
The Multi-Run
Simulation Environment

SimEnv
User’s Guide for Version V1.01

by M. Flechsig, U. Böhm, Th. Nocke & C. Rachimow

-ii- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Disclaimer of Warranty
We make no warranties, expressed or implied, that the programs and data contained in the software package and the formulas given in
this document are free of error, or are consistent with any particular standard of merchantability, or that they will meet your requirements
for any particular application. They should not be relied for solving a problem whose incorrect solution could result in injury to a person
or loss of property. If you do use the programs or data or formulas in such a manner, it is on your own risk. We disclaim all liability for

direct or consequential damages from your use of the programs and data.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -iii-

The Multi-Run
Simulation Environment

SimEnv
User’s Guide for Version V1.01 (03-Feb-2004)

by

Michael Flechsig Potsdam Institute for Climate Impact Research
Department Data & Computation, flechsig@pik-potsdam.de

Uwe Böhm University of Potsdam
Institute for Physics, boehm@pik-potsdam.de

Thomas Nocke University of Rostock
Institute of Computer Graphics, nocke@informatik.uni-rostock.de

Claus Rachimow Potsdam Institute for Climate Impact Research
Department Data & Computation, rachimow@pik-potsdam.de

SimEnv in the Internet:
http://www.pik-potsdam.de/topik/pikuliar/simenv/home

 Potsdam Institute for Climate Impact Research
 Telegrafenberg
 14473 Potsdam, Germany
 Phone ++49 – 331 – 288 2604
 Fax ++49 – 331 – 288 2600
 WWW http://www.pik-potsdam.de

 University of Potsdam
 Institute for Physics
 Am Neuen Palais 10
 14469 Potsdam, Germany
 WWW http://physik.uni-potsdam.de

 University of Rostock
 Institute of Computer Graphics
 Albert-Einstein-Str. 21
 18059 Rostock, Germany
 WWW http://wwwicg.informatik.uni-rostock.de

-iv- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Contents
EXECUTIVE SUMMARY ... 1

1 ABOUT THIS DOCUMENT... 3
1.1 Document Conventions .. 3
1.2 Used Examples... 3

2 GETTING STARTED .. 5

3 VERSION 1.01.. 7
3.1 What is New?.. 7
3.2 Limitations .. 8
3.3 Known Bugs and Their Workarounds ... 8

4 EXPERIMENT TYPES.. 9
4.1 General Approach... 9
4.2 Behavioural Analysis .. 10
4.3 Monte-Carlo Analysis.. 11
4.4 Local Sensitivity Analysis.. 13

5 MODEL COUPLING TO SIMENV... 15
5.1 Model Output Description File <model>.mdf... 15
5.2 Model Coupling Interface for Fortran and C Models ... 18
5.3 Model Coupling Interface for Python Models .. 21
5.3.1 Standard User-Defined Files for Python Models... 22
5.4 Model Coupling Interface at Shell Script Level ... 22
5.5 Model Coupling Interface for GAMS Models... 24
5.5.1 Standard User-Defined Files for GAMS Models ... 24
5.5.2 GAMS Description File <model>.gdf... 26
5.5.3 Files Created during GAMS Model Performance.. 27
5.6 Distributed Models .. 28
5.7 Running Coupled Models Outside SimEnv... 28

6 EXPERIMENT PREPARATION.. 29
6.1 Experiment Description File <model>.edf ... 29
6.2 Behavioural Analysis .. 30
6.2.1 Adjustments .. 30
6.2.2 The Combination .. 31
6.2.3 Example.. 31
6.2.4 Experiment Performance .. 32
6.3 Monte-Carlo Analysis.. 33
6.3.1 Adjustments .. 33
6.3.2 Distribution Functions and their Parameters ... 34
6.3.3 Example.. 34
6.3.4 Experiment Performance .. 34
6.4 Local Sensitivity Analysis.. 35
6.4.1 Adjustments .. 35
6.4.2 Example.. 36
6.4.3 Experiment Performance .. 36

7 EXPERIMENT PERFORMANCE.. 37
7.1 Experiment Start ... 37
7.2 Experiment Restart ... 39
7.3 Experiment Partial Performance... 40
7.4 Job Control for Experiment Performance at a Parallel Machine ... 40
7.5 Experiment-Related User Scripts and Files .. 41
7.6 Saving Experiments.. 43

8 EXPERIMENT POST-PROCESSING... 45
8.1 Operands.. 45
8.2 Model Output Variables .. 45
8.3 Operators.. 47
8.3.1 Operands and Coordinate Checking... 48
8.4 Built-in Elemental, Basic, and Advanced Operators ... 49
8.4.1 Built-in Elemental Operators ... 49
8.4.2 Built-in Basic and Advanced Operators .. 50
8.5 Experiment-Specific Operators ... 58
8.5.1 Behavioural Analysis .. 58

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -v-

8.5.2 Monte-Carlo Analysis.. 62
8.6 User-Defined Operators.. 64
8.6.1 Declaration of User-Defined Operator Dynamics.. 64
8.6.2 Operator Definition File <model>.odf .. 68
8.6.3 Handling Undefined Results ... 69
8.7 Undefined Results .. 69
8.8 Macro Definitions .. 69
8.9 Miscellaneous... 70

9 VISUAL EXPERIMENT EVALUATION ... 71

10 GENERAL CONTROL, SERVICES, USER FILES, AND SETTINGS... 73
10.1 General Configuration File <model>.cfg ... 73
10.2 Main and Auxiliary Services.. 75
10.3 User Scripts and Files... 76
10.4 Environment Variables.. 79
10.5 Case Sensitivity .. 79
10.6 Built-in Items, Reserved Names ... 80
10.7 Nodata Representation... 81

11 STRUCTURE OF USER-DEFINED FILES... 83
11.1 General Structure ... 83
11.2 Value Lists .. 85

12 MODEL AND POST-PROCESSOR OUTPUT DATA STRUCTURES .. 87
12.1 NetCDF Model and Post-Processor Output.. 87
12.1.1 Global Attributes ... 87
12.1.2 Variable Labelling and Variable Attributes .. 88
12.2 IEEE Compliant Binary Model Output... 89
12.3 IEEE Compliant Binary and ASCII Post-Processor Output... 90

13 PROSPECTS.. 93

14 REFERENCES ... 95

15 APPENDICES... 97
15.1 Version Implementation .. 99
15.1.1 How to Link User Models.. 99
15.1.2 Example Models and User Files ... 99
15.1.3 User-Defined Operators.. 100
15.1.4 Technical Limitations .. 100
15.2 Examples for Model Coupling and User-Defined Operators ... 102
15.2.1 Fortran Model ... 102
15.2.2 C Model .. 103
15.2.3 Python Model.. 104
15.2.4 Model Coupling at Shell Script Level .. 105
15.2.5 GAMS Model .. 106
15.2.6 User-Defined Operator ... 108
15.3 Post-Processor Built-in Operators (in Thematic Order) .. 110
15.4 Post-Processor Built-in Operators (in Alphabetic Order) .. 113
15.5 Character Arguments of Built-in Operators... 116
15.6 Constant Arguments of Built-in Operators .. 117
15.7 Glossary ... 118

-vi- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Tables

Tab. 1.1 Document conventions... 3
Tab. 1.2 Placeholders in this document.. 3

Tab. 4.1 Statistical measures ... 12
Tab. 4.2 Probability density functions ... 13
Tab. 4.3 Local sensitivity functions ... 14

Tab. 5.1 Elements of a model output description file <model>.mdf .. 16
Tab. 5.2 SimEnv data types ... 17
Tab. 5.3 Model coupler functions at language level.. 20
Tab. 5.4 Model coupler functions for Python models.. 21
Tab. 5.5 Model coupler functions at shell script level ... 23
Tab. 5.6 Elements of a GAMS description file <model>.gdf ... 26

Tab. 6.1 Elements of an experiment description file <model>.edf .. 29
Tab. 6.2 Adjustment types in experiment preparation .. 30
Tab. 6.3 Experiment-specific elements of an edf-file for behavioural analysis ... 30
Tab. 6.4 Experiment-specific elements of an edf-file for Monte-Carlo analysis .. 33
Tab. 6.5 Probability density functions and their parameters ... 34
Tab. 6.6 Probability density functions: Distribution parameters - conditions and adaptation 35
Tab. 6.7 Experiment-specific elements of an edf-file for local sensitivity analysis .. 35

