [yes | <nil>]

SE_MOD model name for any SimEnv service
Value = <model>

SE_OS operating system
specification

for any SimEnv service
Value = [AIX | LINUX]

SE_WS current SimEnv
workspace

for any SimEnv service
Value = <directory>

SE_RUN run number
of a single run

for <model>.[run | rst]
Value = <simenv_run_int>

SE_RUN1 first single run
of an experiment

for <model>.[run | rst]
Value = [yes | no]

Tab. 10.14 Environment variables

-134- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -135-

11 Structure of User-Defined Files,
Coordinate Transformation Files, Value Lists

Basic information to describe general control settings of SimEnv, model output variables, the ex-

periment itself, macros and user-defined operators as well as GAMS model specific information is stored in
user-defined files. They are ASCII files and have a common structure that is described in this chapter. Addi-
tionally, coordinate transformation files are described and value lists are defined in general.

11.1 General Structure of User-Defined Files

All user-defined files listed in Tab. 11.1 have the same structure. They are ASCII-files with the following re-
cord structure:

{ <sep> } <keyword> <sep> { <name> <sep> } <sub-keyword> <sep> <value> { <sep> }

with
• <name> is the name of a

• model output variable
• GAMS model source file
• experiment factor
• coordinate
• user-defined operator or
• macro

 Declaration of <name> depends on the related keyword <keyword>
• <keyword> is a string

 Normally, more than one lines with differing sub-keywords belong
 to one “keyword-block”.

• <sub-keyword> is a string
 Sub-keywords are defined only in relation to the user file and the keyword
 under consideration.
• <value> = <substring> { <sep> <substring> ... }
 is a string with user file, keyword and sub-keyword related information.
• <sep> is a sequence of white spaces

Sequence of keyword and sub-keyword lines can be arbitrary. For reasons of readability it is recommended
to use a block structure like in the example below. Sequence of names in the separated name spaces (name
spaces of coordinates, model output variables, experiment factors, user-defined operators, macros) during
processing is determined by the sequence the name occur the first time in the appropriate user file.
Lines consisting only from separator characters as well as lines starting with a # as the first non-separator
character are handled as comment lines. For case sensitivity of the contents of user-defined files check Tab.
10.12 on page 131.

See description File Contents
in Section

on page

<model>.cfg general configuration file 10.1 119
<model>.mdf model output description file 5.1 25
<model>.edf experiment description file 6.1 51
<model>.odf operator description file 8.5.4 111
<model>.mac macro description file 8.7 113
<model>.gdf GAMS description file 5.7.2 38
arbitrary file name coordinate transformation file 11.2 138

Tab. 11.1 User-defined files with general structure

-136- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

The following restrictions hold for user-defined files:

Element

Constraints

line length max. 160 characters
max. 20 characters
(*) first character has to be a letter
(*) must not end on _m

<name>

(*) must not contain elemental operators and characters . and :
(check Tab. 8.3 on page 82)

for sub-keyword = ‘descr’ without <name>: max. 512 characters
(total sum over all lines)

for sub-keyword = ‘descr’ with <name>: max. 128 characters
for sub-keyword = ‘<string>_directory’: max. 100 characters

(for the resulting resolved directory string,
directory can contain operating system environment variables)

<value>

for sub-keyword = ‘unit’: max. 32 characters

Tab. 11.2 Constraints in user-defined files
 (*): with the exception for GAMS model source code file names

Tab. 11.3 lists the reserved (forbidden) names and file names that can not be declared in user-defined files.

Element

Reserved (forbidden) names

built-in model output variables
according to Tab. 10.8
built-in coordinates
according to Tab. 10.11

<name>

(with the exceptione of GAMS
model source code file names)

special keywords in <model>.edf for behavioural
analysis:
[default | file]

<file_name> see Section 11.3

Tab. 11.3 Reserved names and file names in user-defined files

The line type in the description table for a user-defined file specifies whether a keyword / sub-keyword com-
bination can be omitted.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -137-

Abbre-
viation

User-defined file Explanation

m all files mandatory
o all files optional
c1 <model>.mdf

keyword ‘variable’
sub-keyword [‘coords’ |
 ‘index_extents’]

conditional 1:
forbidden for variables with dimensionality = 0
mandatory for variables with dimensionality > 0

c2 <model>.mdf
keyword ‘variable’
sub-keyword ‘coord_extents’

conditional 2:
forbidden for variables with dimensionality = 0
optional for variables with dimensionality > 0

c3 <model>.edf
keyword ‘factor’
sub-keyword ‘sample’

conditional 3:
mandatory for experiment type = Monte Carlo analysis
forbidden for experiment type = local sensitivity analysis
conditional for experiment type = behavioural analysis

c4 <model>.edf
for Monte Carlo analysis
keyword ‘factor’
sub-keyword ‘sampling’

conditional 4:
mandatory for sample = distr ...
forbidden for sample = file ...

a <model>.edf
for behavioural analysis
keyword ‘factor’
sub-keyword ‘sample’

alternatively:
either mandatory for all experiment factors
or forbidden for all experiment factors

f <model>.edf
for local sensitivity analysis
keyword ‘factor’
sub-keyword ‘sample’

forbidden

Tab. 11.4 Line types in user-defined files

mac descr This is a macro description file
mac descr for the SimEnv User Guide

macro pol_atmo descr atmo outside polar reg., final time, level 1
macro pol_atmo unit without
macro pol_atmo define atmo(c=84:-56,*,c=1,c=20)

macro m1 define avg(atmo_g(c=11:20))
...

Example 11.1 Structure of a user-defined file

-138- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

11.2 Coordinate Transformation File

Some post-processing operators (currently, get_data and get_experiment) enable access to external data.
They derive from an operator argument a multi-dimensional result that has to be equipped - as usual in
SimEnv experiment post-processing - with a coordinate assignment. By applying these operators it can be
necessary to define or transform a coordinate description for the operator result that fits the result to the
current model and/or experiment under consideration. The same is true for the operator regrid which is used
to assign new coordinates to a result. The following cases can be distinguished:
• A dimension of the result does not have a coordinate assignment. A coordinate has to be assigned to

this dimension.
• A coordinate description of the result has to be modified in a way that it matches with a defined coordi-

nate of the model / experiment under consideration.
• A coordinate description of the result has to be incorporated with and/or without modifications into the

coordinate set of the model / experiment under consideration.

Coordinate transformations for results in the course of the operator’s performance are supported in SimEnv
by a coordinate transformation file that is assigned to the operator result as an argument of the operator.
Coordinate transformation files follow the same syntax rules as all other user-defined files (see Section
10.1).

keyword name sub-
keyword

Line
type

Max.
line

nmb.

value Explanation

general <nil> descr o any <string> general transformation de-
scription

rename o 1 <new_name> renames original coordinate
position_shift o 1 <real_val> shifts all values of the original

coordinate by the specified
value <position_shift_val>

values_shift o 1 <int_val> shifts the result values on the
original coordinate by the
specified positions
<values_shift_val>

modify <original_
coordinate_
name>

values_add o 1 <val_list> defines <values_shift_val>
values to add to the coordi-
nate values
(for syntax see Tab. 11.6)

coord o 1 <co_name> assign to the dimension with
coordinate number <coordi-
nate_nmb> (only for operator
get_data(‘ascii’,…) and/or
<original_coordinate_name>
(else) an already defined co-
ordinate or a coordinate de-
fined by the keyword ‘coordi-
nate’

assign [<original_
coordinate_
name> |
<coordinate_
nmb>]

coord_extent o 1 <co_val1>:
<co_val2>

assigns start and end coordi-
nate value to the dimension of
the result under consideration

descr o 1 <string> coordinate axis description
unit o 1 <string> coordinate axis unit

coordinate <new_
coordinate_
name> values o 1 <val_list> strictly monotonic sequence of

coordinate values
(for syntax see Tab. 11.6)

Tab. 11.5 Elements of a coordinate transformation file

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -139-

To Tab. 11.5 the following additional rules and explanations apply:
• For the description of line type check Tab. 11.4 on page 137.
• With the sub-keyword ‘values_shift’ result values can be shifted on the corresponding coordinate by

<values_shift_val> coordinate values. Consequently, <values_shift_val> coordinate values have to be
appended at the end of the coordinate for a positive value of <values_shift_val> and/or have to be in-
serted at the begin of the coordinate for a negative value of <values_shift_val>. Coordinate values that
are obsolete because of this shift are removed from the coordinate definition.
For a coordinate that is defined with equidistant coordinate values the extent of the coordinate is speci-
fied automatically by simply applying the equidistant rule for this coordinate.
For a coordinate with non-equidistant coordinate values the coordinate values necessary for the coordi-
nate extension are defined by the sub-keyword ‘values_add’.
If both ‘position_shift‘ and ‘values_shift’ are specified for one coordinate, firstly position shift is applied
to the coordinate and then the additional coordinate values from values_shift are added the the coordi-
nate without applying the position_shift value.

• Coordinate numbers <coordinate_nmb> are integers counting from 1.
• For the sub-keyword ‘coord_extent’ the same rules apply as for the sub-keyword ‘coord_extents’ from

the model output description file <model>.mdf.
• For the keyword ‘coordinate’ the same rules apply as for the keyword ‘coordinate’ from the model out-

put description file <model>.mdf.
• Coordinates are incorporated additionally into the original coordinate set only for the current result.

Unlike all other user-defined files coordinate transformation files can not be checked by the SimEnv service
simenv.chk or when starting the service simenv.res.

Having a model output variable definition as in Example 5.1 on page 31 and
assuming address_default = coordinate in <model>.cfg
Assume the experiment layout in Fig. 4.4 (c) on page 18 and
the corresponding experiment description file from Example 6.2 (3c) on page 56.

Assume additionally result from another experiment with a model named model and there
a result modvar1+modvar2 that is defined for the following coordinates:

dimension coordinate name coordinate definition .
1 dim1 list 1,10,100,1000
2 dim2 equidist_end 2(2)20
3 dim3 equidist_end 3(3)30
4 dim4 equidist_end 4(1)43
5 dim5 equidist_end 5(1)50

Further, assume the coordinate transformation file model.ctf as

general descr example of a coordinate
general descr transformation file

modify dim1 rename new1
modify dim1 position_shift 3.
modify dim1 values_shift +2
modify dim1 values_add list 1006,1009

modify dim3 values_shift -3

assign dim4 coord lat
assign dim4 coord_extent 88.:-68.

assign dim5 coord new2
assign dim5 coord_extent 50.:5.

coordinate new2 descr new coordinate
coordinate new2 values equidist_end 50(-1)5

-140- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

In experiment post-processing the result of the expression

get_experiment(‘mydir’,‘model’,‘model.ctf’,modvar1+modvar2)

is a 5-dimensional data structure with

dimension coordinate coordinate coordinate
 name definition use .
1 new1 list 103,1003,1006,1009 = coordinate definition
2 dim2 equidist_end 2(2)20 = coordinate definition
3 dim3 equidist_end -6(3)21 = coordinate definition
4 lat equidist_end 88(-4)-88 equidist_end 88(-4)-68
5 new2 equidist_end 5(1)50 = coordinate definition

Example 11.2 Coordinate transformations by a transformation file

11.3 ASCII Data Files and Value Lists

ASCII data files {<directory>/}<file_name> are used in SimEnv as an element for the specification of value
lists (see below), optionally in experiment description files to get sampling information, and in post-
processing operators.

The following rules and restrictions are valid for {<directory>/}<file_name>:
• The <directory> path can contain operating system environment variables ($...)
• If <directory> is specified in a relative manner (./…) it relates to the current workspace
• <file_name> must not be one of the SimEnv file names according to Tab. 10.6 and Tab. 10.7
• For the file:

• Has to be an ASCII file
• Can be a multi-record file
• Max. record length is 1000 characters
• Values in a record are separated from each other by white spaces or comma
• A series of connected (running) separators is treated as a single separator
• Record end is handled as a separator
• Records formed only from white spaces or records starting with the first non-white space character #

are handled as comments

For variables, coordinates and experiment factors value lists are supplied by the value-item in user-defined
files. Value lists describe a sequence of values together with an order. The number of described values has
to be greater than 1. Value lists may be restricted to strictly monotonic sequences. They follow the syntax
rules in Tab. 11.6.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -141-

Value-list type

Syntax Explanation

explicit list <real_val1> ,..., <real_valn> explicit list of values
same syntax rules as for one
record of a file with a value list
(see below)

by reference file {<directory>/}<file_name> file {<directory>/}<file_name>
contains the explicit value list

implicit
with
begin element
increment
end element

equidist_end <real_val1> (<real_val2>) <real_val3> description of an equidistant list
of values with
begin value <real_val1>
increment <real_val2>
end value <real_val3>
<real_val1> <real_val3>
<real_val2> 0.

implicit
with
begin element
increment
number of values

equidist_nmb <real_val1> (<real_val2>) <int_val> description of an equidistant list
of values with
begin value <real_val1>
increment <real_val2>
number of values <int_val>
<real_val2> 0.
<int_val> > 1

implicit
with
begin element
number of values
end element

equidist_ivl <real_val1> (<int_val>) <real_val2> description of an equidistant list
of values with
begin value <real_val1>
number of values <int_val>
end value <real_val2>
<int_val> > 2
<int_val> - 2 values are placed
within the interval
begin_value end_value

Tab. 11.6 Syntax rules for value lists

1. list 3, 5, 7, 9, 11 describes the five values 3, 5, 7, 9, and 11
2. equidist_end 3 (2) 11 is equivalent to 1.
3. equidist_end 3 (2) 11.9 is equivalent to 1.
4. equidist_nmb 3 (2) 5 is equivalent to 1.
5. equidist_ivl 3 (5) 11 is equivalent to 1.
6. file my_values.dat is equivalent to 1. with my_values.dat = 3, , 5,
 7
 9,

 11
7. equidist_end 11 (-2) 3 differs from 1. – 6.:
 values are identical, ordering sequence differs

Example 11.3 Examples of value lists

-142- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -143-

12 Model and Experiment Post-Processor Output Data
Structures

This chapter summarizes information on available data structures for model and experiment post-

processor output. SimEnv supports several output formats from the experiment and the post-processor.
NetCDF is a self-describing data format and can be used for model and post-processor output. Another for-
mat specifications for both outputs is IEEE compliant binary format and ASCII for post-processor output. This
chapter describes all the used data structures.