Tab. 7.1 Experiment-related user scripts and files.. 41

Tab. 8.1 Additional coordinates .. 48
Tab. 8.2 Built-in elemental operators.. 49
Tab. 8.3 Classified argument restriction(s) / result description ... 50
Tab. 8.4 Built-in advanced operators (without standard aggregation / moments operators)............................... 52
Tab. 8.5 Built-in generic standard aggregation / moment operators ... 54
Tab. 8.6 Built-in standard aggregation / moment operators without suffix .. 55
Tab. 8.7 Built-in standard aggregation / moment operators with suffix _n .. 55
Tab. 8.8 Built-in standard aggregation / moment operators with suffix _l ... 56
Tab. 8.9 Multi-run standard aggregation / moment operators... 58
Tab. 8.10 Experiment-specific operators for behavioural analysis ... 59
Tab. 8.11 Syntax of the selection / aggregation scheme of operator behav ... 59
Tab. 8.12 Experiment-specific operators for Monte-Carlo analysis .. 62
Tab. 8.13 Operator functions: Declarative and computational part... 64
Tab. 8.14 Operator functions to get and put structural information... 66
Tab. 8.15 Operator function to get / check / put arguments and results ... 67
Tab. 8.16 Elements of an operator description file <model>.odf .. 68
Tab. 8.17 Elements of an macro description file <model>.mac .. 70

Tab. 10.1 Elements of a general configuration file <model>.cfg... 73
Tab. 10.2 <info> values and value defaults for general configuration file ... 74
Tab. 10.3 Service commands... 76
Tab. 10.4 User scripts and files .. 77
Tab. 10.5 User files generated during SimEnv performance .. 78
Tab. 10.6 Environment variables.. 79
Tab. 10.7 Case sensitivity of SimEnv entities... 79
Tab. 10.8 Built-in model variables .. 80
Tab. 10.9 Built-in coordinates... 80
Tab. 10.10 Built-in shell script variables in $SE_HOME/simenv_*_sh.. 80
Tab. 10.11 Reserved names and file names in user-defined files and for models ... 81
Tab. 10.12 Data type related nodata values... 81

Tab. 11.1 User-defined files ... 83
Tab. 11.2 Constraints in user-defined files ... 84
Tab. 11.3 Line types in user-defined files ... 84
Tab. 11.4 Syntax rules for value lists.. 85

Tab. 12.1 NetCDF data types... 87
Tab. 12.2 Additional global NetCDF attributes ... 88
Tab. 12.3 Variable NetCDF attributes... 88
Tab. 12.4 Variable NetCDF attributes for visualization ... 89

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -vii-

Tab. 15.1 Implemented models for current version .. 99
Tab. 15.2 Implemented model-related user files for current version... 100
Tab. 15.3 Available user-defined operators.. 100
Tab. 15.4 Current SimEnv limitations ... 101
Tab. 15.5 Post-processor built-in operators (in thematic order).. 112
Tab. 15.6 Post-processor built-in operators (in alphabetical order) .. 115
Tab. 15.7 Character arguments of built-in operators .. 116
Tab. 15.8 Constant arguments of built-in operators.. 117

Figures

Fig. 0.1 SimEnv system design ... 2
Fig. 4.1 Behavioural analysis: Scanning multi-dimensional target spaces .. 11
Fig. 5.1 Model variable definition: Grid assignment... 18
Fig. 7.1 Flowcharts for performing simenv.run and simenv.rst .. 42
Fig. 10.1 SimEnv user scripts and files ... 78

Examples

Example 1.1 Example layout ... 4

Example 5.1 Model output description file <model>.mdf ... 18
Example 5.2 Addressing target names and values for model coupling at shell script level 23
Example 5.3 Model output description file for a GAMS model... 26
Example 5.4 GAMS description file <model>.gdf .. 27

Example 6.1 Experiment description file <model>.edf for behavioural analysis .. 32
Example 6.2 Experiment description file <model>.edf for Monte-Carlo analysis ... 34
Example 6.3 Experiment description file <model>.edf for local sensitivity analysis ... 36

Example 7.1 Shell script <model>.ini for user-model specific experiment preparation .. 38
Example 7.2 Shell script <model>.run to wrap the user model.. 38
Example 7.3 Shell script <model>.end for user-model specific experiment wrap-up... 39
Example 7.4 Shell script <model>.rst to prepare model performance during experiment restart............................... 40

Example 8.1 Addressing model output variables in model output post-processing ... 47
Example 8.2 Checking rules for coordinates ... 48
Example 8.3 Post-processing with advanced operators .. 57
Example 8.4 Post-processing operator behav for behavioural analysis .. 61
Example 8.5 Post-processing operators for Monte-Carlo analysis .. 64
Example 8.6 User-defined operator description file <model>.odf .. 68
Example 8.7 User-defined macro definition file <model>.mac... 70

Example 10.1 User-defined general configuration file <model>.cfg... 75

Example 11.1 Structure of a user-defined file.. 85
Example 11.2 Examples of value lists ... 86

Example 12.1 IEEE compliant model output data structure... 90
Example 12.2 IEEE compliant post-processor export interface ... 91

Example 15.1 Model coupling for Fortran models - model world_f.f .. 102
Example 15.2 Model coupling for C models – model world_c.c... 103
Example 15.3 Model coupling for Python models – model world_py.py .. 104
Example 15.4 Model coupling at shell script level – model shell script world_sh.run .. 105
Example 15.5 Model coupling for GAMS models – model gams_model.gms.. 107
Example 15.6 User-defined operator module – operator mat_mul .. 109

-viii- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -1-

Executive Summary
SimEnv is a multi-run simulation environment that focuses on model evaluation and usage mainly for

quality assurance matters and scenario analyses. Coupling of models to the simulation environment is sup-
ported for a number of programming languages by minimal source code modifications and in general at the
shell script level. Pre-defined experiment types are the backbone of SimEnv, enabling experimenting with
numerical parameter, initial value, or driving forces adjustments of the model. The resulting multi-run ex-
periment can be performed sequentially or in parallel. Interactive experiment post-processing makes use of
built-in operator definitions, optionally supplemented by user-defined operators and applies operator chains
on model output and reference data. Result output functions generated during post-processing can be
evaluated with advanced visualization techniques within SimEnv.

Simulation is one of the cornerstones for research in Global Change. The aim of the SimEnv project is to
develop a toolbox oriented simulation environment that enables the modeller to deal with model related
quality assurance matters (Saltelli et al., 2000) and scenario analyses. Both research foci require complex
simulation experiments for model inspection, validation and control design without changing the model in
general.

SimEnv aims at model evaluation by performing simulation runs with a model in a co-ordinated manner and
running the model several times. Co-ordination is achieved by pre-defined experiment types representing
multi-run simulations.
According to the strategy of a selected experiment type a set of targets p which represent drivers, parame-
ters, boundary and initial values of the model M is re-adjusted numerically before each single simulation run.
Each experiment results in a sequence of model outputs over the single runs for selected state variables z of
the model which can be processed and evaluated across the run ensemble specifically after simulation.
The following experiment types form the base of the SimEnv multi-run facility:

� Behavioural analysis
Inspection of the model’s behaviour in a space spanned from targets p with discrete numerical adjust-
ments and a flexible inspection strategy for the whole space.
For model verification, numerical validation, deterministic error analysis, deterministic control design,
scenario analysis and spatial patch model applications.

� Monte-Carlo analysis
Perturbations of targets p according to probability density functions. Determination of moments, confi-
dence intervals and heuristic probability density functions for z in the course of post-processing.
For error analysis, uncertainty analysis, verification and validation of deterministic models.

� Local sensitivity analysis
Determination of model (state variables) sensitivity to targets p. Is performed by finite difference deriva-
tive approximations from M.
For numerical validation purposes, model analysis, sub-model sensitivity.

� Optimization (in preparation)
Iterative determination of optimal targets p for mono- or multi-criterial cost functions derived from z by
gradient-free methods.
For model validation (system - model comparison), control design, decision making.

SimEnv makes use of modern IT concepts. Model preparation for coupling to SimEnv is based on minimal
source code manipulations by implementing function calls into Fortran-, C-, Python- or GAMS-model source
code for p-adjustments and model output. Additionally, an interface at shell script level is available.
In experiment preparation an experiment type is selected and equipped numerically. Experiment perform-
ance supports local, remote, and parallel architectures.
Experiment-specific model output post-processing enables navigation in the experiment - model output
space and interactive filtering of model output and reference data by application of built-in and user-defined
post-processing operator chains.
Result evaluation is dominated by application of pre-formed visualization modules.
SimEnv model output as well as model output post-processing offer data interfaces for NetCDF, IEEE com-
pliant binary and ASCII format for a more detailed post-processing outside SimEnv.

-2- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

SimEnv key features:

� Support of key working techniques in experimenting with models:
SimEnv enables model evaluation, uncertainty and scenario analyses in a structured, methodologically
sound and pre-formed manner.

� Run ensembles instead of single model runs:
Model evaluation by multi-run simulation experiments

� Availability of pre-defined multi-run simulation experiment types:
To perform an experiment only the targets to experiment with (parameters, drivers, initial values, ...) and
rules how to re-adjust them numerically have to be specified.

� Simple coupling of models to the simulation environment:
There are model coupling functions mainly to re-adjust an experiment target and to output model results
for later post-processing. Model coupling and finally communication between the model and SimEnv can
be done at the model language level by incorporating coupling functions into model source code (C,
Fortran and Python) or can be done at the shell script level within shell-scripts. Additionally, there is a
special interface for GAMS models.