Dependent on the specification of the supported experiment post-processor output formats in <model>.cfg
model output can be stored in NetCDF format and post-processor output in NetCDF, IEEE or ASCII format.
During experiment performance model output is written either to single output files
<model>.out<simenv_run_char>.[nc | ascii] per experiment single run or to a common output file
<model>.outall.[nc | ieee] for all single runs from the experiment run ensemble. Output to single files or a
common file depends on specification of the value for the sub-keyword ‘out_separation’ in <model>.cfg.
<simenv_run_char> is a six-digit placeholder for the corresponding single run number.
During experiment post-processing output and structure of results is written to
<model>.res<simenv_res_char>.[nc | ieee | ascii] and <model>.res<simenv_res_char>.[ieee | ascii].
<simenv_res_char> is a two-digit placeholder for the number of the result file. It ranges from 01 to 99.
For IEEE and ASCII model output and experiment post-processor output formats, multi-dimensional data is
organized in the Fortran storage model (see Section 15.7 - Glossary).
Use the SimEnv service command simenv.dmp for browsing model and result output files. See Tab. 10.3 for
more information.

12.1 NetCDF Model and Experiment Post-Processor Output

The intention for supplying NetCDF format for model and experiment post-processor output is to provide the
possibility to generate self-describing, platform-independent data files with metadata that can be interpreted
by subsequent visualization techniques. The conventions applied for SimEnv represent a compromise be-
tween existing standards and the metadata requirements for a flexible and expressive visualization that is
adapted to the requirements of the specific data sets of concern. SimEnv follows the NetCDF Climate and
Forecast (NetCDF CF) metadata convention 1.0-beta4. Currently, SimEnv supports only up to 4-dimensional
NetCDF output during experiment and post-processor performance.

In principle, any NetCDF file can be viewed by the NetCDF service program
 ncdump <NetCDF_file>

Model output data types as declared in the model output description file <model>.mdf are transferred into
NetCDF data types automatically (check the Table below). By default, post-processor output data is of type
float.

SimEnv data type
(see Tab. 5.4)

NetCDF data type

byte NF_BYTE
short NF_SHORT
int NF_INT
float NF_FLOAT
double NF_DOUBLE

Tab. 12.1 NetCDF data types

-144- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

12.1.1 Global Attributes

The global attributes used in SimEnv from the CF standard are :institution and :convention. In addition, the
following global attributes are defined for model and post-processor output:

Name

Value Data type

:creation_time <YYYY-MM-DD HH:MM:SS> char
:model_name <model> char
:model_description model output description according to <model>.mdf char
:model_description_file {<directory>/}<model>.mdf char
:experiment_type [behaviour | monte carlo | local sensitivity | optimization] char
:experiment_description experiment description according to <model>.edf char
:experiment_description_file {<directory>/}<model>.edf char
:number_of_runs <number of runs> int

Tab. 12.2 Additional global NetCDF attributes

12.1.2 Variable Labelling and Variable Attributes

For coordinate variables, two cases of labelling are distinguished:
• If for a given predefined variable, factor, model output variable or post-processor result one of its coordi-

nates spans the entire range of its general dimension, the already existing coordinate definition is used.
• Otherwise, this concerned coordinate is re-defined using the notation

<variable_name>_dim_<coordinate_name>.

The following variable attributes are used according to the CF 1.0-beta4 standard:

Name

Value Data type

<variable_name>:standard_name [<coordinate_name> |
<predef_coordinate_name> |
 <predef_var_name> |
 <factor_name> |
 <variable_name> |
 <result_name>]

char

<variable_name>:long_name [<coordinate_description> |
 <predef_coordinate_description> |
 <predef_variable_description> |
 <factor_description> |
 <variable_description> |
 <result_applied_operator_sequence>]

char

<variable_name>:unit [<coordinate_unit> |
 <predef_coordinate_unit> |
 <predef_variable_unit> |
 <factor_unit> |
 <variable_unit> |
 <result_unit>]

char

<variable_name>:missing_value <variable type-depending missing value> type-dep.
<variable_name>:axis
(single coordinate variables only)

[X | Y | Z | T | bin_no | run | …] char

<variable_name>:coordinates
(multi-dimensional coordinate
variables only)

<par1_lon> <par1_lat> char

<variable_name>:_Fillvalue <variable type-depending fill value> type-dep.

Tab. 12.3 Variable NetCDF attributes

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -145-

• For experiment post-processor output, the :standard_name attribute simply counts the number of ap-
plied operations because the result name of an arbitrary operation is not known in general. For that rea-
son, the :long_name attribute would re-sample the :standard_name attribute and it is used instead to
provide the complete description of the applied operator sequence without defining an additional attrib-
ute.
If macros are included, these are resolved and elementary operations are included only.

• For the :axis attribute of a coordinate variable exist defaults.
For each post-processor result, the first coordinate is assumed to be the „X-axis“, the second and third
coordinate are assumed to represent the „Y-“ and „Z-axis“, and the fourth dimension is time T.
For model results, these attribute values are assigned to coordinate variables describing geographical
longitude, geographical latitude, level or height and time. In case other coordinate names are used,
these are simply also used for the axis attribute.

• The :unit attribute is actually estimated for model output only depending on the description of the corre-
sponding sub-keywords for the keyword ‘variable’ in the <model>.mdf file. For post-processing output, it
is only used as a placeholder and not calculated from the applied operator sequence so far.

• The :coordinates attribute serves to define coordinates depending on other ones and so to allow coor-
dinate transformations. Actually, this attribute is not used.

• Actually, the :_Fillvalue attribute is not applied to coordinate variables. It is identically to the
:missing_value attribute but open for other definitions.

For visualization requirements, the following additional variable attributes have been defined for SimEnv:

Name

Value Data type

<variable_name>:monotony
(coordinate variables only)

[increasing | decreasing | none] char

<variable_name>:coo_type [1 | 2] integer
<variable_name>:data_range <min> <max> char
<variable_name>:index_range_<coordinate>
(coordinate variables only)

<min_index> <max_index> int

<variable_name>:simenv_data_kind [predefined model output variable |
 model factor |
 model output variable |
 postproc_result]

char

<variable_name>:var_representation [positions | connections] or both char
<variable_name>:grid_shift <shift_x> <shift_y> real,

dimension(2)
<variable_name>:north_pole <lon_pole> <lat_pole> real,

dimension(2)

Tab. 12.4 Variable NetCDF attributes for visualization

• The :monotony attribute is applied to coordinate variables only and estimated from the coordinate val-
ues as defined in the <model>.mdf file. During post-processing additional coordinates can be generated
for which no monotony may be estimated. In such cases, the attribute is set to “none”.

• The :coo_type attribute describes the grid representation of a given coordinate. A value of 1 indicates
that all coordinate values are provided explicitly (suitable, e.g., for irregular grids). A value of 2 indicates
a regular grid and a coordinate representation by its start value, increment and end value.

• The :data_range attribute provides the real range that is covered by the related variable in the recent
NetCDF file.

• The :index_range attribute is used only in case a predefined output variable, factor, model output vari-
able or post-processing result covers not the complete range of a dimension as defined for a coordinate
variable. It describes that sub-space for which the concerned factor, variable or result is defined.

• The :var_representation attribute is introduced to specify what operations are allowed on the data.
• The :grid_shift attribute is actually still a placeholder for variables that are not defined in the centre of a

grid box when quasi-regular grids are used.
• The :north_pole attribute can be used if rotated grids are applied.

-146- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

12.2 IEEE Compliant Binary Model Output

IEEE compliant binary model output is written in records of fixed length to
<model>.out<simenv_run_char>.ieee and/or <model>.outall.ieee. For the determination of the record length
see below.

Sequence of data for each single run is as follows:
• Experiment factors as specified in <model>.edf

Sequence as in <model>.edf
• Built-in (pre-defined) model output variables

Sequence as in Tab. 10.8
• Model output variables

Sequence as in <model>.mdf

Storage demand for each model output variable / factor is according to its dimensionality, extents and data
type. Storage demand in bytes for each model output variable / factor is re-adjusted to the smallest number
of bytes divisible by 8, where the data can be stored. Multi-dimensional data fields are organized in the For-
tran storage model (see Section 15.7 - Glossary).
Data is stored in records with a fixed record length of minimum (512000 Bytes , re-adjusted storage demand
in Bytes).
In <model>.outall.ieee each single run starts with a new record. Sequence of the single runs corresponds to
the sequence of the single run numbers <simenv_run_int>. Consequently, data from default single run 0 is
stored in the first and potentially the following records.

Having a model output description file as in Example 5.1 and an experiment description file
as in Example 6.2 (3a) each single run is stored in the following way:

 Factor / Extents Data type Storage demand Storage demand
model variable [Byte] re-adjusted [Byte]

p1 1 float 4 8
p2 1 float 4 8
sim_time 1 float 4 8
atmo 45 x 90 x 4 x 20 float 1.296.000 1.296.000
bios 36 x 90 x 20 float 259.200 259.200
atmo_g 20 int 80 80
bios_g 1 int 4 8

 1.555.312

One single run needs 1.555.312 : 512.000 = 3+1 records with a fixed length of 512.000 Bytes.
Remaining bytes in the last record are undefined.

Example 12.1 IEEE compliant model output data structure

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -147-

12.3 IEEE Compliant Binary and ASCII Experiment Post-Processor
Output

For IEEE and ASCII experiment post-processor output result information is stored in two files:
• <model>.res<simenv_res_char>.[ieee | ascii] holds the result dynamics
• <model>.inf<simenv_res_char>.[ieee | ascii] holds structure and coordinate information

The IEEE post-processor output files <model>.res<simenv_res_char>.ieee and
<model>.inf<simenv_res_char>.ieee are unformatted binary files with IEEE float / int number representation,
while for the ASCII post-processor version <model>.res<simenv_res_char>.ascii and
<model>.inf<simenv_res_char>.ascii formatted ASCII files are used. Files for both output file formats have
for each result subsequently the following structure:

Record structure of <model>.inf<simenv_res_char>.[ieee | ascii] for each result:
result number 01:
record no. 1 max. 512 chars result expression string
record no. 2 max. 128 chars result description string
record no. 3 max. 32 chars result unit string (or 1 space if unit is undefined)
record no. 4 10 int dim ext(1) ... ext(dim) 0 ... 0

record no. 4 max. 20 chars coordinate name of dimension 1
record no. 5 10 float coordinate values of dimension 1 in records of 10 values
 (last record may have less values)
...
record no. xxx max. 20 chars coordinate name of dimension dim
record no. xxx+1 10 float coordinate values of dimension dim in records of 10 values
 (last record may have less values)
result number 02:
...

Record structure of <model>.res<simenv_res_char>.[ieee | ascii] for each result:
result number 01:
record no. 1 ... 10 float in records of 10 values (last record may have less values):
 result_value(1) ... result_value(length_result)

 with length_result = ∏
=

dim

1i

)i(ext for dim > 0

 = 1 else
result number 02:
...

The vector result_value is stored in the Fortran storage model (see Section 15.7 - Glossary). The nodata
element for undefined result values is set to 3.4E38.

The Fortran code in Example 15.13 reads experiment post-processing ASCII output files
<model>.res<simenv_res_char>.ascii and <model>.inf<simenv_res_char>.ascii in their general structure. In
the examples-directory $SE_HOME/../examples of SimEnv it is accompanied by the corresponding version
for IEEE result output.

-148- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -149-

13 SimEnv Prospects

SimEnv development and improvement is user-driven. Here one can find a list of the main develop-
ment pathways in future.