� Support of distributed models:
Independently on the kind distributed models are coupled they can be interfaced to SimEnv.

� Parallelization of the experiment:
This is a prerequisite for a lot of simulation tasks.

� Operator-based experiment post-processing:
Chains of built-in and user-defined operators enable interactive experiment post-processing based on
experiment model output and reference data including general purpose and experiment-specific opera-
tors.

� Graphical experiment evaluation:
For post-processed model output

� Support of standard data formats:
Output from the model as well from the post-processor can be stored in NetCDF or IEEE compliant bi-
nary format.

Original
Model

Experiment
Post-

processing

Experiment
Performance

Experiment
Preparation

Experiment
Evaluation

Model
Update

Model
Preparation

Fig. 0.1 SimEnv system design

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -3-

1 About this Document
In this chapter document conventions are explained. Within the whole document one reference ex-

ample model is used to explain application of SimEnv. Examples are always located in grey boxes.

1.1 Document Conventions

Character / string Meaning

< ... > angle brackets enclose a placeholder for a string
{ ... } braces enclose an optional element
[... | ... | ...] square brackets enclose a list of choices, separated by a vertical bar
nil stands for the empty string (nothing)
monospace indicates SimEnv example code

Tab. 1.1 Document conventions

Tab. 1.2 summarizes the main placeholders used in this document.

Placeholder Description

<file_name> name of a data file
<GAMS_model> name of a GAMS model
<model> model name to start a SimEnv service with
<nil> the empty string
<path> path to a file name
<res> integer post-processor output file number 1, 2, ..., 99
<res_char> character post-processor output file number 01, 02, ..., 99
<run> integer single run number 0, 1, ... within an experiment
<run_char> character single run number 000000, 000001, ... within an experiment
<sep> sequence of item separators in user-defined files
<string> any string
<target_def_val> default value of a target according to <model>.edf or model code
<target_name> name of a target to experiment with
<value_list> list of values in explicit or implicit notation according to Tab. 11.4

Tab. 1.2 Placeholders in this document

1.2 Used Examples

Examples in this document refer to a hypothetical global simulation model. It is to describe
dynamics of atmosphere and biosphere at land masses at the global scale over 200 years.
Lateral (latitudinal and longitudinal) model resolution differs for different model implementa-
tions (see below), temporal resolution is at decade time steps. Additionally, atmosphere is
structured into levels.
Models with name world_* are assumed to map lateral fluxes and demanding that’s why for
computing state variables for the whole globe.
In the model pixel_f state variables are calculated for one pixel (for one single latitude - lon-
gitude constellation).

-4- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Model state variable Description
atmo aggregated atmospheric state

defined on the whole spatial grid (latitude x longitude x level) for
all time steps
atmo has data type float

bios aggregated biospheric state
defined laterally between 83° northern latitude and 60° southern
latitude at all land masses but Antartic, for all time steps and
without levels
bios has data type float

glob aggregated global state derived from atmo for level 1
defined over time
glob has data type int
only for models world_*

over aggregated global state derived form bios
defined independently from space and time
over has data type int
only for models world_*

Dynamics of all of these model variables depend on model parameters p1, p2, p3 and p4.

With this SimEnv release the following model versions are distributed:

Model
Model

coupling
example for

Lateral
resolution
lat x lon

of
levels

of
time steps

world_f Fortran 4 x 4 4: 1, 7, 11, 16 20
world_c C 4 x 4 4: 1, 7, 11, 16 20
world_py Python 4 x 4 4: 1, 7, 11, 16 20
world_sh script level 4 x 4 4: 1, 7, 11, 16 20
world_f_1x1 Fortran 1 x 1 16: 1 – 16 20
pixel_f Fortran without, implicitly by

experiment 4 x 4
4: 1, 7, 11, 16 20

The only example that does not refer to the above model type is that for GAMS model cou-
pling to SimEnv (chapter 5.3 at page 21).

Examples are generally placed in grey boxes.

Examples that are available in the corresponding examples directory of $SE_HOME are
marked as such.

Example 1.1 Example layout

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -5-

2 Getting Started
In this chapter a quick start tour is described. Without going into details the user can get an impres-

sion how to apply SimEnv and which user files are essential to use the simulation environment.

� SimEnv is implemented under AIX at IBM’s RS6000.
� Set the operating system environment variable SE_HOME at to /usr/local/simenv/bin in your .profile file

and export it for ksh
� Change to a working directory you have full access rights.
� Get basic information on SimEnv by entering

$SE_HOME/simenv.hlp
� Select a model implementation language <lng> you want to check SimEnv with a test model:

<lng> = f for Fortran
c for C
py for Python
sh for shell script level

For the test model contents check Example 1.1 at page 4. For a GAMS model example check chapter 0
at page 22.

� Start from the working directory the shell script
$SE_HOME/simenv.cpy world_<lng>

to copy model world_<lng> model and experiment related files to this working directory.
� Copy the file world.edf_c to world_<lng>.edf
� Check for

� The SimEnv configuration file world_<lng>.cfg general configurations of SimEnv
� The model output description file world_<lng>.mdf available model variables
� The model world_<lng>.<lng> implementation of the model
� The model shell script world_<lng>.run wrapping the model executable
� The experiment description file world_<lng>.edf experiment definition
� The post-processing input file world.post_c post-processor expression sequence
� The macro description file world_<lng>.mac macros for the post-processor
� The operator description file world_<lng>.opr description of user-defined operators
� The user-defined operators usr_opr_<opr>.f code of user-defined operator <opr>

� Start a complete SimEnv session by
$SE_HOME/simenv.cpl world_<lng> -1 world.post_c

� SimEnv files will be checked
� The experiment will be prepared
� The experiment will be performed machine (select the login machine on request)
� Model output post-processing will be started for this experiment

� With the post-processing input file world_post_c and following
� Interactively: Enter any expression and finish post-processing by entering a single <return>

� Visualization of post-processed results will be started (*)
or
� Start $SE_HOME/simenv.chk world_<lng>

to check model and experiment files
� Start $SE_HOME/simenv.run world_<lng>

to prepare and perform a simulation experiment
� Start $SE_HOME/simenv.rst world_<lng>

to restart a simulation experiment
� Start $SE_HOME/simenv.res world_<lng> {[new | append | replace]} {<run>}

to post-process the last simulation experiment over the whole run ensemble or for run number <run>
and to create a new / append to / replace the result file <model>.res<res_char>.[nc | ieee | ascii]
with the highest two-digit number <res_char>. <res_char> can range from 01 to 99.

� Start $SE_HOME/simenv.vis world_<lng> {[latest | <res_char>]} (*)

-6- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

to visualize output from the latest post-processing output file world_<lng>.res<res_char>.nc or that
with number <res_char> with the highest two-digit number <res_char>. <res_char> can range from
01 to 99.

� Check in the working directory the model coupling and experiment performance log-files
world_<lng>.elog and world_<lng>.mlog

� Start $SE_HOME/simenv.dmp world_<lng> | more
to dump a SimEnv model or post-processor output file

� Start $SE_HOME/simenv.cln world_<lng>
to wrap up a simulation experiment

� Get the usage of all commands by entering a command without arguments.
� To run other simulation experiments and/or output in other data formats modify

� world_<lng>.cfg
� world_<lng>.edf
� world_<lng>.mdf
� world_<lng>.<lng> and/or
� world_<lng>.run

� To experiment with other models replace world_<lng> by <model> as a placeholder for the name of any
other model.

(*): to get access rights for the visualization server check in chapter 10.2 at page 75 the SimEnv service
$SE_HOME/simenv.key <user_name>

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -7-

3 Version 1.01
This chapter summarizes differences between the current and the previous SimEnv release, limita-

tions, and bugs and workarounds.

3.1 What is New?
SimEnv
� (update) New SimEnv home directory $SE_HOME
� (new) $SE_HOME/simenv.hlp to get basic information on SimEnv
� (new) $SE_HOME/simenv.cpy to copy SimEnv example files to the working directory
� (new) Preliminary visual evaluation of post-processor output
� (new) Assignment of a coordinate to each dimension of a model variable in <model>.mdf,

(new) Model coupling interface to SimEnv for Python models
� (update) Model coupling interface to SimEnv for GAMS models
� (new) Interface . $SE_HOME/simenv_get_sh within <model>.run to get experiment targets at

shell script level
� resulting in a grid specification for model variables. During model output post-processing coordinate

descriptions are checked for multi-argument operator arguments and are transformed individually by op-
erators. Also user-defined operators can check and transform coordinates.

� (update) Coupling function simenv_init_* renamed to simenv_ini_* and
coupling function simenv_finish_* renamed to simenv_end_*

� (update) simenv.run and simenv.rst only with one argument. For login at a login node of a parallel
machine an additional dialogue will check whether to run the experiment controlled by the LoadLeveler
or locally at the login machine.