General
• Graphical user interface
• Portability to Windows-based systems
• Unique number representations for binary output of distributed models (big endians vs. small endians)

Model interface
• Interface for Java models
• simenv_slice_py for Python models

Experiment preparation
• Experiment type uncertainty analysis with variance decomposition
• Experiment type stochastic analysis
• Monte Carlo analysis: sampling of correlated factors

Experiment performance
• Experiment performance for distributed models across networks
• Multi-file model output storage

Experiment post-processing
• Additional advanced operators (coarse, sort, categorical operators)
• Advanced uncertainty operators
• Flexible assignment of data types to operator results (currently: only float)
• Shared memory access for user-defined operators to avoid data exchange by external files

Experiment evaluation
• Advanced techniques for graphical representation of experiment post-processor output,

especially for multi-run operators

-150- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -151-

14 References

Bohr, J. (1998) A summary on Probabilities

http://ic.net/~jnbohr/java/CdfDemoMain.html
Campolongo, F., Cariboni, J., Saltelli, A., Schoutens, W. (2005) Enhancing the Morris Method. In: Hanson,

K.M., Hemez, F.M. (eds.): Sensitivity Analysis of Model Output. Proceedings of the 4th International
Conference on Sensitivity Analysis of Model Output (SAMO 2004). Los Alamos National Laboratory, Los
Alamos, U.S.A., 369-379
http://library.lanl.gov/ccw/samo2004/

European Commission, Joint Research Centre – IPSC (2004): SimLab 2.2 Reference Manual
http://www.jrc.ce.eu.int/uasa/primer-sa.asp

Flechsig, M. (1998) SPRINT-S: A Parallelization Tool for Experiments with Simulation Models. PIK-Report
No. 47, Potsdam Institute for Climate Impact Research, Potsdam
http://www.pik-potsdam.de/reports/pr-47/pr47.pdf

Flechsig, M., Böhm, U., Nocke, T., Rachimow, C. (2005): Techniques for Quality Assurance of Models in a
Multi-Run Simulation Environment. In: Hanson, K.M., Hemez, F.M. (eds.): Sensitivity Analysis of Model
Output. Proceedings of the 4th International Conference on Sensitivity Analysis of Model Output (SAMO
2004). Los Alamos National Laboratory, Los Alamos, U.S.A., 297-306
http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-22.pdf

Gray, P., Hart, W., Painton, L., Phillips, C., Trahan, M., Wagner, J. (1997) A Survey of Global Optimization
Methods. Sandia National Laboratories, Albuquerque, U.S.A.
http://www.cs.sandia.gov/opt/survey

Helton, J.C., Davis, F.J. (2000): Sampling-Based Methods.
In: Saltelli et.al (2000)

Iman, R.L., Helton, J.C. (1998): An Investigation of Uncertainty and Sensitivity Analysis Techniques for Com-
puter Models. Risk Anal. 8(1), 71-90

Ingber, L. (1989): Very fast simulated re-annealing. Math. Comput. Modelling, 12(8), 967-973
http://www.ingber.com/asa89_vfsr.pdf

Ingber, L. (1996) Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics, 25(1), 33-
54
http://www.ingber.com/asa96_lessons.pdf

Ingber, L. (2004) ASA-Readme.
http://www.ingber.com/ASA-README.pdf

McKay, M.D., Conover, W.J., Beckman, R.J. (1979) A Comparison of Three Methods for Selecting values of
Input Variables in the Analysis of Output from a Computer Code. Technometrics, 221, 239-245

Morris, M.D. (1991) Factorial plans for preliminary computational experiments. Technometrics, 33(2), 161-
174

Pettitt, A.N. (1979) A non-parametric Approach to the Change-point Problem. Applied Statistics, 28, 126-135
Saltelli, A., Chan, K., Scott, E.M. (eds.) (2000) Sensitivity Analysis. J. Wiley & Sons, Chichester
Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M. (2004) Sensitivity Analysis in Practice: A Guide to As-

sessing Scientific Models. J. Wiley & Sons, Chichester
Schulzweida, U. (2004): Climate Data Operators. Max-Planck-Institute for Meteorology, Hamburg and

http://www.mpimet.mpg.de/ ~cdo
Waszkewitz, J., Lenzen, P., Gillet, N. (2001) The PINGO package: Procedural interface for Grib formatted

objects. Max-Planck-Institute for Meteorology, Hamburg and
http://www.mad.zmaw.de/Pingo/pingohome.html

Wenzel, V., Kücken, M., Flechsig, M. (1995) MOSES - Modellierung und Simulation ökologischer Systeme.
PIK-Report No. 13, Potsdam Institute for Climate Impact Research, Potsdam
http://www.pik-potsdam.de/pik_web/publications/pik_reports/sum_pr13.htm

Wenzel, V., Matthäus, E., Flechsig, M. (1990) One Decade of SONCHES. Syst. Anal. Mod. & Sim. 7, 411-
428

Wierzbicki, A.P. (1984) Models and Sensitivity of Control Systems. Studies in Automation and Control. Vol.
5. Elsevier, Amsterdam

-152- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -153-

15 Appendices

The appendices summarize the current version implementation, list the examples for model inter-
faces, user-defined operators and result import interfaces, and they compile all experiment post-processor
built-in operators. Finally, a glossary of the main terms as used in this User Guide is supplied.

-154- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -155-

15.1 Version Implementation

Currently, SimEnv is implemented under Unix and Linux. The Unix version is available at PIK from
/usr/local/simenv. The Linux version is directly available from the SimEnv developers. For both versions, only
the latest version is supported and bug fixes are installed on demand. Tab. 15.1 lists the directory structure
of SimEnv.

Sub-directory of /usr/local/simenv

Contents

bin latest version of SimEnv
doc documentation for the latest version
examples example files for the latest version
version_archive version archive of SimEnv. Version <x.yz> is located

in a sub-folder <x.yz> and structured in this sub-
folder in the same manner as the latest version

Tab. 15.1 SimEnv installation directory structure

15.1.1 System Requirements

Specification
Component

Unix

Linux

hardware IBM RS6000 and compatibles Intel-based systems and com-
patibles

operating system AIX Version 4.3 or higher
http://www-03.ibm.com/
servers/aix/

SUSE Version 9.0 or higher
http://www.suse.com

shell Bourne shell sh
Python Version 2.3 or higher

http://www.python.org
OpenDX Version 4.3.2 or higher

http://www.opendx.org
NetCDF-CF Version 1.04 or higher

install library libnetcdf.a and binary ncdump
http://www.cgd.ucar.edu/cms/eaton/cf-metadata

sendmail Version 8.7 or higher
http://www.sendmail.org

secure shell ssh2
(only for communication with the
SimEnv visualization server)

Version 3 or higher
http://www.ssh.com

Fortran compiler
(only for compiling and linking inter-
faced models and user-defined op-
erators written in Fortran)

xlf Version 8.0 or higher
IBM Fortran compiler
http://www-306.ibm.com/
software/awdtools/
fortran/xlfortran/

gfortran Version 4.2.0 or higher
GNU Fortran 95 compiler
http://gcc.gnu.org/

xlc Version 7.0 or higher
IBM C/C++ compiler
http://www-306.ibm.com/
software/awdtools/xlcpp/

gcc Version 3.3 or higher
GNU C/C++ compiler
http://gcc.gnu.org/

C/C++ compiler
(only for compiling and linking inter-
faced models and user-defined op-
erators written in C/C++)

For the compiler the symbolic link “cc” is used.
Matlab
(only for running interfaced Matlab
models)

Version 5.2 or higher
http://www.mathworks.com

-156- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Specification
Mathematica
(only for running interfaced Mathe-
matica models)

Version 4.1 or higher
http://www.wolfram.com

GAMS
(only for running interfaced GAMS
models)

Distribution 20 or higher
http://www.gams.com

Tab. 15.2 System requirements

15.1.2 Technical Limitations

Entity

Maximum
entity value

User-defined files entities (check also Section 11.1)

length of a record in a user-defined file [characters] 160
length of all general descriptions descr [characters] 512
length of a local description descr [characters] 128
length of a unit [characters] 32
length of a name [characters] 20
number of user-defined and composed operators in <model>.odf 45
length of all define strings for a macro or a composed operator [characters] 512
length of a record of a referred ASCII data file [characters] 1 000

Model interface and experiment preparation entities

dimensionality of a model output variable 9
dimensionality of a model output variable for Python models 4
dimensionality of a model output variable for GAMS models 4
number of model output variables 100
number of coordinates 30
number of experiment factors 50
number of slice definitions during interfacing a model 30
number of single model runs in an experiment 999 999
number of coordinate values and sampled factor values 200 000

Experiment post-processing entities (per result)

length of the optional result description string [characters] 128
length of the optional result unit string [characters] 32
number of arguments of an operator 9
dimensionality of a result 9
length of a complete result string (with description and unit) [characters] 512
number of all operands and operators of a result 200
length of a string for a constant [characters] 20
number of constants 30
number of allocatable main memory segments 10
allocatable main memory [MBytes] 240
number of post-processor output files 99

Tab. 15.3 Current SimEnv technical limitations

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -157-

15.1.3 Linking User Models and User-Defined Operators

• User models implemented in C/C++ or Fortran have to be linked with the following libraries to interface
them to the simulation environment
• $SE_HOME/libsimenv.a
• libnetcdf.a from /usr/local/lib or /usr/lib

• User-defined operators to be used in experiment post-processing have to be linked with the following
library to interface them to the simulation environment
• $SE_HOME/libsimenv.a

For running interfaced models outside SimEnv check Section 5.12.

15.1.4 Example Models and User Files

For the following models corresponding files of Tab. 10.6 of can be copied from the corresponding exam-
ples-directory $SE_HOME/../examples to the user’s current workspace by running the SimEnv service com-
mand simenv.cpy <model> from this workspace:

model

Language /
source code

Explanation

world_f Fortran
world_f.f

world_c C
world_c.c

world_cpp C++
world_cpp.cpp

world_py Python
world_py.py

world_sh Shell script level
world_sh.f
world_shput.f

world_as ASCII interface
world_as.f

world_f_auto
(semi-automated
model interface)

Fortran
world_f_auto.f

world_sh_auto
(semi-automated
model interface)

Shell script level
world_sh.f
world_shput.f

global atmosphere - biosphere model
at resolution of (lat x lon x level x time) = (45 x 90 x 4 x 20)

world_f_1x1 Fortran
world_f_1x1.f

global atmosphere - biosphere model
at a resolution of (lat x lon x level x time) = (180 x 360 x 16 x 20)

world_f_05x05 Fortran
world_f_05x05.f

global atmosphere - biosphere model
at a resolution of (lat x lon x level x time) = (360 x 720 x 16 x 20)

gridcell_f Fortran
gridcell_f.f

atmosphere - biosphere model for one lat-lon grid cell
at a resolution of (level x time) = (4 x 20)

gams_model GAMS
gams_model.gms

GAMS example model

Tab. 15.4 Implemented example models for the current version
 For the generic model “world” check Example 1.1

-158- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Additionally, the following files are available from the example directory $SE_HOME/../examples:

File

Explanation

<model>.[f | c | cpp | py | gms] model source code (check also example files in Section 15.2)
<model> model executable compiled and linked from <model>.[f | c | cpp]
world.edf_[2 | 3[a|b|c|d] | 4 | 5 |
6]

experiment description files corresponding to Examples 6.2 to 6.6 to be
copied to world_[f | c | cpp | py | sh].edf and/or world_f_1x1.edf and
world_f_05x05.edf

world.post_[2 | 3c | 4 | 5 |
 bas | adv]

post-processor input file (complete experiment)
for world.edf_[2 | 3c | 4 | 5]
(simenv.res world_[f | c | cpp | py | sh] [new | append | replace]
 < world_post.edf_[2 | 3c | 4 | 5])
and/or all experiments (selected single run <simenv_run_int>)
(simenv.res world_[f | c | cpp | py | sh] [new | append | replace]
 <simenv_run_int>
 < world_post.edf_[bas | adv])

world.dat_[3d | 5 | tab] data files for world.edf_[3d | 5] and/or world.post_adv
usr_opr_<opr>.f source code for user-defined operator <opr>
<opr>.opr executable for user-defined operator <opr>
usr_opr_<opr>.f source code file for user-defined post-processing operator <opr>
land_sea_mask[<nil> | .f] executable and source code to derive a coarsed land-sea-mask from the

file land_sea_mask.05x05
land_sea_mask.05x05 global ASCII land-sea-mask file with a resolution of 0.5° lat x 0.5° lon

read_result_file[<nil> | .f] executable and source code for the result file import interface of ASCII
and IEEE compliant result output

Tab. 15.5 Implemented model and operator related user files for the current version
 For <opr> see Tab. 15.6 below

15.1.5 Example User-Defined Operators

The following user-defined operators are available from the example directory $SE_HOME/../examples as
source code and executables <opr>.opr. All but operator matmul_c (source file usr_opr_<opr>.c) are imple-
mented in Fortran and available as source files usr_opr_<opr>.f.

Operator name
<opr>

Operator arguments Explanation Example

char_test char_arg1,char_arg2,
arg

character test
check usr_opr_char_test.f

char_test(‘arg11’,
‘arg22’,bios)

corr_coeff arg1,arg2 correlation coefficient R corr_coeff(bios,
-bios) = -1.

div arg1,arg2 division as an example how the
corresponding built in basic opera-
tor works

div(-2,-4) = 0.5

matmul_[f | c] arg1,arg2 matrix multiplication of 2-
dimensional operands

matmul_[f | c]
(mat1,mat2)

simple_div arg1,arg2 division without consideration of
overflow, underflow, and division
by 0.

simple_div(-2,-4) =
0.5

Tab. 15.6 Available user-defined operators

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -159-

15.2 Examples for Model Interfaces

15.2.1 Example Implementation of the Generic Model world

According to Example 1.1 on page 6 dynamics of the model world depend on four model paramters p1, p2,
p3, and p4:

Model
factor

Factor
default
value

Internal model
parameter name

Factor
unit Factor meaning

p1 1. phi_lat π/12 latitudinal phase shift
p2 2. omega_lat 2*π latitudinal frequency
p3 3. phi_lon π/12 longitudinal phase shift
p4 4. omega_lon 2*π longitudinal frequency

Tab. 15.7 Factors of the generic model world
Mapping between model factors and internal model parameters is performed by the
model coupling interface functions simenv_get_*

For reasons of simplification these factors (parameters) influence state variables atmo and bios by the prod-
uct of two trigonometric terms value_lat and value_lon in the following manner:

value_lat(lat) = sin(2*π*omega_lat * f(lat) + phi_lat*π/12)
value_lon(lon) = sin(2*π*omega_lon * f(lon) + phi_lon*π/12)

The function f(.) norms value_lat and value_lon by lat and/or lon in a way, that it holds

value_[lat|lon](1) = sin(+π*omega_[lat|lon] + phi_[lat|lon]*π/12)
value_[lat|lon](last/2) = sin(±0*omega_[lat|lon] + phi_[lat|lon]*π/12)
value_[lat|lon](last) = sin(-π*omega_[lat|lon] + phi_[lat|lon]*π/12)

Finally,

atmo(lat,lon,level,time) = value_lat(lat) * value_lon(lon) * (100*time+level-1)
bios(lat,lon,time) = value_lat(lat) * value_lon(lon) * 100*time

and - notated in the syntax of the SimEnv post-processor -

atmo_g(time) = avg_l(‘001’,abs(atmo(lat,lon,1,time)))
bios_g = avg(abs(bios(lat,lon,time)))

Means avg and avg_l are calculated in a box with the extent lat x lon = 10° x 10° and (lat,lon) = (0°,0°) in
the mid of the box.

-160- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.2 Fortran Model

With respect to Example 5.1 the following Fortran code world_f.f could be used to describe the model inter-
faced to SimEnv. SimEnv modifications are marked in bold.

program world_f
c declare SimEnv interface functions (compile with –I$SE_HOME)
c simenv_sts, simenv_run_int and simenv_run_char are also declared there
 include ‘simenv_mod_f.inc’
c declare atmo without dimensions level and time and bios without time
c because they are computed in place and simenv_slice_f is used
 real*4 atmo(0:44,0:89)
 real*4 bios(0:35,0:89)
 integer*4 atmo_g(0:19)
 integer*4 bios_g

 p1 = 1.
 p2 = 2.
 p3 = 3.
 p4 = 4.

 simenv_sts = simenv_ini_f()
c check return code for the model interface functions at least here
 if(simenv_sts.ne.0) call exit_(1)
c only if necessary:
 simenv_sts = simenv_get_run(simenv_run_int,simenv_run_char)
 simenv_sts = simenv_get_f(‘p1’,p1,p1)
 simenv_sts = simenv_get_f(‘p2’,p2,p2)
 simenv_sts = simenv_get_f(‘p3’,p3,p3)
 simenv_sts = simenv_get_f(‘p4’,p4,p4)

c compute dynamics of atmo and bios over space and time,
c of atmo_g over time, all dependent on p1,p2,p3,p4
 do idecade = 0,19
 ...
 do level= 0,3
 simenv_sts = simenv_slice_f(‘atmo’,3,level+1,level+1)
 simenv_sts = simenv_slice_f(‘atmo’,4,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘atmo’,atmo)
 enddo
 simenv_sts = simenv_slice_f(‘bios’,3,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘bios’,bios)
 enddo
 ...
 simenv_sts = simenv_put_f(‘atmo_g’,atmo_g)
c compute dynamics of bios_g
 ...
 simenv_sts = simenv_put_f(‘bios_g’,bios_g)

 simenv_sts = simenv_end_f()
 end

Example file: world_f.f

Example 15.1 Model interface for Fortran models - model world_f.f

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -161-

15.2.3 Fortran Model with Semi-Automated Model Interface

With respect to Example 5.1 the following Fortran code world_f_auto.f could be used to describe the model
interfaced semi-automatedly to SimEnv. SimEnv modifications are marked in bold.

program world_f_auto
c declare SimEnv interface functions (compile with –I$SE_HOME)
c simenv_sts, simenv_run_int and simenv_run_char are also declared there
 include ‘simenv_mod_f.inc’
c declare atmo without dimensions level and time and bios without time
c because they are computed in place and simenv_slice_f is used
 real*4 atmo(0:44,0:89)
 real*4 bios(0:35,0:89)
 integer*4 atmo_g(0:19)
 integer*4 bios_g

 p1 = 1.
 p2 = 2.
 p3 = 3.
 p4 = 4.

c include source code sequence for the semi-automated model interface
 include ‘world_f_auto_f.inc’

c compute dynamics of atmo and bios over space and time,
c of atmo_g over time, all dependent on p1,p2,p3,p4
 do idecade = 0,19
 ...
 do level= 0,3
 simenv_sts = simenv_slice_f(‘atmo’,3,level+1,level+1)
 simenv_sts = simenv_slice_f(‘atmo’,4,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘atmo’,atmo)
 enddo
 simenv_sts = simenv_slice_f(‘bios’,3,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘bios’,bios)
 enddo
 ...
 simenv_sts = simenv_put_f(‘atmo_g’,atmo_g)
c compute dynamics of bios_g
 ...
 simenv_sts = simenv_put_f(‘bios_g’,bios_g)

 simenv_sts = simenv_end_f()
 end

Example file: world_f_auto.f

Example 15.2 Semi-automated model interface for Fortran models - model world_f_auto.f

-162- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.4 C Model

With respect to Example 5.1 the following C code world_c.c could be used to describe the model interfaced
to SimEnv. SimEnv modifications are marked in bold.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* declare SimEnv interface functions (compile with –I$SE_HOME)
simenv_sts, simenv_run_int and simenv_run_char are also declared there */
#include “simenv_mod_c.inc”

/* declare atmo without dimensions level and time and bios without time*/
/* because they are computed in place and simenv_slice_c is used */
static float atmo[45][90];
static float bios[36][90];
static int atmo_g[20];
static int bios_g;

main(void)
{
 float p1,p2,p3,p4;
 int level,idecade,level1,idecade1,idim;
 p1 = 1.;
 p2 = 2.;
 p3 = 3.;
 p4 = 4.;

 simenv_sts = simenv_ini_c();
/* check return code of model interface functions at least here */
 if(simenv_sts != 0) return 1;
/* only if necessary: */
 simenv_sts = simenv_get_run_c(&simenv_run_int,simenv_run_char);
 simenv_sts = simenv_get_c(“p1”,&p1,&p1);
 simenv_sts = simenv_get_c(“p2”,&p2,&p2);
 simenv_sts = simenv_get_c(“p3”,&p3,&p3);
 simenv_sts = simenv_get_c(“p4”,&p4,&p4);
/* compute dynamics of atmo and bios over space and time, */
/* of atmo_g over time, all dependent on p1,p2,p3,p4 */
 for (idecade=0; idecade<=19; idecade++)
 {...
 for (level=0; level<=3; level++)
 { ...
 idim=3;
 level1=level+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&level1,&level1);
 idim=4;
 idecade1=idecade+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&idecade1,&idecade1);
 simenv_sts = simenv_put_c(“atmo”,(char *) &atmo);
 }
 idim=3;
 idecade=idecade+1;
 simenv_sts = simenv_slice_c(“bios”,&idim,&idecade1,&idecade1);
 simenv_sts = simenv_put_c(“bios”,(char *) &bios);
 }

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -163-

 simenv_sts = simenv_put_c(“atmo_g”,(char *) &atmo_g);

/* compute dynamics of bios_g */
 ...
 simenv_sts = simenv_put_c(“bios_g”, ,(char *) &bios_g);
 simenv_sts = simenv_end_c();
 return 0;
}

Example file: world_c.c

Example 15.3 Model interface for C models – model world_c.c

-164- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.5 C++ Model

With respect to Example 5.1 the following C++ code world_cpp.cpp could be used to describe the model
interfaced to SimEnv. SimEnv modifications are marked in bold.

#include <stdio.h>
#include <stdlib.h>
/* declare SimEnv interface functions (compile with –I$SE_HOME)
simenv_sts, simenv_run_int and simenv_run_char are also declared there */
#include “simenv_mod_c.inc”

class World
{
/* declare atmo without dimensions level and time and bios without time*/
/* because they are computed in place and simenv_slice_c is used */
 public: float atmo[45][90];
 public: float bios[36][90];
 public: int atmo_g[20];
 public: int bios_g;
 private: int level,idecade,level1,idecade1,idim;

 public: void computeAtmo(float p1 ,float p2, float p3, float p4)
/* compute dynamics of atmo over space and time, */
/* and of atmo_g over time, all dependent on p1,p2,p3,p4 */
 {
 for (idecade=0; idecade<=19; idecade++)
 {...
 for (level=0; level<=3; level++)
 {...
 idim=3;
 level1=level1+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&level,&level);
 idim=4;
 idecade1=idecade1+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&idecade,&idecade);
 simenv_sts = simenv_put_c(“atmo”,(char *) &atmo);
 }
 }
 }

public: void computeBios(float p1, float p2, float p3, float p4)
/* compute dynamics of bios over space and time, */
/* and of bios_g all dependent on p1,p2,p3,p4 */
 {
 for (idecade=0; idecade<=19; idecade++)
 {...
 idim=3;
 idecade1=idecade1+1;
 simenv_sts = simenv_slice_c(“bios”,&idim,&idecade1,&idecade1);
 simenv_sts = simenv_put_c(“bios”,(char *) &bios);
 }
/* compute dynamics of bios_g */
 ...
 }
}

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -165-

main(void)
{
 float p1 = 1.;
 float p2 = 2.;
 float p3 = 3.;
 float p4 = 4.;

 simenv_sts = simenv_ini_c();
/* check return code of model interface functions at least here */
 if(simenv_sts != 0) return 1;
/* only if necessary: */
 simenv_sts = simenv_get_run_c(&simenv_run_int,simenv_run_char);

 simenv_sts = simenv_get_c(“p1”,&p1,&p1);
 simenv_sts = simenv_get_c(“p2”,&p2,&p2);
 simenv_sts = simenv_get_c(“p3”,&p3,&p3);
 simenv_sts = simenv_get_c(“p4”,&p4,&p4);

 World world;
 world.computeAtmo(p1,p2,p3,p4);
 simenv_sts = simenv_put_c(“atmo_g”,(char *) &(world.atmo_g));
 world.computeBios(p1,p2,p3,p4);
 simenv_sts = simenv_put_c(“bios_g”,(char *) &(world.bios_g));

 simenv_sts = simenv_end_c();
 return 0;
}

Example file: world_cpp.cpp

Example 15.4 Model interface for C++ models – model world_cpp.cpp

-166- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.6 Python Model

With respect to Example 5.1 the following Python code world_py.py could be used to describe the model
interfaced to SimEnv. SimEnv modifications are marked in bold.

#!/usr/local/bin/python
import string
import os
from simenv import *
from math import *
from Numeric import *

atmo=zeros([45,90,4,20], Float)
bios=zeros([36,90,20], Float)
atmo_g=zeros([20], Float)
p1=1.
p2=2.
p3=3.
p4=4.

simenv_ini_py()
only if necessary:
simenv_run_int = int(simenv_get_run_py())
p1 = float(simenv_get_py(‘p1’,p1))
p2 = float(simenv_get_py(‘p2’,p2))
p3 = float(simenv_get_py(‘p3’,p3))
p4 = float(simenv_get_py(‘p4’,p4))

compute dynamics of atmo and bios over space and time,
of atmo_g over time, all dependent on p1,p2,p3,p4
for idecade in range(20):
 ...
 for level in range(4):
 ...
atmo=reshape(atmo,45*90*4*20,))
simenv_put_py(‘atmo’,atmo)
bios=reshape(atmo,45*90*20,))
simenv_put_py(‘bios’,bios)
simenv_put_py(‘atmo_g’,atmo_g)
compute dynamics of bios_g
...
simenv_put_py(‘bios_g’,bios_g)
simenv_end_py()

Example file: world_py.py

Example 15.5 Model interface for Python models – model world_py.py

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -167-

15.2.7 Matlab / Mathematica Model

Example 15.6 describes the model interface for a Matlab / Mathematica model. The models are not provide.

#! /bin/sh

perform always and as the first $SE_HOME/simenv_*_sh dot script

get current run number <simenv_run_char> and <simenv_run_int>
. $SE_HOME/simenv_get_run_sh

get factor names and adjusted values and
run the Matlab / Mathematica model <model>.m
. $SE_HOME/simenv_run_[matlab | mathematica]

transfer ASCII model output files to SimEnv model output
(see Example 15.8 and Example 15.9)
...

remove temporary sub-directory run$simenv_run_char
rmdir run$simenv_run_char

perform always and as the last $SE_HOME/simenv_*_sh dot script
. $SE_HOME/simenv_end_sh

Example 15.6 Model interface for Matlab / Mathematica – model shell script <model>.run

-168- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.8 GAMS Model

SimEnv comes with an interfaced GAMS model gams_model.gms and all associated files that fully corre-
spond to the GAMS example model at http://www.gams.com/docs/gams/Tutorial.pdf. Modifications for
SimEnv are marked in bold.