� (new) File <model>.<run_char>.err can be touched in the model or in <model>.run as an indi-
cator to SimEnv to cancel the whole experiment

� (new) New advanced post-processing operators clip, cumul, experiment, flip, if, mask,
nr_of_runs, stat, transpose, and undef

� (new) Pre-defined model output variable sim_time of dimensionality 0 and data type float that
holds after the experiment the elapsed time in seconds per single run performance of <model>.run

� (new) For Monte-Carlo experiments Latin hypercube sampling and samples generated exter-
nally can be coupled to targets.

� (update) $SE_HOME/simenv.res <model> {[new | append | replace]} {<run>}
to post-process the last simulation experiment and to create a new / append to / replace the result file
<model>.res<res_char>.[nc | ieee | ascii] with the highest two-digit number <res_char>. <res_char>
can range from 01 to 99.

� (new) $SE_HOME/simenv.sts <model> {<sleep>} to get the current status of an experiment
submitted by the LoadLeveler from a login node to a parallel or sequential job class.

User Files
� (update) <model>.ctl renamed to <model>.cfg
� (update) <model>.prp renamed to <model>.ini

<model>.ini performed on request (see <model>.cfg) also for experiment restart
� (update) <model>.gms renamed to <model>.gdf
� (update) User files <model>.cfg, <model>.mdf, <model>.edf, <model>.odf, <model>.mac,

<model>.gms:
New and standardized syntax for all description files

� (update) <model>.run and <model>.rst:
Instead of
$SE_RUN=$1
implement now
. $SE_HOME/simenv_ini_sh

-8- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

as the first command in each <model>.run and <model>.rst
� (update) <model>.run:

use . $SE_HOME/simenv_end_sh as last command
� (new) <model>.end:

New optional user shell script <model>.end to perform wrap-up of the whole simulation experiment.

3.2 Limitations
� Only accessible under AIX
� Without experiment specific operators for local sensitivity analysis in experiment post-processing:

Only a selected single run can be post-processed for this experiment type.
� No C-interface to write user-defined operators
� Preliminary graphical evaluation of post-processed model output
� Graphical user interface only for graphical evaluation

3.3 Known Bugs and Their Workarounds
� Where: Experiment performance

Model coupling at shell script level using simenv_get_sh
Bug: Instead of reporting to the protocol file <model>.mlog only these targets that are

addressed explicitly by simenv_get_sh all experiment targets as defined in <model>.edf
are reported

Workaround: Make sure to get all necessary targets and check <model>.run

� Where: Visual evaluation
Bug: Some visualization techniques do not work in a stable manner
Workaround: None

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -9-

4 Experiment Types
SimEnv supplies a set of pre-defined multi-run experiment types. Each experiment type addresses a

special experiment class for performing a simulation model several times in a co-ordinated manner. In this
chapter an overview on the available experiment types is given from the viewpoint of system’s theory.

4.1 General Approach
SimEnv supplies a set of pre-defined multi-run experiment types, where each type addresses a special ex-
periment class for performing a simulation model or any algorithm with an input - output transition behaviour.
In the following, the general SimEnv approach will be described for time dynamic simulation models, be-
cause this class forms the majority of SimEnv applications. All information can be transformed easily to any
other algorithm.

Based on systems’ theory, each time dynamic model M can be formulated - without limitation of generality -
for the time dependent, time discrete, and state deterministic case as

M: Z(t) = ST (Z(t-�t) ,..., Z(t-n*�t) , P , X(t) , Z0 , B)

with ST state transition description
Z state variables’ vector
P parameter vector
X input (driving forces) vector
Z0 initial value vector
B boundary value vector
t time
�t time increment
n time delay

The output vector Y is a function of the state vector Z, parameters P, drivers X, and initial values Z0:

Y(t) = OU (Z(t) , P , X(t) , Z0).

Model behaviour Z is determined for fixed n and �t by state transition description ST, parameters P, driving
forces X, initial values Z0, and boundary values B. Manipulating and exploring model behaviour in any sense
means changing these four model components. While state transition description ST reflects mainly model
structure and is quite complex to change, each component of the driving forces vector X normally is a time-
dependent vector.

Introduction of additional technical parameters Ptech can reduce the complexity of handling a model with re-
spect to the five model components, described above: Changes in state transition description ST can be pre-
determined in the model by assigning values of a technical parameter ptech to alternative submodel versions,
which are switched on or off by these values. Additionally, each component of the driving forces vector X can
be combined with technical parameters in different ways:

� By selecting special driving forces dependent on the technical value
� By manipulating the driving forces with the parameter value (e.g., as an additive or multiplicative adjust-

ment)
� By parametrizing the shape of a driving force

When this has been done, the model behaviour finally depends only on the parameters P, the initial values
Z0, and the boundary values B. From the methodical point of view there is no difference between parame-
ters, initial values and boundary values, because all are considered as constant during one model run. That
is why in the following the term target stands as a placeholder for all the four model components parame-
ters, drivers, initial values and boundary values. All targets form the target set T:

-10- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

T = { P, X , Z0 , B }
and

Z = ST(T).

In the following,
Tm = (t1 ,..., tm) m > 0

stands for a subset of the target set T that spans up an m-dimensional sub-space of T by selected model
targets (t1 ,..., tm) from T
and

Tmn =
�
�
�

�

�

�
�
�

�

�

nm1n

m111

t...t
......
t...t

m > 0, n > 1

stands for a numerical sample for Tm of size n and finally for m*n values representing in any sense Tm.
In the set of all Tmi (i > 1) one extraordinary sample Tm1 exists that matches the nominal (default) numerical
target constellation for the model M.
If { }n denotes the dynamics of the model M over a sample of size n then it yields:

{ Z }n = { ST(Tmn) }n .

For simulation purposes in SimEnv experimentation with the model M over Tmn is based on the assumption
that dynamics of M for each representative from the sample is indepent from all other representatives, which
is fulfilled in general. This results in the possibility to form a run ensemble for performing the model M with n
single model runs from the sample Tmn.

SimEnv experiment types differ in the way Tm is sampled to get Tmn. There are deterministic and non-
deterministic sampling strategies that offer a broad range of techniques for
� Experimentation with models
� Post-processing model output results
� Interpreting results with respect to uncertainty and sensitivity matters of models.
The experiment types are described in detail in the following.

4.2 Behavioural Analysis
Behavioural analysis uses a deterministic strategy to sample Tm. It is the inspection of the model in the target
space Tm where inspection points are set in a regular and well structured manner.

Behavioural analysis can be interpreted and used in different ways:
� For scenario analysis:

 to show how model behaviour changes with changes of target values
� For numerical validation purposes:

 to determine target values in such a way that the output vector matches with measurement results of the
real system

� For deterministic error analysis:
 to analyse how the model error is dependent on target errors

� For a simulation-based control design:
to determine target values in such a way that a goal function becomes an extreme

SimEnv behavioural analysis sampling strategy is a generalization of the one-dimensional case for T1, where
the model behaviour is scanned in dependence on deterministic adjustments of one target t1. The general
case for Tm demands a strategy for scanning m-dimensional spaces in a flexible manner. Based on the
predecessors of SimEnv (Wenzel et al., 1990, Wenzel et al., 1995, Flechsig, 1998) subspaces of the m-
dimensional target space can be scanned on the subspace diagonal (parallel in a one-dimensional hyper-
space) or completely for all dimensions (combinatorially on a grid) and both techniques can be combined.
Besides this regular scanning method an irregular technique is possible.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -11-

The resulting number of single simulation runs for the experiment depends on the number of target samples
per dimension of the scanned target space and from the selected scanning method. An experiment is de-
scribed by the names of the involved targets, their numerical adjustments and their combination (scanning
method). Model output post-processing resolves the scanning method again and outputs results as projec-
tions on multi-dimensional target subspaces.

Fig. 4.1 describes the regular scanning technique by an example. In the left scheme (a) the two-dimensional
target space (p1 , p2) is scanned combinatorially, resulting in 4*4 = 16 model runs, while the middle scheme
(b) represents a parallel scanning of the two targets at the diagonal by 1+1+1+1 = 4 model runs. The
scheme (c) at the right side shows a complex scanning strategy of the 3-dimensional target space (p1 , p2 ,
p3) with (1+1+1+1)*3 = 12 model runs. Each filled dot represents a single model run.

 (a) (b) (c)

Fig. 4.1 Behavioural analysis: Scanning multi-dimensional target spaces

4.3 Monte-Carlo Analysis
Monte-Carlo analysis uses a non-deterministic strategy to sample Tmn. A Monte-Carlo experiment in SimEnv
is a perturbation analysis with pre-single run target perturbations.

Theoretically, with a Monte-Carlo analysis moments of a state variable z can be computed as

M(k){z} = ∫...∫ z(Tm)k * pdf(Tm) dTm
 Tm

with M(k){z} k-th moment of the state variable z with respect to the
probability density function pdf

z(Tm) state variable z as a function of Tm
pdf(Tm) probability density function of Tm

By interpreting the probability density function pdf(Tm) as the error distribution in the target space Tm it is
possible to study error propagation in the model. On the other hand Monte-Carlo analysis can be interpreted
as a stochastic error analysis, if there are measurements of the real system for z.