SETS
 I canning plants / SEATTLE, SAN-DIEGO /
 J markets / NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS
 A(I) capacity of plant i in cases
 / SEATTLE 350
 SAN-DIEGO 600 /
 B(J) demand at market j in cases
 / NEW-YORK 325
 CHICAGO 300
 TOPEKA 275 / ;

* - Before using parameters (here dem_ny and dem_ch) as SimEnv experiment
* factors they have to be declared as GAMS model parameters
* with default values from above.
* - Then insert $include <model>_simenv_get.inc
* simenv_get.inc is generated automatically based on <model>.edf
* - And assign adjusted factors to model variables
 PARAMETERS
 dem_ny /325.0/;
 dem_ch /300.0/;
 $include gams_model_simenv_get.inc
 A("SEATTLE") = dem_ny;
 A("SAN-DIEGO") = dem_ch;

TABLE D(I,J) distance in thousands of miles
 NEW-YORK CHICAGO TOPEKA
 SEATTLE 2.5 1.7 1.8
 SAN-DIEGO 2.5 1.8 1.4 ;
SCALAR F freight in dollars per case per thousand miles /90/

* get the model status as a model output
 modstat is set to transport.modelstat ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;
 C(I,J) = F * D(I,J) / 1000 ;
VARIABLES
 X(I,J) shipment quantities in cases
 Z total transportation costs in thousands of dollars ;
POSITIVE VARIABLE X ;
EQUATIONS
 COST define objective function
 SUPPLY(I) observe supply limit at plant i
 DEMAND(J) satisfy demand at market j ;
COST .. Z =E= SUM((I,J), C(I,J)*X(I,J)) ;
SUPPLY(I) .. SUM(J, X(I,J)) =L= A(I) ;
DEMAND(J) .. SUM(I, X(I,J)) =G= B(J) ;
MODEL TRANSPORT /ALL/ ;
SOLVE TRANSPORT USING LP MINIMIZING Z ;

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -169-

* After solving the equations $include simenv_put.inc
* has to be inserted.
* simenv_put.inc is generated automatically by SimEnv
* based on <model>.edf and <model>.gdf
* Additional GAMS statements are possible after the $include statement
 modstat = transport.modelstat
 $include gams_model_simenv_put.inc

* Only if sub-models sub_m1 and sub_m2 are coupled (see Example 5.3):
* $call “gams ../sub_m1.gms ll= lo=2 lf=gams_model.nlog dp=0”;
* $call “gams ../sub_m2.gms ll= lo=2 lf=gams_model.nlog dp=0”;

Example file: gams_model.gms

Example 15.7 Model interface for GAMS models – model gams_model.gms

-170- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.9 Model Interface at Shell Script Level

Assume any experiment. Assume model executable world_sh to take factor values p1 to p4 as arguments
from the command line.
The shell script world_sh.run with an interface at shell script level to run the model world_sh and to trans-
form model output to SimEnv could look like:

#! /bin/sh

p1=1.
p2=2.
p3=3.
p4=4.

perform always and as the first $SE_HOME/simenv_*_sh dot script
altern. perform . $SE_WS/<model>_sh.inc for semi-autom. model interface
. $SE_HOME/simenv_ini_sh

get current run number <simenv_run_char> and <simenv_run_int>
. $SE_HOME/simenv_get_run_sh

get adjusted values for factors p1 ... p4
factor_name=‘p1’
factor_def_val=$p1
. $SE_HOME/simenv_get_sh
factor_name=‘p2’
factor_def_val=$p2
. $SE_HOME/simenv_get_sh
factor_name=‘p3’
factor_def_val=$p3
. $SE_HOME/simenv_get_sh
factor_name=‘p4’
factor_def_val=$p4
. $SE_HOME/simenv_get_sh

create temporary directory run<simenv_run_char> to perform the model
and model output transformation from native to SimEnv structure there
mkdir run$simenv_run_char
cd run$simenv_run_char

run the model
cp ../land_sea_mask.coarsed .
../world_sh $p1 $p2 $p3 $p4

read model results and output them to SimEnv
../world_shput

clear and remove directory
cd ..
rm -fR run$simenv_run_char

perform always and as the last $SE_HOME/simenv_*_sh dot script
. $SE_HOME/simenv_end_sh

Example file: world_sh.run

Example 15.8 Model interface at shell script level – model shell script world_sh.run

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -171-

15.2.10 Model Interface for ASCII Files

Assume any experiment. Assume model executable world_as (example file world_as.f)
• to take factor names and resulting adjusted values p1 to p4 from the file generated by simenv_get_as
• to output model variables to ASCII files

• atmo_bios.ascii<simenv_run_char>
• atmo_g.ascii<simenv_run_char>
• bios_g.ascii<simenv_run_char>
with the same file structure as in Example 5.6. The current run number in 6-character notation is ap-
pended to the file names to distinguish files for parallel experiment performance.

The shell script world_as.run with an ASCII interface to run the model world_as and to transfer model out-
put to SimEnv could look like:

#! /bin/sh

perform always and as the first $SE_HOME/simenv_*_sh dot script
altern. perform . $SE_WS/<model>_sh.inc for semi-autom. model interface
. $SE_HOME/simenv_ini_sh

get current run number <simenv_run_char> and <simenv_run_int>
. $SE_HOME/simenv_get_run_sh

get factor names and adjusted values
to ASCII file world_as.as<simenv_run_char>
. $SE_HOME/simenv_get_as

run the model:
read world_as.as$simenv_run_char
store model output to ASCII files
world_as

transfer ASCII model output files to SimEnv model output
use simenv_put_as_simple since the ASCII file has 9000 columns:
$SE_HOME/simenv_put_as_simple atmo_bios.ascii$simenv_run_char lat
use simenv_put_as since the ASCII files have 1 column:
$SE_HOME/simenv_put_as atmo_g.ascii$simenv_run_char time
$SE_HOME/simenv_put_as bios_g.ascii$simenv_run_char

remove ASCII files
rm -f world_as.as$simenv_run_char
rm -f atmo_bios.ascii$simenv_run_char
rm -f atmo_g.ascii$simenv_run_char
rm -f bios_g.ascii$simenv_run_char

perform always and as the last $SE_HOME/simenv_*_sh dot script
. $SE_HOME/simenv_end_sh

Example file: world_as.run

Example 15.9 Model interface for ASCII files – model shell script world_as.run

-172- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.2.11 Semi-Automated Model Interface at Shell Script Level

Assume any experiment. Assume model executable world_sh to take factor values p1 to p4 as arguments
from the command line.
The shell script world_sh_auto.run with an semi-automated interface at shell script level to run the model
world_sh and to transform model output to SimEnv could look like:

#! /bin/sh

p1=1.
p2=2.
p3=3.
p4=4.

perform dot script world_sh_auto_sh.inc
for semi-automated model interface at shell script level
alternatively perform dot script $SE_HOME/simenv_ini_sh
. $SE_WS/world_sh_auto_sh.inc

create temporary directory run<simenv_run_char> to perform the model
and model output transformation from native to SimEnv structure there
mkdir run$simenv_run_char
cd run$simenv_run_char

run the model
cp ../land_sea_mask.coarsed .
../world_sh $p1 $p2 $p3 $p4

read model results and output them to SimEnv
../world_shput

clear and remove directory
cd ..
rm -fR run$simenv_run_char

perform always and as the last $SE_HOME/simenv_*_sh dot script
. $SE_HOME/simenv_end_sh

Example file: world_sh_auto.run

Example 15.10 Semi-automated model interface at shell script level –
 model shell script world_sh_auto.run

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -173-

15.3 Example Implementation for the Experiment Post-Processor User-
Defined Operator matmul_[f | c]

15.3.1 Fortran Implementation

Implementation of the user-defined operator matmul_f in the file usr_opr_matmul_f.f:

 integer*4 function simenv_check_user_def_operator()
c declare SimEnv interface functions (compile with –I$SE_HOME)
 include ‘simenv_opr_f.inc’
c declare fields to hold extents and coordinates
 dimension iext1(9),iext2(9)
 dimension ico_nr1(9),ico_nr2(9)
 dimension ico_beg_pos1(9),ico_beg_pos2(9)
 character*20 co_name1(9),co_name2(9)

c get dimensionality idimens, extents iext,
c formal coordinate number ico_nr and
c formal coordinate begin position ico_beg_pos
 idimens1=simenv_get_dim_arg_f(1,iext1)
 idimens2=simenv_get_dim_arg_f(2,iext2)
 iok=simenv_get_co_arg_f(1,ico_nr1,ico_beg_pos1,co_name1)
 iok=simenv_get_co_arg_f(2,ico_nr2,ico_beg_pos2,co_name2)
c get check modus for coordinates
 ichk_modus=simenv_get_co_chk_modus_f()

 if(idimens1.ne.2.or.idimens2.ne.2) then
c wrong dimensionalities
 ierror=1
 else
 if(iext1(2).ne.iext2(1)) then
c wrong extents
 ierror=2
 else
 if(ico_nr1(2).eq.ico_nr2(1)) then
c coordinates identical
 if(ico_beg_pos1(2).eq.ico_beg_pos2(1)) then
 iret=31
 else
 iret=33
 endif
 else
c differing coordinates
 iret=32
 if(ichk_modus.eq.1) then
c check only for weak coordinate
 do j=0,iext1(2)-1
c get coordinate values
 iretv1=simenv_get_co_val_f(
 # ico_nr1(2),ico_beg_pos1(2)+j,value1)
 iretv2=simenv_get_co_val_f(
 # ico_nr2(1),ico_beg_pos2(1)+j,value2)
c iret=33: differing coordinate values

-174- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

 if(value1.ne.value2) iret=33
 enddo
 endif
 endif

 ierror=0
 if(ichk_modus.eq.2) then
 if(iret.gt.31) ierror=3
 elseif(ichk_modus.eq.1) then
 if(iret.gt.32) ierror=3
 endif

 endif
 endif

if(ierror.eq.0) then
 iext1(2)=iext2(2)
 ico_nr1(2)=ico_nr2(2)
 ico_beg_pos1(2)=ico_beg_pos2(2)
 iok=simenv_put_struct_res_f(0,idimens1,iext1,ico_nr1,ico_beg_pos1)
 endif

c return error code
 simenv_check_user_def_operator=ierror
 return
 end

 integer*4 function simenv_compute_user_def_operator(res)
c SimEnv operator results are always of type real*4
 real*4 res(1)
c declare SimEnv interface functions (compile with –I$SE_HOME)
 include ‘simenv_opr_f.inc’
c auxiliary variables
 integer*4 iext1(9),iext2(9)
 real*8 value8

c get dimensionality idimens and extents iext for both arguments
 idimens=simenv_get_dim_arg_f(1,iext1)
 idimens=simenv_get_dim_arg_f(2,iext2)

c perform matrix multiplication
 m=0
 do k=1,iext2(2)
 iarg2_offs=(k-1)*iext2(1)
 do i=1,iext1(1)
 iarg1_offs=i
c res(i,k) = sum(arg1(i,l) * arg2(l,k))
 value8=0.
 indi_defined=0
 do l=1,iext1(2)
 ia1=iarg1_offs+(l-1)*iext1(1)
 ia2=iarg2_offs+l
 fac1=simenv_get_arg_f(1,ia1)
 fac2=simenv_get_arg_f(2,ia2)
 if(simenv_chk_undef_f(fac1)+simenv_chk_undef_f(fac2).eq.0)
 then

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -175-

 indi_defined=1
 value8=value8+fac1*fac2
 endif
 enddo
 m=m+1
 if(indi_defined.eq.0) then
 res(m)=simenv_put_undef_f()
 else
 res(m)=simenv_clip_undef_f(value8)
 endif
 enddo
 enddo

c return error code
 simenv_compute_user_def_operator=0
 return
 end

Example file: usr_opr_matmul_f.f

Example 15.11 Experiment post-processor user-defined operator module – operator matmul_f

-176- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.3.2 C Implementation

Implementation of the user-defined operator matmul_c in the file usr_opr_matmul_c.c:

#include <strings.h>
#include <stdio.h>
#include “simenv_opr_c.inc” /* compile with -I$SE_HOME */

int simenv_check_user_def_operator()
{
 int iext1[9],iext2[9];
 int ico_nr1[9],ico_nr2[9],ico_beg_pos1[9],ico_beg_pos2[9];
 char co_name1[180],co_name2[180];
 int idimens1, idimens2;
 int ichk_modus;
 int iret,iretv1,iretv2,j,iok,ierror=0;
 float value1, value2;

/* get dimensionality idimens, extents iext,
 formal coordinate number ico_nr and
 formal coordinate begin position ico_beg_pos
*/
 idimens1=simenv_get_dim_arg_c(1,iext1);
 idimens2=simenv_get_dim_arg_c(2,iext2);
 iok=simenv_get_co_arg_c(1,ico_nr1,ico_beg_pos1,co_name1);
 iok=simenv_get_co_arg_c(2,ico_nr2,ico_beg_pos2,co_name2);

 ichk_modus=simenv_get_co_chk_modus_c();

 if(idimens1!=2 || idimens2!=2)
 ierror=1; /* wrong dimensionalities */
 else
 if(iext1[1]!=iext2[0])
 ierror=2; /* wrong dimensions */
 else
 { if(ico_nr1[1]==ico_nr2[0])
 if(ico_beg_pos1[1]==ico_beg_pos2[0])
 iret=31;
 else
 iret=33; /* coordinates identical*/
 else
 { iret=32; /* differing coordinates */
 if(ichk_modus==1)
 for (j=0;j<iext1[1];j++) /* only for weak c. check */
 { /* get coordinate values */
 iretv1=simenv_get_co_val_c
 (ico_nr1[1],ico_beg_pos1[1]+j,&value1);
 iretv2=simenv_get_co_val_c
 (ico_nr2[0],ico_beg_pos2[0]+j,&value2);
/* iret=33: differing coordinate values */
 if(value1 != value2)
 iret=33;
 }
 }

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -177-

 ierror=0;
 if(ichk_modus==2)
 if(iret>31) ierror=3;
 else
 if(ichk_modus==1)
 if(iret>32) ierror=3;
 }

if(ierror==0)
 { iext1[1]=iext2[1];
 ico_nr1[1]=ico_nr2[1];
 ico_beg_pos1[1]=ico_beg_pos2[1];
iok=simenv_put_struct_res_c(0,idimens1,iext1,ico_nr1,
 ico_beg_pos1);
 }
 return ierror; /* return error code */
 }

/* SimEnv operator results are always of type real*4 */
int simenv_compute_user_def_operator(float *res)
{
 int iext1[9],iext2[9];
 double value8;
 int idimens;
 int i,k,l,m,ia1,ia2;
 int iarg1_offs,iarg2_offs,indi_defined;
 float fac1,fac2;

/* get dimensionality idimens and dimensions idim for both arguments */
 idimens=simenv_get_dim_arg_c(1,iext1);
 idimens=simenv_get_dim_arg_c(2,iext2);

/* perform matrix multiplication */
 m=0;
 for (k=1;k<=iext2[1];k++)
 { iarg2_offs=(k-1)*iext2[0];
 for (i=1;i<=iext1[0];i++)
 { iarg1_offs=i;
/* res(i,k) = sum(arg1(i,l) * arg2(l,k)) */
 value8=0.;
 indi_defined=0;
 for (l=1;l<=iext1[1];l++)
 { ia1=iarg1_offs+(l-1)*iext1[0];
 ia2=iarg2_offs+l;
 fac1=simenv_get_arg_c(1,ia1);
 fac2=simenv_get_arg_c(2,ia2);
 if(simenv_chk_undef_c(fac1) +
 simenv_chk_undef_c(fac2)==0)
 { indi_defined=1;
 value8=value8+fac1*fac2;
 }
 }
 m=m+1;

-178- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

 if(indi_defined==0)
 res[m-1]=simenv_put_undef_c();
 else
 res[m-1]=simenv_clip_undef_c(value8);
 }
 }
 return 0;
}

Example file: usr_opr_matmul_c.c

Example 15.12 Experiment post-processor user-defined operator module – operator matmul_c

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -179-

15.4 Example for an Experiment Post-Processor Result Import
Interface

In Example 15.13 an implementation of an interface to import ASCII post-processor output from SimEnv can
be found. A corresponding interface to import IEEE compliant post-processor output is documented.

 subroutine read_result_file_ascii(model_name,res_nmb)
 character model_name*20,res_nmb*2
 real*4, pointer, dimension(:) :: coord_values
 real*4, pointer, dimension(:) :: result_values
 integer*4 idim, iext(9)
 character result_expr*512, result_desc*128, result_unit*32
 character coord_name*20
 open(unit=1,file=trim(model_name)//‘inf’//res_nmb//‘.ascii’,
 # form=‘formatted’,status=‘old’)
 open(unit=2,file=trim(model_name)//‘res’//res_nmb//‘.ascii’,
 # form=‘formatted’,status=‘old’)
 iostat=0
 do while (iostat.eq.0)
 read(1,‘(a512)’,iostat=iostat) result_expr
 if(iostat.eq.0) then
 read(1,‘(a128)’,iostat=iostat1) result_desc
 read(1,‘(a32)’,iostat=iostat1) result_unit
 read(1,‘(10i8)’,iostat=iostat1) idim,(iext(i),i=1,9)
 length_result=1
 do i=1,idim
 length_result=length_result*iext(i)
 read(1,‘(a20)’,iostat=iostat1) coord_name
 allocate(coord_values(iext(i)))
 ibeg=1
 do while (ibeg.le.iext(i))
 iend=min0(ibeg+9,iext(i))
 read(1,‘(10g12.6)’,iostat=iostat1) (coord_values(j),
 ibeg=iend+1 j=ibeg,iend)
 enddo
c further processing of coordinate values
c ...
 deallocate (coord_values)
 enddo
 allocate(result_values(length_result))
 ibeg=1
 do while (ibeg.le.length_result)
 iend=min0(ibeg+9,length_result)
 read(2,‘(10g12.6)’,iostat=iostat) (result_values(j),
 ibeg=iend+1 j=ibeg,iend)
 enddo
c further processing of result values
c ...
 deallocate(result_values)
 endif
 enddo
 close(unit=1)
 close(unit=2)
 return
 end Example file: read_result_file.f (together with subroutine read_result_file_ieee)

Example 15.13 ASCII compliant experiment post-processor result import interface

-180- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.5 List of Experiment Post-Processor Built-In Operators and Operator
Arguments

15.5.1 Experiment Post-Processor Built-In Operators (in Thematic Order)

arg general numerical argument
int_arg integer constant argument 0
real_arg real (float) constant argument
char_arg character argument

Name

 Meaning See

 Elemental operators Tab. 8.3 on page 82

arg1 + arg2 addition
arg1 - arg2 subtraction
arg1 * arg2 multiplication
arg1 / arg2 division
arg1 ** arg2 exponentiation
+ arg identity
- arg negation
(arg) parentheses

 Basic operators Tab. 8.4 on page 83

abs(arg) absolute value
dim(arg1,arg2) positive difference
exp(arg) exponential function
int(arg) truncation value
log(arg) natural logarithm
log10(arg) decade logarithm
mod(arg1,arg2) remainder
nint(arg) round value
sign(arg) sign of value
sqrt(arg) square root

 Trigonometric operators Tab. 8.4 on page 83

sin(arg) sine
cos(arg) cosine
tan(arg) tangent
cot(arg) cotangent
asin(arg) arc sine
acos(arg) arc cosine
atan(arg) arc tangent
acot(arg) arc cotangent
sinh(arg) hyperbolic sine
cosh(arg) hyperbolic cosine
tanh(arg) hyperbolic tangent
coth(arg) hyperbolic cotangent

 Advanced operators Tab. 8.8 on page 89

classify(int_arg1,
 real_arg2,real_arg3,arg4)

classification of arg4 into int_arg1 classes

clip(char_arg1,arg2) clip arg2 according to char_arg1
cumul(char_arg1,arg2) cumulates arg2 according to char_arg1

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -181-

Name

 Meaning See

flip(char_arg1,arg2) flip arg2 according to char_arg1
get_data(char_arg1,
 char_arg2,char_arg3,arg4)

get data from an external file

get_experiment(char_arg1,
 char_arg2,char_arg3,arg4)

include an other experiment

get_table_fct(char_arg1,arg2) table function with linear interpolation of table char_arg1 for position arg2
if(char_arg1,arg2,arg3,arg4) general purpose conditional if-construct
mask(char_arg1,arg2,arg3) mask elements of argument arg21
matmul(arg1,arg2) matrix multiplication
move_avg(char_arg1,
 char_arg2,int_arg3,arg4)

moving average of running length int_arg3 for arg4

rank(char_arg1,arg2) rank of arg2 according to char_arg1
regrid(char_arg1,arg2) assign new coordinates to arg2
run(char_arg1,arg2) values of arg2 for a single run selected by char_arg1
run_info(char_arg1) current run number and/or number of single runs of the current experiment
transpose(char_arg1,arg2) transpose arg2 according to char_arg1
undef() undefined element

 Aggregation and moment operators for arguments Tab. 8.5 on page 85

avg(arg) argument arithmetic mean of values
avgg(arg) argument geometric mean of values
avgh(arg) argument harmonic mean of values
avgw(arg1,arg2) argument weighted mean of values
count(char_arg1,arg2) count number of values according to char_arg1
hgr(char_arg1,int_arg2,
 real_arg3,real_arg4,
 arg5)

argument histogram of values

max(arg) argument maximum of values
maxprop(arg) index of the element where the maximum is reached the first time
min(arg) argument minimum of values
minprop(arg) index of the element where the minimum is reached the first time
sum(arg) argument sum of values
var(arg) argument variance of values

 Multiple aggregation and moment operators for arguments Tab. 8.6 on page 85

max_n(arg1 ,..., argn) maximum per element
maxprop_n(arg1 ,..., argn) argument position (1 ... n) where the maximum is reached the first time
min_n(arg1 ,..., argn) minimum per element
minprop_n(arg1 ,..., argn) argument position (1 ... n) where the minimum is reached the first time

 Dimension related aggregation and moment operators for arguments Tab. 8.7 on page 86

avg_l(char_arg1,arg2) dimension related argument arithmetic means of values of arg2
avgg_l(char_arg1,arg2) dimension related argument geometric means of values of arg2
avgh_l(char_arg1,arg2) dimension related argument harmonic means of values of arg2
avgw_l(char_arg1,arg2,arg3) dimension related argument weighted means of values of arg2
count_l(char_arg1,char_arg2,
 arg3)

dimension related count numbers of values of arg3

hgr_l(char_arg1,char_arg2,
 int_arg3,real_arg4,
 real_arg5,arg6)

dimension related argument histograms of values of arg6

max_l(char_arg1,arg2) dimension related argument maxima of values of arg2
maxprop_l(char_arg1,arg2) dimension related argument position (1 ... n) where the maximum of arg2 is

reached the first time
min_l(char_arg1,arg2) dimension related argument minima of values of arg2

-182- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Name

 Meaning See

minprop_l(char_arg1,arg2) dimension related argument position (1 ... n) where the minimum of arg2 is
reached the first time

sum_l(char_arg1,arg2) dimension related argument sums of values of arg2
var_l(char_arg1,arg2) dimension related argument variances of values of arg2

 Multi-run operators (global sensitivity analysis) Tab. 8.10 on page 96

morris(arg) get global sensitivity measures for arg

 Multi-run operators (behavioural analysis) Tab. 8.11 on page 97

behav(char_arg1,arg2) general purpose operator for navigating and aggregating arg2 in the ex-
periment space

 Multi-run operators (local sensitivity analysis) Tab. 8.13 on page 100

lin_abs(char_arg1,arg2) absolute linearity measure
lin_rel(char_arg1,arg2) relative linearity measure
sens_abs(char_arg1,arg2) absolute sensitivity measure
sens_rel(char_arg1,arg2) relative sensitivity measure
sym_abs(char_arg1,arg2) absolute symmetry measure
sym_rel(char_arg1,arg2) relative symmetry measure

 Multi-run operators (Monte Carlo analysis, global sensitivity Tab. 8.15 on page 103
 analysis and optimization) Tab. 8.9 on page 95

avg_e(arg) run ensemble mean
avgg_e(arg) run ensemble geometric mean
avgh_e(arg) run ensemble harmonic mean
avgw_e(arg1,arg2) run ensemble weighted mean
cnf(real_arg1,arg2) positive distance of confidence line from mean avg_e(arg2)
cor(arg1,arg2) correlation coefficient between arg1 and arg2
count_e(char_arg1,arg2) run ensemble count number of values
cov(arg1,arg2) covariance between arg1 and arg2
ens(arg) whole Monte Carlo run ensemble
hgr_e(char_arg1,int_arg2,
 real_arg3,real_arg4,arg5)

heuristic probability density function

krt(arg) kurtosis (4th moment)
max_e(arg) run ensemble maximum
maxprop_e(arg) run number where the maximum is reached the first time
med(arg) median
min_e(arg) run ensemble minimum
minprop_e(arg) run number where the minimum is reached the first time
qnt(real_arg1,arg2) quantile of arg2
reg(arg1,arg2) linear regression coefficient to forecast arg2 from arg1
rng(arg) range = max_e(arg) - min_e(arg)
skw(arg) skewness (3rd moment)
stat_full(real_arg1,real_arg2,
 real_arg3,real_arg4,arg5)

full basic statistical measures

stat_red(real_arg1,real_arg2,
 arg3)

reduced basic statistical measures

sum_e(arg) run ensemble sum
var_e(arg) run ensemble variance

Tab. 15.8 Experiment post-processor built-in operators (in thematic order)

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -183-

15.5.2 Experiment Post-Processor Built-In Operators (in Alphabetic Order)

arg general numerical argument
int_arg integer constant argument 0
real_arg real (float) constant argument
char_arg character argument