For a numerical experiment in SimEnv it is assumed that the probability density function pdf(Tm) can be de-
composed into independent probability density functions pdfi for all targets ti of Tm:

 m

pdf(Tm) = � pdfi(ti)
 i=1

and the m-dimensional integral is approximated by a sequence of n single simulation runs of the model
where the numerical target values tij of ti (1 ≤ i ≤ m, 1 ≤ j ≤ n) are sampled according to the probability density
function pdfi.

-12- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

On the basis of these assumptions, the statistical measures in Tab. 4.1 can be computed during perform-
ance of a post-processing session from a Monte-Carlo analysis with n simulation runs resulting in n realiza-
tions z1 ,..., zn of the state variable z:

Statistical measure Definition (*)

minimum min(z) = min (zi)

maximum max(z) = max (zi)

sum sum(z) = � zi

average M(1)(z) = � zi / n

variance M(2)(z) = � (zi - z(1)) 2 / (n - 1)

skewness M(3)(z) = � (zi - z(1)) 3 / n * (� (zi - z(1)) 2 / (n – 1)) 3/2

kurtosis M(4)(z) = (� (zi - z(1)) 4 / n * (� (zi - z(1)) 2 / (n – 1)) 2) - 3

range rng(z) = max(z) – min(z)

geometric average avgg(z) = (� zi)1/n

harmonic average agvh(z) = n / �(1 / zi)

weighted average avgw(z) = � zi * wi / � wi w : weight

correlation
cor(z1,z2) = � (z1i – z1(1)) * (z2i – z2(1)) /

 __

 � � (z1i – z1(1))2 * � (z2i – z2(1))2

covariance cov(z1,z2) = � (z1i – z1(1)) * (z2i – z2(1)) / (n – 1)

linear regression coefficient reg(z1,z2) = � (z1i – z1(1)) * (z2i – z2(1)) / � (z1i – z1(1))2

median med(z) = middle value from increasingly ordered { zi } (n = odd)
 mean of the two middle values from { zi } (n = even)

quantile
qnt(p)(z) = that value from increasingly ordered { zi }

 which corresponds to a cumulative frequency of n*p
 qnt(0.5)(z) = med(z)

confidence interval
boundaries

cnf(�)(z) = z(1) � t
�,n-1

 � z(2) / n with level of error � = 0.1%, 1% and 5%
 t

�,n : significance boundaries of Student distribution

heuristic probability density
function hgr(class)(z) = number of zi with classmin � zi < classmax

Tab. 4.1 Statistical measures
 n n

(*): indices for sums �, products � and extremes run from 1 to n: � � min max
 i=1 i=1 i=1,...,n i=1,...,n

Tab. 4.2 summarizes these probability density functions (Bohr, 1998) that are pre-defined in SimEnv for
targets to be perturbed. Additionally, SimEnv offers to import random number samples in the course of ex-
periment preparation.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -13-

Distribution Short-
cut Probability density function pdf Distribution parameters

uniform U(a,b)
pdf(x) =

ab
1
�

if x � [a,b]

pdf(x) = 0 otherwise

a lower boundary
b upper boundary > a

it is: mean = (a+b) / 2
standard deviation =
 __

� (b-a)2 / 12
normal N(�,�2)

pdf(x) = � �
�
�

�

�

�
�

�

�

�

�	
	

� 2

2

2

xexp
2

1 � mean
� standard deviation > 0

lognormal L(�,�2)
pdf(x) = � �

�
�

�

�

�
�

�

�

�

�	
	

� 2

2

2

lnxexp
2x

1 if x > 0

pdf(x) = 0 otherwise

�

� > 0

it is: ln(x) ~ N(�,�2)
exponential E(�)

pdf(x) = ��
�

�
��
�

�

�
�

�
xexp1 if x > 0

pdf(x) = 0 otherwise

� mean > 0

it is: standard deviation = �

Tab. 4.2 Probability density functions

The number of runs to be performed during a Monte-Carlo analysis has to be specified. An experiment is
described by the targets involved in the analysis, their distribution and the appropriate distribution parame-
ters.

4.4 Local Sensitivity Analysis
Local sensitivity analysis uses a deterministic sampling stategy in ε-neighbourhoods of the numerical default
constellation Tm1 of the model M. For each target ti from the nominal target constallation Tm1 and each εj from
the ε-neighbourhoods (ε1 ,…, εk) two members (t1 ,..., ti-1 , ti±εj , ti+1 ,..., tm) of the resulting sample are gener-
ated. The sample size n is given by 2*m*k. Running the model at this sampling set serves to determine sen-
sitivity functions.

In classical systems’ theory, model sensitivity of a model state variable z with respect to a target t is the par-
tial derivative of z after t. In the numerical simulation of complex systems finite sensitivity functions are pre-
ferred, because they can be obtained without model enlargements or re-formulations. They are linear ap-
proximations of the classical model sensitivity measures (Wierzbicki, 1984).

Local sensitivity functions can be used for localizing modification-relevant model parts as well as control-
sensitive targets in control problems. On the other hand, identification of robust parts of a model or even
complete robust models makes it possible to run a model under internal or external disturbances. Sensitivity
analysis in SimEnv post-processing is based on finite sensitivity functions, which are defined as in Tab. 4.3.

-14- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Local sensitivity
function Definition

linear lin±(z,ε) =
�

�� z(t) -) z(t

squared sqr±(z,ε) =
�

��
2) z(t) -)z(t (

absolute abs±(z,ε) =
�

�� | z(t) -)z(t |

relative 1 rel1±(z,ε) =
��

��

 z(t)
z(t) -)z(t

relative 2 rel2±(z,ε) =

t

 z(t)
z(t))z(t

�

��

���

symmetry test sym(z,ε) =
�

���)-z(t -)z(t

Tab. 4.3 Local sensitivity functions

Accordingly, local sensitivity of the model to a target is always expressed as the sensitivity of a model’s state
variable z, usually at a selected time step within a surrounding ε of a target value t. That is why the conclu-
sions drawn from a local sensitivity analysis are only valid locally with respect to the whole target space.
Additionally, local sensitivity functions only describe the influence of one target ti from the whole vector Tm on
the model’s dynamics.

Linear, squared and absolute local sensitivity functions allow comparison of the influence of various targets
on the same state variable. The relative local sensitivity functions are suited to comparing the sensitivity of
the same target on different state variables, because of the normalization effect of the nominal state variable
z(t) and the nominal target value t. The symmetry test will return zero if the state variable z shows a symmet-
rical behaviour in the surrounding of the nominal value of the target t.

A local sensitivity experiment is described by the names of the targets t to be involved and the increments ε.
The number of runs for the experiment results from the number of targets and increments: two runs per tar-
get for each increment plus one run with the default values of the targets. Local sensitivity functions are cal-
culated during model output post-processing.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -15-

5 Model Coupling to SimEnv
To use any model within SimEnv it has to be coupled to the simulation environment. SimEnv offers easy
coupling techniques at programming language and shell script level. While at language level SimEnv func-
tion calls have to be implemented into model source code to adjust experiment targets, i. e. model parame-
ters, initial values or boundary values of the current single run out of the run ensemble numerically and to
output simulation results, at the shell script level communication between the simulation environment and the
model can be based on operating system information exchange methods. To plug the model into the simula-
tion environment the variables of the model to be output during experiment performance and to be post-
processed during model output processing have to be declared in the model output description file
<model>.mdf. Additionally, the model itself has to be wrapped into a shell script <model>.run.
Model coupling is related to transferring adjusted numerical values of model targets under investigation from
the simulation environment to the model and to transferring model variables under investigation from the
model to the simulation environment for later post-processing. Coupling is supported at the programming
language level for C, Fortran, Python, and GAMS programming languages, the model is implemented in and
the shell script shell script level.

5.1 Model Output Description File <model>.mdf
In the model output description file <model>.mdf the model variables are declared that are to be output by a
SimEnv model coupling interface function in the model (code) and are to be post-processed after experiment
performance. Additionally, coordinate axes are defined and flexibly assigned to model variables. Conse-
quently, a model variable always is defined on a coordinate system, formed from the assigned coordinates to
the variable.

Each model variable has a name, a dimensionality and assigned extents, a data type, a description and a
unit. The name should correspond with the name of the variable in the simulation model code. Association
between these two names is achieved by the SimEnv coupling function simenv_put_* (see below). The di-
mensionality is the number of dimensions of the model variable, an extent is related to each dimension and
represents the number of elements > 1 in that dimension. A variable of dimensionality n corresponds with a
n-dimensional array, a variable of dimensionality 0 is a scalar.
Additionally, coordinate axes are defined. Each coordinate axis a strictly monotonous sequence of coordi-
nate values, a description and a unit is assigned to. For reasons of simplification in model output post-
processing coordinate axes are assumed as curvilinear.
Each dimension of a variable with a dimensionality > 0 a complete coordinate axis or a part of a coordinate
axis is assigned to. Consequently, each variable with a dimensionality > 0 is defined on a coordinate system
formed from the assigned coordinates. For reasons of simplification in result evaluation with visualization
techniques coordinate systems are assumed as rectilinear (orthogonal with variable distances between ad-
jacent coordinate values). The model variable values then exist on the grid, spanned up from the coordinate
values of the coordinate axes.