Monte C. = Monte Carlo analysis, global sensitivity analysis and optimization

Name

Meaning Type See

At
page

arg1 + arg2 addition elemental Tab. 8.3 82
arg1 - arg2 subtraction elemental Tab. 8.3 82
arg1 * arg2 multiplication elemental Tab. 8.3 82
arg1 / arg2 division elemental Tab. 8.3 82
arg1 ** arg2 exponentiation elemental Tab. 8.3 82
+ arg identity elemental Tab. 8.3 82
- arg negation elemental Tab. 8.3 82
(arg) parentheses elemental Tab. 8.3 82
abs(arg) absolute value basic Tab. 8.4 83
acos(arg) arc cosine trigonom. Tab. 8.4 83
acot(arg) arc cotangent trigonom. Tab. 8.4 83
asin(arg) arc sine trigonom. Tab. 8.4 83
atan(arg) arc tangent trigonom. Tab. 8.4 83
avg(arg) argument arithmetic mean of values aggr./mom. Tab. 8.5 85
avg_e(arg) run ensemble mean Monte C. Tab. 8.9 95
avg_l(char_arg1,arg2) dimension related argument arithmetic means

of values of arg2
aggr./mom. Tab. 8.7 86

avgg(arg) argument geometric mean of values aggr./mom. Tab. 8.5 85
avgg_e(arg) run ensemble geometric mean Monte C. Tab. 8.9
avgg_l(char_arg1,arg2) dimension related argument geometric means

of values of arg2
aggr./mom. Tab. 8.7 86

avgh(arg) argument harmonic mean of values aggr./mom. Tab. 8.5 85
avgh_e(arg) run ensemble harmonic mean Monte C. Tab. 8.9
avgh_l(char_arg1,arg2) dimension related argument harmonic means

of values of arg2
aggr./mom. Tab. 8.7 86

avgw(arg1,arg2) argument weighted mean of values aggr./mom. Tab. 8.5 85
avgw_e(arg1,arg2) run ensemble weighted mean Monte C. Tab. 8.9
avgw_l(char_arg1,arg2,
 arg3)

dimension related argument weighted means
of values of arg3

aggr./mom. Tab. 8.7 86

behav(char_arg1,arg2) general purpose operator for navigating and
aggregating of arg2 in the experiment space

behav. Tab. 8.11 97

classify(int_arg1,real_arg2,
 real_arg3,arg4)

classification of arg4 into int_arg1 classes advanced Tab. 8.8 89

clip(char_arg1,arg2) clip arg2 according to char_arg1 advanced Tab. 8.8 89
cnf(real_arg1,arg2) positive distance of confidence line from mean

avg_e(arg2)
Monte C. Tab. 8.15 95

cor(arg1,arg2) correlation coefficient between arg1 and arg2 Monte C. Tab. 8.15 103
cos(arg) cosine trigonom. Tab. 8.4 83
cosh(arg) hyperbolic cosine trigonom. Tab. 8.4 83
cot(arg) cotangent trigonom. Tab. 8.4 83
coth(arg) hyperbolic cotangent trigonom. Tab. 8.4 83
count(char_arg1,arg2) count number of values aggr./mom. Tab. 8.5 85
count_e(char_arg1,arg2) run ensemble count Monte C. Tab. 8.9 95

-184- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Name

Meaning Type See

At
page

count_l(char_arg1,
 char_arg2,arg3)

dimension related count numbers of values of
arg3

aggr./mom. Tab. 8.7 86

cov(arg1,arg2) covariance between arg1 and arg2 Monte C. Tab. 8.15 103
cumul(char_arg1,arg2) cumulates arg2 according to char_arg1 advanced Tab. 8.8 89
dim(arg1,arg2) positive difference basic 83
ens(arg) whole Monte Carlo run ensemble Monte C. Tab. 8.15 103
exp(arg) exponential function basic Tab. 8.4 83
flip(char_arg1,arg2) flip arg2 according to char_arg1 advanced Tab. 8.8 89
get_data(char_arg1,
 char_arg2,char_arg3,arg4)

get data from an external file advanced Tab. 8.8 89

get_experiment(char_arg1,
 char_arg2,char_arg3,arg4)

include an other experiment advanced Tab. 8.8 89

get_table_fct(char_arg1,
 arg2)

table function with linear interpolation of table
char_arg1 for position arg2

advanced Tab. 8.8 89

hgr(char_arg1,int_arg2,
 real_arg3,real_arg4,arg5)

argument histogram of values aggr./mom. Tab. 8.5 85

hgr_e(char_arg1,int_arg2,
 real_arg3,real_arg4,arg5)

heuristic probability density function Monte C. Tab. 8.9 95

hgr_l(char_arg1,char_arg2,
 int_arg3,real_arg4,
 real_arg5,arg6)

dimension related argument histograms of
values of arg6

aggr./mom. Tab. 8.7 86

if(char_arg1,arg2,arg3,arg4) general purpose conditional if-construct advanced Tab. 8.8 89
int(arg) truncation value basic Tab. 8.4 83
krt(arg) kurtosis (4th moment) Monte C. Tab. 8.15 103
lin_abs(char_arg1,arg2) absolute linearity measure loc. sens. Tab. 8.13 100
lin_rel(char_arg1,arg2) relative linearity measure loc. sens. Tab. 8.13 100
log(arg) natural logarithm basic Tab. 8.4 83
log10(arg) decade logarithm basic Tab. 8.4 83
mask(char_arg1,arg2,arg3) mask elements of argument arg2 advanced Tab. 8.8 89
matmul(arg1,arg2) matrix multiplication advanced Tab. 8.8 89
max(arg) argument maximum of values aggr./mom. Tab. 8.5 85
max_e(arg) run ensemble maximum Monte C. Tab. 8.9 95
max_l(char_arg1,arg2) dimension related argument maxima of values

of arg2
aggr./mom. Tab. 8.7 86

max_n(arg1 ,..., argn) maximum per element aggr./mom. Tab. 8.5 85
maxprop(arg) index of the element where the maximum is

reached the first time
aggr./mom. Tab. 8.5 85

maxprop_e(arg) run number where the maximum is reached
the first time

Monte C. Tab. 8.15 95

maxprop_l(char_arg1,arg2) dimension related argument position (1 ... n)
where the maximum is reached the first time
of arg2

aggr./mom. Tab. 8.7 86

maxprop_n(arg1 ,..., argn) argument position (1 ... n) where the maxi-
mum is reached the first time

aggr./mom. Tab. 8.5 85

med(arg) median Monte C. Tab. 8.15 103
min(arg) argument minimum of values aggr./mom. Tab. 8.5 85
min_e(arg) run ensemble minimum Monte C. Tab. 8.9
min_l(char_arg1,arg2) dimension related argument minima of values

of arg2
aggr./mom. Tab. 8.7 86

min_n(arg1 ,..., argn) minimum per element aggr./mom. Tab. 8.5 85
minprop(arg) index of the element where the minimum is

reached the first time
aggr./mom. Tab. 8.5 85

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -185-

Name

Meaning Type See

At
page

minprop_e(arg) run number where the minimum is reached
the first time

Monte C. Tab. 8.9 95

minprop_l(char_arg1,arg2) dimension related argument position (1 ... n)
where the minimum is reached the first time of
arg2

aggr./mom. Tab. 8.7 86

minprop_n(arg1 ,..., argn) argument position (1 ... n) where the minimum
is reached the first time

aggr./mom. Tab. 8.5 85

mod(arg1,arg2) remainder basic Tab. 8.4 83
morris(arg) get global sensitivity measures for arg glob. sens. Tab. 8.10 96
move_avg(char_arg1,
 char_arg2,int_arg3,arg4)

moving average of running length int_arg3 for
arg4

advanced Tab. 8.8 89

nint(arg) round value basic Tab. 8.4 83
qnt(real_arg1,arg2) quantile of arg2 Monte C. Tab. 8.15 103
rank(char_arg1,arg2) rank of arg2 according to char_arg1 advanced Tab. 8.8 89
reg(arg1,arg2) linear regression coefficient to forecast arg2

from arg1
Monte C. Tab. 8.15 103

regrid(char_arg1,arg2) assign new coordinates to arg2 advanced Tab. 8.8 89
rng(arg) range = max_e(arg) - min_e(arg) Monte C. Tab. 8.15 103
run(char_arg1,arg2) values of arg2 for a single run selected by

char_arg1
advanced Tab. 8.8 89

run_info(char_arg1) current run number and/or number of single
runs of the current experiment

advanced Tab. 8.8 89

sens_abs(char_arg1,arg2) absolute sensitivity measure loc. sens. Tab. 8.13 100
sens_rel(char_arg1,arg2) relative sensitivity measure loc. sens. Tab. 8.13 100
sign(arg) sign of value basic Tab. 8.4 83
sin(arg) sine basic Tab. 8.4 83
sinh(arg) hyperbolic sine trigonom. Tab. 8.4 83
skw(arg) skewness (3rd moment) Monte C. Tab. 8.15 103
sqrt(arg) square root trigonom. Tab. 8.4 83
stat_full(real_arg1,
 real_arg2,real_arg3,
 real_arg4,arg5)

full basic statistical measures Monte C. Tab. 8.15 103

stat_red(real_arg1,
 real_arg2,arg3)

reduced basic statistical measures Monte C. Tab. 8.15 103

sum(arg) argument sum of values aggr./mom. Tab. 8.5 85
sum_e(arg) run ensemble sum Monte C. Tab. 8.9 95
sum_l(char_arg1,arg2) dimension related argument sums of values of

arg2
aggr./mom. Tab. 8.7 86

sym_abs(char_arg1,arg2) absolute symmetry measure loc. sens. Tab. 8.13 100
sym_rel(char_arg1,arg2) relative symmetry measure loc. sens. Tab. 8.13 100
tan(arg) tangent trigonom. Tab. 8.4 83
tanh(arg) hyperbolic tangent trigonom. Tab. 8.4 83
transpose(char_arg1,arg2) transpose arg2 according to char_arg1 advanced Tab. 8.8 89
undef() undefined element advanced Tab. 8.8 89
var(arg) argument variance of values aggr./mom. Tab. 8.5 85
var_e(arg) run ensemble variance Monte C. Tab. 8.9 95
var_l(char_arg1,arg2) dimension related argument variances of val-

ues of arg2
aggr./mom. Tab. 8.7 86

Tab. 15.9 Experiment post-processor built-in operators (in alphabetical order)
 Monte Carlo operators are also applicable for experiment types uncertainty analysis and
 optimization

-186- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.5.3 Character Arguments of Experiment Post-Processor Built-In Operators

Tab. 15.10 summarises for built-in operators character argument values. User-defined operators can not
have pre-defined character argument values.

Operator Argument
number

Argument value
(without quotation marks,

pre-defined values
are case-insensitive)

Re-
mark

avg_l 1 sequence of digits 0 and 1 (**)
avgg_l 1 sequence of digits 0 and 1 (**)
avgh_l 1 sequence of digits 0 and 1 (**)
avgw_l 1 sequence of digits 0 and 1 (**)
behav 1 (not pre-defined, case insensitive) (*)
clip 1 (not pre-defined, case insensitive)
count 1 [all | def | undef]
count_e 1 [all | def | undef]
count_l 1 sequence of digits 0 and 1 (**)
count_l 2 [all | def | undef]
cumul 1 sequence of digits 0 and 1 (**)
flip 1 sequence of digits 0 and 1 (**)
get_data 1 [ascii | netcdf]
get_data 2 {<directory>/}<file_name>
get_data 3 {<directory>/}<file_name> (*)
get_experiment 1 <directory>
get_experiment 2 <model>
get_experiment 3 {<directory>/}<file_name> (*)
get_table_fct 1 {<directory>/}<file_name>
hgr 1 [bin_no | bin_mid]
hgr_e 1 [bin_no | bin_mid]
hgr_l 1 sequence of digits 0 and 1 (**)
hgr_l 2 [bin_no | bin_mid]
if 1 [< | <= | > | >= | == | != | def | undef]
lin_abs 1 (not pre-defined, case insensitive) (*)
lin_rel 1 (not pre-defined, case insensitive) (*)
mask 1 [< | <= | > | >= | == | !=]
max_l 1 sequence of digits 0 and 1 (**)
maxprop_l 1 sequence of digits 0 and 1 (**)
min_l 1 sequence of digits 0 and 1 (**)
minprop_l 1 sequence of digits 0 and 1 (**)
move_avg 1 sequence of digits 1 to 9 (**)
move_avg 2 [lin | exp]
rank 1 [tie_plain | tie_min | tie_avg]
regrid 1 ascii
run 1 (not pre-defined, case insensitive)
run_info 1 [run_nr | nr_of_runs]
sens_abs 1 (not pre-defined, case insensitive) (*)
sens_rel 1 (not pre-defined, case insensitive) (*)
sum_l 1 sequence of digits 0 and 1 (**)
sym_abs 1 (not pre-defined, case insensitive) (*)
sym_rel 1 (not pre-defined, case insensitive) (*)
transpose 1 sequence of digits 1 to 9 (**)
var_l 1 sequence of digits 0 and 1 (**)

Tab. 15.10 Character arguments of experiment post-processor built-in operators
 (*) Character argument can be empty
 (**) The length of the character argument from a sequence of digits corresponds to the
 dimensionality of the non-character and non-constant argument under investigation.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -187-

15.5.4 Constant Arguments of Experiment Post-Processor Built-In Operators

Tab. 15.11 summarises for built-in operators constant argument values.

Operator

Argument
number

Argument
type

Argument value
restriction

classify 1 int_arg [0 | 2]
classify 2 real_arg
classify 3 real_arg

[arg2 = arg3 = 0. |
 arg2 < arg3]

cnf 1 real_arg [0.001 | 0.01 | 0.05 | 0.1]
hgr 2 int_arg [0 | 4]
hgr 3 real_arg
hgr 4 real_arg

[arg3 = arg4 = 0. |
 arg3 < arg4]

hgr_e 2 int_arg [0 | 4]
hgr_e 3 real_arg
hgr_e 4 real_arg

[arg3 = arg4 = 0. |
 arg3 < arg4]

hgr_l 3 int_arg [0 | 4]
hgr_l 4 real_arg
hgr_l 5 real_arg

[arg4 = arg5 = 0. |
 arg4 < arg5]

move_avg 3 int_arg [0 | 3]
stat_full 1 real_arg
stat_full 2 real_arg

[0.001 | 0.01 | 0.05 | 0.1]
arg1 < arg2

stat_full 3 real_arg
stat_full 4 real_arg

0. arg3 < arg 4 100.

stat_red 1 real_arg
stat_red 2 real_arg

[0.001 | 0.01 | 0.05 | 0.1]
arg1 < arg2

Tab. 15.11 Constant arguments of experiment post-processor built-in operators

-188- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

15.6 Additionally Used Symbols for the Model and Operator Interface

Tab. 15.12 lists these symbols (subroutine, function and common block names) that are linked in addition to
the SimEnv model interface functions in Tab. 5.5 from the object libraries $SE_HOME/libsimenv.a and
/usr/local/lib/libnetcdf.a to a Fortran and C/C++ user model when interfacing it to SimEnv. Additionally, the
logical unit numbers (luns) 998 and 999 are used.