Since coordinate axes can be assigned to model variable dimensions in a flexible manner, model variables
can exist on the same coordinate system or completely or partially disjoint coordinate systems.

<model>.mdf is an ASCII file that follows the coding rules in chapter 11 at page 83 with the keywords,
names, sub-keywords, and info as in Tab. 5.1.

-16- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

mdf <nil> descr o any <string> model description
descr o 1 <string> coordinate axis description
unit o 1 <string> coordinate axis unit

coordinate coordinate_
name
(co_name) values m 1 <value_list> strictly monotonous sequence

of coordinate values co_vals
(for syntax see Tab. 11.4)

descr o 1 <string> variable description
unit o 1 <string> variable unit
type m 1 see Tab. 5.2 variable type in the simulation

model
coords c1 1 co_name1

, ... ,
co_namen

assigns a coordinate axis by
its name to each dimension of
the variable. Determines in
this way implicitly the dimen-
sionality n of the variable.

coord_extents c2 1 co_val11:co_val12
, ... ,
co_valn1:co_valn2

assigns start and end coordi-
nate value from each coordi-
nate axis to the variable. If
missing all coordinate values
will be used from all assigned
coordinates.

variable variable_
name

var_extents c1 1 vi_ext11:vi_ext12
, ... ,
vi_extn1:vi_extn2

assigns start and end index
for each dimension to the
variable. Indices can be used
to address the variable during
post-processing.

Tab. 5.1 Elements of a model output description file <model>.mdf

To Tab. 5.1 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.
� Coordinate and variable names must differ from target names in experiment description (see chapter 0)

and from built-in and user-defined operator names for model output post-processing (see chapter 8.6.2).
� Assignment of coordinate axes to variable dimensions and consequently of a grid to a variables is only

valid for model output post-processing. Normally, the simulation model itself will also exploit the same
grid structure. Nevertheless, the grid structures of the model are defined autonomously in the model in a
explicit or implicit manner and do only correspond with the grid structure in the model output description
file symbolically.

� Model variables with dimensionality 0 are not assigned to a coordinate axis.
� The values of a coordinate have to be ordered in a strictly monotonous sequence. They may be non-

equidistant and may be ordered in a decreasing sequence.
� With the sub-keyword coord_extents only a portion of coordinate values of a coordinate axis can be

assigned to a dimension of a variable. This portion is addressed by its begin and end value co_vali1
and/or co_vali2. The number of coordinates of the portion has to be greater than 1.
co_vali1 > co_vali2 for strictly increasing values of coordinates
co_vali1 < co_vali2 for strictly decreasing values of coordinates

� With the sub-keyword var_extents portions of variables are made addressable during post-processing.
In the same way multi-dimensional variables are supplied with indices in the simulation model the model
they also have an index description in the model output description file for purposes of model output
post-processing. It is advisable, that these two descriptions coincide. The index range is described by a
start and an end index vi_exti1 and/or vi_exti2.
Index set is a strictly increasing, equidistant set of integer values, index increment is 1,

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -17-

vi_exti1 < vi_exti2 ,
vi_exti1 ≤ 0 is possible.

� Coordinate values and index values are assigned in a one-to-one manner.
� For multi-dimensional variables that do not exist on an assigned grid completely or partially, simply as-

sign formal coordinate axes to.
� Specify at least one model output variable in <model>.mdf.

SimEnv data type Description Restriction

byte or int*1 1 byte integer not for Python models
short or int*2 2 bytes integer not for Python models
int or int*4 4 bytes integer
float or real*4 4 bytes real
double or real*8 8 bytes real not for Python models

Tab. 5.2 SimEnv data types

For the following example of a model output description file and the assigned grid for model variable bios
check Example 1.1 at page 4:

mdf descr World with a resolution of
mdf descr 4° lat x 4° lon x
mdf descr 4 levels x 20 time steps
mdf descr Data centred per lat-lon cell
mdf descr This file is valid for all
mdf models world_[f | c | py | sh]

coordinate lat descr geographic latitude
coordinate lat unit deg
coordinate lat values equidist_end 88(-4)-88

coordinate lon descr geographic longitude
coordinate lon unit deg
coordinate lon values equidist_end -178(4)178

coordinate level descr atmospheric vertical level
coordinate level unit level no
coordinate level values list 1,7,11,16

coordinate time descr time in decades
coordinate time unit 10 years
coordinate time values equidist_nmb 1(1)20

variable atmo descr aggregated atmospheric state
variable atmo unit without
variable atmo type float
variable atmo coords lat , lon , level , time
variable atmo var_extents 1:45 , 1:90 , 1:4 , 1:20

variable bios descr aggregated biospheric state
variable bios unit g/m2

variable bios type float
variable bios coords lat , lon , time
variable bios coord_extents 84:-56 , -178:178 , 1:20
variable bios var_extents 1:36 , 1:90 , 1:20

variable glob type int
variable glob coords time
variable glob var_extents 1:20

-18- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

variable over type int

Example-file: world_[f | c | py | sh].mdf

Example 5.1 Model output description file <model>.mdf

lon [deg]

lat [deg]

time [10 years

-178

178

20

88
1

-56

84 (36,1,1)

(1,90,1)

(1,1,1)

(36,1,20)

(36,90,1)

(36 ,90,20)

(1,90 ,20)

(1,1 ,20)

-2

0

model variable
bios(lat,lon,time)

-88

2

Definition of model variable bios refers to Example
5.1 above.
The triples at the edges of the grid are
the indices of model variable bios(lat,lon,time)
for the appropriate grid cells.

Fig. 5.1 Model variable definition: Grid assignment

5.2 Model Coupling Interface for Fortran and C Models
Tab. 5.3 describes the functions that can be used in user models written in Fortran or C to adjust experi-
ment targets for the current single run of the run ensemble and to output model results from the current sin-
gle run. Two additional functions are responsible to initialize and/or finish SimEnv model coupling interac-
tions.
Finally, two other model coupling functions are available: One function can be used to get the number of the
current single run and an other to announce output of a slice of the data of a defined model variable. The
latter is good for models with multi-dimensional variables where at least one dimension is omitted in the
model’s variable declaration because the dynamics for this dimension is calculated in place (e.g., time). The
assigned variable then has a lower dimensionality than the corresponding variable in the model output de-
scription file. Nevertheless the slice-function ensures that model output over the omitted dimension can be
handled in model output post-processing in common.

Model coupling functions are generic. To distinguish between the programming languages function names
have a language suffix _f (for Fortran) and _c (for C). All functions have a 4-byte integer function value (inte-
ger*4 and/or int). Implementation of the functions for C is based on a call by reference for the function argu-
ments.

In Tab. 5.3 input and output data types are documented for functions used in Fortran. For C the corre-
sponding data types are valid.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -19-

Function name
without suffix

_f, _c
Function

description
Arguments /

function value
Argument / function value

description

simenv_end
(
)

close model cou-
pling interface

Apply always
after the last call
of the other
simenv-functions
in the model

integer*4
simenv_end
(function value)

return code
= 0 ok
= 2 I/O error for model output file

character*(*)
target_name
(input)

name of the target in <model>.edf

real*4
target_val_def
(input)

nominal / default (non-adjusted) target value.
If target_name is not defined in <model>.edf
then target_val_adj is set to target>_val_def

real*4
target_val_adj
(output)

adjusted target value

simenv_get
(
target_name,
target_val_def,
target_val_adj
)

gets the numerical
modification
(adjustment)
for the target (pa-
rameter / initial
value / boundary
value) to be ex-
perimented with in
the current single
run integer*4

simenv_get
(function value)

return code
= 0 ok
= 1 target_name undefined:

target_val_adj := target_val_def
= 3 warning w.r.t. target_val_def or adjustment

(check Tab. 6.6 at page 35)
character*6
run_char
(output)

current run number with leading zeros

integer*4
run_int
(output)

current run number

simenv_get_run
(
run_int,
run_char
)

gets run number of
current run as an
integer value and a
character string

integer*4
simenv_get_run
(function value)

return code
= 0 ok

simenv_ini
(
)

initialize model
coupling interface

Apply always
before the first
call of the other
simenv-functions
in the model

integer*4
simenv_ini
(function value)

return code
= 0 ok
= 2 I/O error for model output file
= 3 error memory allocation
= 4 I/O error for <model>.edf_bin
= 5 I/O error for <model>.mdf_bin
= 6 I/O error for <model>.edf_adj
= 7 wrong single run number

character*(*)
var_name
(input)

name of the variable in <model>.mdf to be output

dimension
field(...),
type according
to <model>.mdf
(input)

data of variable var_name to be stored as simula-
tion results

simenv_put
(
var_name,
field
)

outputs model
results to native
SimEnv output
file(s)

integer*4
simenv_put
(function value)

return code
= 0 ok
= 1 var_name undefined
= 2 I/O error model output file

-20- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Function name
without suffix

_f, _c
Function

description
Arguments /

function value
Argument / function value

description

character*(*)
var_name
(input)

name of the variable in <model>.mdf to be sliced

integer*4
idim
(input)

dimension to be sliced

integer*4
ifrom
(input)

slice to start at position ifrom

integer*4
ito
(input)

slice to end at position ito

simenv_slice
(
var_name,
idim,
ifrom,
ito
)

announces to out-
put at next
simenv_put call
only a slice of vari-
able var_name.
This announce-
ment becomes
inactive after per-
formance of the
appropriate
simenv_put

integer*4
simenv_slice
(function value)

return code
= 0 ok
= 1 var_name undefined
= 3 inconsistency between variable and

idim, ifrom, ito
= 4 slice storage exceeded
= 5 warning: slice overwritten

Tab. 5.3 Model coupler functions at language level

� Make sure consistency of type and dimension declarations between the model variables in model source
code and the corresponding variable declarations in the model output description file <model>.mdf.