Used symbols

csimenv_<string>
isimenv_<string>
jsimenv_<string>
<string>_nc_<string>
nc<string>
nf_<string>
f2c_<string>
c2f_dimids
cdf_routine_name
read_numrecs
write_numrecs

Tab. 15.12 Additionally used symbols for the model interface

Tab. 15.13 lists these symbols (subroutine, function and common block names) that are linked in addition to
the SimEnv operator interface functions in Tab. 8.18 and Tab. 8.19 from the object library
$SE_HOME/libsimenv.a to a user-defined experiment post-processing operator.

Used symbols
csimenv_<string>
isimenv_<string>
jsimenv_<string>

Tab. 15.13 Additionally used symbols for the operator interface

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -189-

15.7 Glossary

The glossary defines and/or explains terms in that sense they are used in this User Guide.
An arrow refers to another term in the glossary.

Adjustment: Numerical modification of a factor by one of its sampled values and its default value

during an experiment. The resulting adjusted value is used instead of the default value of the
factor when running the model.

ASCII: The American Standard Code for Information and Interchange developed by the American Na-
tional Standards Institute (http://www.ansi.org) is used in SimEnv to store information in user-
defined files and on request in post-processing output files.

Behavioural analysis: Experiment type to inspect behaviour of a model in a space, spanned up by
factors. The factor space is scanned in a deterministic manner, applying deterministically sam-
pled values of the factors with a flexible scanning strategy for factor sub-spaces.

Coordinate coord: Each dimension of a variable and each operand of an operator in a result
with a dimensionality greater than 0 a coordinate is assigned to. A coordinate has a unique
name and strictly monotonic ordered coordinate values. The number of coordinate values corre-
sponds to the extent for this dimension. Consequently, each model output variable with a di-
mensionality greater than 0 resides at a assigned (multi-dimensional) grid. Assignments for
variables is done in the model output description user-defined file.

Coupling: model interface

Data type: The type of a variable as declared in the model and the corresponding model output de-
scription user-defined file. SimEnv data types are byte, short, int, float, and double.

Default value: The nominal (standard) numerical value of an experiment factor. The default value is
specified in the experiment description user-defined file and for the model interface at the
language level also in the model code.

Dimension: dimensionality

Dimensionality dim: The number of dimensions of a model variable or of an operator result in ex-
periment post-processing. In the model output description user-defined file each variable a di-
mensionality is assigned to that corresponds to the dimensionality of the related model output field
in the model source code. Dimensionality 0 corresponds to a scalar, dimensionality 1 to a vector,
dimensionality 2 to a matrix.

Dot script: A sequence of Unix / Linux operating system commands stored in an ASCII file. The
sequence of operating system commands is directly interpreted and executed by a command line
interpreter, the so-called shell. Contrary to shell scripts a child shell is not spawned. A dot script
is preceded by a dot and a space when calling it. All scripts but simenv_put_as and
simenv_put_as_simple that can be used in SimEnv within <model>.[ini | run | end] are dot scripts.

Environment variable: At Unix / Linux operating system level the so called environment is set up as
an array of operating-system and user-defined environment variables that have the form
Name=Value. The Value of a Name can be addressed by $Name. In SimEnv use of environment
variables in directory strings <direct> is allowed.

Experiment: Performing simulation runs with a model in a co-ordinated manner by applying experi-
ment types and running the model in a run ensemble, i.e., a series of single simulation runs.

Experiment post-processing: The work step of processing model output data from the whole run ensemble
after performing a simulation experiment. SimEnv post-processing enables navigation in the
factor space that is sampled by an experiment as well as construction of additional output func-
tions by declaration and computation of results.

Experiment post-processing operator: operator

Experiment factor: factor

-190- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Experiment type: Pre-defined multi-run simulation experiment. In the process of experiment preparation
(defining an experiment by describing it in the experiment description user-defined file) fac-
tors are assigned to an experiment type and are sampled in an experiment-specific manner.
Currently available experiment types are behavioural analysis, Monte Carlo analysis, local
sensitivity analysis, and optimization.

Extent ext: The number of values for a dimension (from the dimensionality) of a model variable or of
an operator result in experiment post-processing. Extents are always greater than 1. Model
output variables and operator results of dimensionality 0 do not have an extent.

Expression: result expression

Factor: Element of the input set of a model. Factors are manipulated numerically during an experi-
ment by sampling them. Factors can be addressed in experiment post-processing and they
have there a dimensionality of 0.

Factor adjustment: adjustment

Fortran storage model: A rule how to map the elements of a multi-dimensional data field to a 1-dimensional
vector and vice versa. A multi-dimensional data field field(1:ext1 , 1:ext2 ,..., 1:extdim-1 , 1:extdim) of
dimensionality dim and extents ext1, ext2, ..., extdim-1, extdim is mapped in Fortran on a 1-
dimensional data field vector(1:ext1 * ext2 * ... * extdim-1 * extdim) in the following way:

 ipointer = 0
 do idim = 1 , extdim
 do idim-1 = 1 , extdim-1
 ...
 do i2 = 1 , ext2

 do i1 = 1 , ext1
 ipointer = ipointer + 1

 vector(ipointer) = field(i1 , i2 ,..., idim-1 , idim)
 enddo
 enddo
 ...
 enddo
 enddo

For a two-dimensional matrix this storage model corresponds to a column by column storage of the
matrix to the vector, starting with the first column and for each column starting with the first row.

GAMS: The General Algebraic Modeling System (http://www.gams.com) is a high-level modeling system
for mathematical programming problems. It consists of a language compiler and a stable of inte-
grated high-performance solvers. GAMS is tailored for complex, large scale modeling applications,
and allows to build large maintainable models that can be adapted quickly to new situations.

Global sensitivity analysis: Experiment type to determine qualitatively a ranking of the factors during
 experiment post-processing with respect to the factors’ sensitivity to a model output. Sensitivity

is assessed globally, i.e., for the complete feasibility range of each factor.

Grid: Regular topological structure for a model variable or an operator result in experiment post-
processing, spanned up as the Cartesian product of the assigned coordinates to the variable or
the operator result.

IEEE: SimEnv can use on demand for storage of model and post-processor output the Institute of Electri-
cal and Electronics Engineers (http://www.ieee.org) standard number 754 for binary storage of
numbers in floating point representation.

Linux: Linux is a free Unix-type operating system (http.//www.linux.org) originally created by Linus Tor-
valds with the assistance of developers around the world. SimEnv runs under the SUSE-Linux im-
plementation (http://www.suse.com) for Intel-based hardware and compatibles.

Load Leveler: The load leveler LoadL is a job management system that handles compute resources at
IBM’s p655 cluster.

Local sensitivity analysis: Experiment type with an incremental sample of factors in the neigh-
bourhood of the default values of the factors. A local sensitivity analysis in SimEnv is always

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -191-

performed independently for all factors involved. During experiment post-processing sensitivity,
linearity, and symmetry measures can be determined.

Macro: An abbreviation for a unique result expression to apply during experiment post-processing.
Macros can be embedded into result expressions and are plugged into the expression during its
evaluation and computation. Macros are described in the macro description user-defined file.

Mathematica: Mathematica (http://www.wolfram.com/products/mathematica/introduction.html) seamlessly
integrates a numeric and symbolic computational engine, graphics system, programming lan-
guage, documentation system, and advanced connectivity to other applications.

Matlab: MATLAB (http://www.mathworks.de/products/matlab) is a high-level language for computations
and interactive environment for developing algorithms, analysis and visualization of data. It allows
to perform computationally intensive tasks faster than with traditional programming languages.

Model: A model is a deterministic or stochastic algorithm, implemented in one or a number of computer
programs that transforms a sequence of input values (factors) into a sequence of output values
(variables). Normally, inputs are parameters, driving forces, initial values, or boundary values to
the model, outputs are state variables of the model. For many cases, the model will be state de-
terministic, time and space dependent. For SimEnv, the model, its factors and variables are cou-
pled in the process of interfacing the model to SimEnv.

Model coupling: model interface

Model interface: Interfacing a model to SimEnv means coupling it to SimEnv and enabling finally experi-
menting with the model within SimEnv. There are coupling interfaces at programming language
level for C/C++, Fortran, Python, and GAMS. Additionally, models can be interfaced at the
shell script level by using shell script syntax elements. For all interface techniques the interfaced
model itself has to be wrapped into a shell script.

Model output variable: variable

Monte Carlo analysis: Experiment type with pre-single run perturbations of experiment factors. For
each perturbed factor a probability density function pdf with function parameters is assigned to.
During the experiment adjustments of the factors are realizations from the pdf’s using random
number techniques. In experiment post-processing statistical measures can be derived from
model output of the run ensemble. A prominent statistical measure is the heuristic pdf (histogram)
of a model variable and its relation to the pdf’s of the factors.

NetCDF: Network Common Data Form is an interface for array-oriented data access and a library that pro-
vides an implementation of the interface. The NetCDF library also defines a machine-independent
format for representing scientific data. Together, the interface, library, and format support the crea-
tion, access, and sharing of scientific data. The NetCDF software was developed at the Unidata
Program Center in Boulder, Colorado (http://www.unidata.ucar.edu). NetCDF is freely available.
SimEnv follows for model and experiment post-processing output storage the NetCDF Climate
and Forecast (CF) metadata convention 1.0-beta4
(http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html) and extends it.

OpenDX: The Open Data Explorer OpenDX (http://www.opendx.org) is a uniquely full-featured open source
project and software package for the visualization of scientific, engineering and analytical data: Its
open system design is built on a standard interface environment. The data model provides users
with great flexibility in creating visualizations. OpenDX is based on IBM’s Visualization Data Ex-
plorer.

Operand: Argument of an operator in SimEnv experiment post-processing. An operand can be a
model variable, an experiment factor, a constant, a character string, a macro and an op-
erator.

Operator: Computational algorithm how to transform the values of a sequence of operands into the val-
ues of the operator result during experiment post-processing. An operator transforms dimen-
sionality, extents, and coordinates from the operands into the corresponding information for
the operator result. There are built-in elemental, basic, and advanced operators as well as built-in
operators related to specific experiment types. Additionally, SimEnv offers specification of user-
defined operators according to an operator interface. User-defined operators are announced to the
system in the operator description user-defined file.

-192- Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006

Optimization: Experiment type to minimize a cost function (objective function) over a bounded factor
space. In SimEnv a simulated annealing strategy (check Section 4.6 for explanation) is used to op-
timize the cost function that is formed from model variables. Often the cost function represents a
distance between model output and reference data to find an optimal point in the factor space that
fits best the model behaviour with respect to the reference data.

Parallel Operating Environment: POE

POE: The Parallel Operating Environment POE on IBM’s p655 cluster supplies services to allocate
nodes, assign jobs to nodes and launch jobs.

Probability density function pdf: A probability density function serves to represent a probability distribution
in terms of integrals. A probability distribution assigns to every interval of real numbers a probabil-
ity.

Python: Python (http://www.python.org) is a portable, interpreted, interactive, object-oriented programming
language. It incorporates modules, exceptions, dynamic typing, very high level dynamic data types,
and classes.

Result: In SimEnv experiment post-processing a result (synonym: output function) is derived from model
output of the experiment and from reference data. A result is specified by a result expression,
optionally prefixed by a result description and a result unit string.

Result expression: A chain of operators from built-in or user-defined operators applied to model output
 variables and/or reference data. A result expression is a part of an experiment post-

processing result.

Sample: A set of numerical factor values created during experiment preparation.

Shell script: A sequence of Unix / Linux operating system commands stored in an ASCII file. A
shell script is interpreted and executed by a command line interpreter, the so-called shell. Contrary
to dot scripts a child shell is spawned when calling a shell script that inherits the environment
variables of the father (calling) shell. After returning to the father shell it does not transfer the envi-
ronment variables and other variables of the child shell to the father shell. SimEnv demands the
Bourne shell sh.

Simulation: Performing experiments with models

Unix: A computer operating system (http://www.unix.org), originally developed at AT&T/USL. SimEnv
runs under the AIX Unix implementation for RS6000 hardware and compatibles from IBM.

User-defined files: A set of ASCII files to describe model, experiment, operator, macro, and
 GAMS model specific information and to determine general SimEnv settings. All user-defined

files follow the same syntax rules.

Variable: Element of the output set of a model that is stored in a SimEnv model output format. Variables
are defined in the model output description user file and they are output from the model to
SimEnv data structures. Each variable has a unique data type, a dimensionality, extents
and an assigned grid. Normally, a variable consists of a series of values, forming a field.

White spaces: ASCII characters space (blank) and horizontal tabulator used in user-defined files or
within result expressions in experiment post-processing.

Workspace: The directory, a SimEnv service was started from.

Multi-Run Simulation Environment SimEnv User Guide for Version 1.24 31-May-2006 -193-