� Model variables that are not output completely or partially within the user model are handled in result-
post-processing as their corresponding nodata-values (see chapter 8.7 at page 69).

� Application of simenv_slice_* for NetCDF model output may result in a higher consumption of computing
time for each single run of the experiment compared with NetCDF model output without simenv_slice_*.
For this case, keep in mind the trade-off between the demand for computing time and the demand for
main memory.

In Example 15.1 at page 102 the model world_f.f and in Example 15.2 at page 103 the model world_c.c are
explained.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -21-

5.3 Model Coupling Interface for Python Models
Due to the special features of Python the coupling interface to SimEnv differs from that for Fortran and C in
chapter 5.2. Additionally, Python supports only some data types (check Tab. 5.2). Tab. 5.4 summarizes the
coupling functions to use for a Python model.

Function name Function
description

Arguments /
function value

Argument / function value
description

simenv_
end_py
(
)

close model cou-
pling interface

string
target_name
(input)

name of the target in <model>.edf

float
target_val_def

nominal / default (non-adjusted) target value.
If target_name is not defined in <model>.edf
then target_val_adj is set to target>_val_def

simenv_
get_py
(
target_name,
target_def_val)
)

gets the numerical
modification
(adjustment)
for the target (pa-
rameter / initial
value / boundary
value) to be ex-
perimented with in
the current single
run

float
get_py
(function value)

adjusted target value target_val_adj

simenv_
get_run_py
(
)

gets run number of
current run as a
character string

string
get_run_py
(function value)

current run number as string of the length 6 with
leading zeros.
If an error occurred then run_char = ‘------‘

simenv_
ini_py
(
)

initialize model
coupling interface

Apply always
before the first
call of the other
SimEnv-functions
in the model

string
ini_py
(function value)

return code of the spawn function for a SimEnv
executable

string
var_name
(input)

name of the variable in <model>.mdf to be output

declaration of
field(...)
according to
<model>.mdf
(input)

data of variable var_name to be stored as simula-
tion results. Maximum length of field is limited to
12.000 characters.

simenv_
put_py
(
var_name,
field
)

outputs model
results to native
SimEnv output
file(s)

put_py
(function value)

unused

simenv_
slice_py
(
var_name,
idim,
ifrom,
ito

Currently not
available for
Python models

Tab. 5.4 Model coupler functions for Python models

-22- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

� Python coupling functions are declared in the file $SE_HOME/simenv.py. To use these functions in a
Python model import it by

from simenv import *
and refer to it for example by simenv.get_run_py.

� $SE_HOME has to be appended to the operating system environment variable PYTHONPATH.
� Errors that occur during performance of one of the above functions are directly reported to

<model>.mlog.

In Example 15.3 at page 104 the model world_py.py is described in detail.

5.3.1 Standard User-Defined Files for Python Models
<model>.ini
<model>.ini (see chapter 7.1 at page 37) is for Python models a mandatory script and has to have the same
contents for all Python models:

$SE_HOME/py_model_ini
iexit = $?
if test $iexit = 0
then
additional user-model specific commands can be implemented here
...
fi
exit $iexit

For an experiment restart (check chapter 7.2 at page 39) <model>.ini has to be performed again. To force
this specify in <model>.cfg (check chapter 10.1at page 73) for the sub-keyword restart_ini the value yes.

5.4 Model Coupling Interface at Shell Script Level
For models that do not allow to implement the model coupling interface at programming language level (e.g.,
because source code is not available) SimEnv supplies a coupling interface at shell script level: the shell
script <model>.run (see chapter 7.1 at page 37) is used to wrap the model and optionally to have at disposal
corresponding functionality of the SimEnv-coupling functions of Tab. 5.3).

� For model coupling at the shell script level, i.e., within the shell script <model>.run the adjusted experi-
ment targets for the current single run from the whole run ensemble can be made available within
<model>.run to forward them by any means the modeller is responsible for to the model under investiga-
tion.
One common way to forward experiment targets to the model is to place current numerical target values
as arguments to the model at model command line. Another way could be to read the targets from a
special file in a special file format.

� Directly before performing simenv_get_sh make sure that the shell script variables target_name and
target_def_val have be specified. At the end of each simenv_get_sh these variables are set again to
empty strings.

� After running . $SE_HOME/simenv_get_sh an experiment target <target_name> from the experiment
description file <model>.edf is available in <model>.run as a shell script variable <target_name> and the
adjusted value of the target is available as $<target_name>.

� After running the model model output has to be identified and potentially transformed within <model>.run
for SimEnv output. To do this simply write your own simenv_put_sh as a transformation program that
reads in all the native model output and outputs it to SimEnv by applying the coupling functions
simenv_*_* from the SimEnv model coupler at language level.

� Tab. 10.10 lists the built-in (pre-defined) shell script variables that are used in $SE_HOME/simenv_*_sh
and finally in <model>.run.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -23-

Command
name

Command
description Arguments Argument

description

. $SE_HOME/
simenv_end
_sh

wrap up current
single run

Apply always as
the last command
in <model>.run

script variable
target_name
(input)

name of the target in <model>.edf

script variable
target_def_val
(input)

nominal / default (non-adjusted) target value.
If target_name is not defined in <model>.edf
then target_val_adj is set to target>_val_def

target_name=
‘...’
target_def_val=
...
. $SE_HOME/
simenv_get
_sh

gets a numerical
modification
(adjustment)
for the target (pa-
rameter / initial
value / boundary
value) to be ex-
perim. with in the
current single run

script variable
target_name
(output)

shell script variable with the same name as the
value of target_name. Script variable value is the
adjusted target value target_val_adj.

run_char
(output)

shell script variable with the current run number
with leading zeros

. $SE_HOME/
simenv_get_run
_sh

gets run number of
current run as an
integer and a
character script
variable

run_int
(output)

shell script variable (type integer) with the current
run number

. $SE_HOME/
simenv_ini
_sh

initialize current
single run

Apply always as
the first command
in <model>.run

SE_RUN
(output)

operating system environment variable SE_RUN is
set to the current run number of the simulation
experiment

. $SE_HOME/
simenv_put
_sh

Not available at
shell script level

write your own simenv_put_sh at the language
level using the SimEnv coupling functions from
Tab. 5.3 or Tab. 5.4

. $SE_HOME/
simenv_slice
_sh

Not available at
shell script level

Tab. 5.5 Model coupler functions at shell script level

. $SE_HOME/simenv_ini_sh

get adjusted value for the a target p_def, defined in the edf-file
target_name=’p_def’
target_def_val=2.
. $SE_HOME/simenv_get_sh
now shell script variable p_def is available
value of shell script variable p_def is according to edf-file

get adjusted value for a target p_undef, not defined in edf-file
target_name=’p_undef’
target_def_val=-999.
. $SE_HOME/simenv_get_sh
now shell script variable p_undef is available
value of shell script variable p_undef is -999.

...

. $SE_HOME/simenv_end_sh

Example file: world_sh.run

Example 5.2 Addressing target names and values for model coupling at shell script level

-24- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

In Example 15.4 at page 105 the model shell script world_sh.run is described in detail.

5.5 Model Coupling Interface for GAMS Models
SimEnv allows to couple GAMS models to the experiment shell. A GAMS model for SimEnv can consist of a
GAMS main model and GAMS submodels.
Therefor, two additional include-statements have to be inserted into these GAMS model source code files
where experiment targets are to be adjusted or model variables are to be output. The GAMS model source
code files can be the GAMS main model or any GAMS model that is called directly from the main model.
The include files are
� $include <GAMS_model>_simenv_get.inc

$include <GAMS_model>_simenv_put.inc
where <GAMS_model> is the name of a GAMS model file without extension .gms under consideration.
The include statement $include <GAMS_model>_simenv_put.inc has to be placed in the GAMS model
file at such a position where all the variables from the model output description file can be output by
GAMS put-statements.

� For the path, all GAMS model source code files under consideration are located the user can specify in
<model>.cfg an appropriate directory (check chapter 10.1 at page 73 for more information.

� During experiment preparation the file <GAMS_model>_simenv_put.inc and during experiment per-
formance files <GAMS_model>_simenv_get.inc are generated automatically to forward GAMS model
output to SimEnv data structures and to adjust investigated experiment targets, respectively.
These include files correspond with the simenv_put and simenv_get functions at the language level (see
chapter 5.2).

In Example 15.5 at page 107 the model gams_model.gms is described in detail.

Additionally, the following settings are valid:
� An ASCII GAMS description file <model>.gdf (see below) has to be supplied to specify the GAMS sub-

models and assigned targets and model variables in detail.
� Maximum dimensionality of any model output variable declared in <model>.mdf is 2 for GAMS models.

Note the following information:
� To output the GAMS model status to SimEnv a

PARAMETER modstat
has to be declared and the statement

modstat = <model_name>.modelstat
has to be incorporated in the GAMS model before the $include <GAMS_model>_simenv_put.inc line.
The variable modstat has to be stated in the model output description file <model>.mdf and the GAMS
description file <model>.gdf.

� Relevant information is output to standard output as well as to the model log file <model>.mlog.

5.5.1 Standard User-Defined Files for GAMS Models
<model>.ini
<model>.ini (see chapter 7.1 at page 37) is for GAMS models a mandatory script and has to have the con-
tents for all GAMS models:

$SE_HOME/gams_model_ini
iexit = $?
if test $iexit = 0
then
additional user-model specific commands can be implemented here
...
fi
exit $iexit

For an experiment restart (check chapter 7.2 at page 39) <model>.ini has to be performed again. To force
this specify in <model>.cfg (check chapter 10.1at page 73) for the sub-keyword restart_ini the value yes.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -25-

<model>.run
<model>.run (see chapter 7.1 at page 37) has for each GAMS model the same contents:

. $SE_HOME/simenv_ini_sh
$SE_HOME/gams_model_run
. $SE_HOME/simenv_end_sh

<model>.end
<model>.end (see chapter 7.1 at page 37) is for GAMS models a mandatory script and has to have the
contents for all GAMS models:

$SE_HOME/gams_model_end

additional user-model specific commends can follow

Python script language is used to prepare, run and to end a GAMS model.

<model>.edf
Corresponding experiment targets in the experiment description file <model>.edf (see chapter 0 at page 29)
and in the GAMS model source code must have same names. In the GAMS model code the targets speci-
fied in the experiment description file have to be of type PARAMETER and have be defined before the in-
clude statement $include simenv_get.inc.

<model>.mdf
Corresponding variables in the model output description file and in the GAMS model source code must have
same names. The variable type has to be always real*4 / float in the model output description file. In GAMS
model code the model variables declared in the model output description file can be of the numeric types
VARIABLES or PARAMETER. Currently, dimensionality of GAMS model output is limited to 0, 1 or 2.

With respect to Example 15.5 the model output description file could look like

coordinate plant descr canning plants
coordinate plant unit plant number
coordinate plant values equidist_end 1(1)2

coordinate market descr canning markets
coordinate market unit market number
coordinate market values equidist_end 1(1)3

variable a descr plant capacity
variable a unit cases
variable a type float
variable a coords plant
variable a var_extents 1:2

variable x descr shipment quantities
variable x unit cases
variable x type float
variable x coords plant , market
variable x var_extents 1:2 , 1:3

variable z descr total transportation costs
variable z unit 10^3 US$
variable z type float

-26- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

variable modstat descr model status
variable modstat type float

Example file: gams_model.mdf

Example 5.3 Model output description file for a GAMS model

5.5.2 GAMS Description File <model>.gdf
The ASCII GAMS description file <model>.gdf is necessary to create for each GAMS submodel a
simenv_get.inc file before the experiment and the simenv_put.inc file for each single simulation run. The file
holds the specific characteristics of GAMS model output needed by SimEnv to generate GAMS put-
statements. All model variables from the model output description file and all targets from the target descrip-
tion file have to be used in this file again.

<model>.gdf is an ASCII file that follows the coding rules in chapter 11 at page 83 with the keywords,
names, sub-keywords, and info as in Tab. 5.1.

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

descr o any <string> GAMS coupling description
model_
directory

m 1 <directory> the directory where GAMS
model(s) are stored

gdf <nil>

delete o any <string> files to delete after perform-
ance of a single run.
<string> is a file mask and
has to contain exactly one
substring “<run_char>”

descr o 1 <string> submodel description
type m 1 [main | sub] identifies GAMS main or

submodel

model

get o any <target_name> get resulting adjustment for
<target_name> in this sub-
model

put o any (<var_name>
{.<suffix_set>}
{(<index_set>)})
{<format>}

put values of GAMS variable
<var_name> from this sub-
model to SimEnv output.
<var_name> has the specified
suffix and index sets and is
output from according to
<format>

submodel_
name
(without
extension
.gms)

change o any <string> appends automatically run
number <run_char> to
<string> in the appropriate
model file to enable exchange
of information across sub-
models by corresponding
files.

Tab. 5.6 Elements of a GAMS description file <model>.gdf

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -27-

To Tab. 5.6 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.
� Each target and each model variable as declared in <model>.edf and <model>.mdf respectively has to

be used in the <info>-field of <model>.gdf exactly one time.
� To each GAMS submodel submodel_name an arbitrary number of targets and model variables can be

assigned to.
� The <info>-field for the <sub-keyword> put is adapted to GAMS syntax to output GAMS model variables.

Afterwards this output is used to generate the appropriate SimEnv output. <index_set> is mandatory for
variables with a dimensionality > 0. Otherwise, specification of <index_set> is forbidden. Indices as used
in the GAMS model are separated from each other by comma.

� Each sub_model in <model>.gdf with at least one get sub-keyword has to have an $include
<sub_model>_simenv_get.inc statement in the corresponding GAMS model file <sub_model>.gms

� Each sub_model in <model>.gdf with at least one put sub-keyword has to have an $include
<sub_model>_simenv_put.inc statement in the corresponding GAMS model file <sub_model>.gms

� There has to be exactly one main GAMS model, identified by <subkeyword> type. All other models have
to be of type sub.

� Sub-keywords delete and change are introduced to enable exchange of information across GAMS sub-
models for a parallel performance of an experiment. For parallel experiments a series of single runs are
performed in parallel. Names of files to exchange information between sub-models have to be identified
in a unique manner by appending the corresponding single run number <run_char> with six digits. While
the delete sub-keyword addresses all these files that have to be deleted after the end of a single run the
change sub-keyword is to modify these file names directly in the GAMS (sub-) models.

With respect to Example 15.5 the GAMS description file could look like

gdf descr GAMS model output description
gdf descr for the examples in the SimEnv
gdf descr User’s Guide
gdf model_directory ./

model gams_model descr this is the only GAMS model to use
model gams_model type main
model gams_model get dem_ny
model gams_model get dem_ch
model gams_model put x.l(i,j):10:5
model gams_model put a(i):10:5
model gams_model put z.l
model gams_model put modstat

If the above model would be coupled to an additional sub-model sub_model, the GAMS description
file could be completed by

gdf delete exchange_file<run_char>.dat
model gams_model change exchange_file
model sub_model descr this is a sub-model
model sub_model type sub
model sub_model change exchange_file

Example file: gams_model.gdf

Example 5.4 GAMS description file <model>.gdf

5.5.3 Files Created during GAMS Model Performance
During experiment performance minutes of the modified GAMS models for single run number 0 and 1 are
stored permanently in the subdirectory gams_minutes of the current experiment working directory. If the
directory gams_minutes does not exist, minutes are not stored without warning.

-28- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Additionally to the files listed in Tab. 10.5, during the performance of a GAMS model the following files are
created temporarily in the current working directory and are deleted after each single simulation run or after
the whole experiment:

� <model_z>_[pre | main | post].inc
� <model_z><run_char>.gms
� <model_z><run_char>.lst
� <model_x>_simget<run_char>.inc
� <model_y>_simput<run_char>.inc
� <var><run_char>.put

where
� <var> is a placeholder a model variable
� <model_z> is a placeholder for the model of type main and all models of type sub
� <model_x> is a placeholder for these models where at least one get-subkeyword is assigned to
� <model_y> is a placeholder for these models where at least one put-subkeyword is assigned to
in the gdf-file.

5.6 Distributed Models
SimEnv supports performance of distributed models. Distributed models may consist from a web or a chain
of stand-alone sub-models, i.e., the model is computed by performing a set of stand-alone binaries. Each of
these stand-alone sub-models can use SimEnv functionality, i.e., simenv_get_*, simenv_get_run_*,
simenv_put_*, or simenv_slice_*. In such sub-models simenv_ini_* and simenv_end_* have to be incorpo-
rated in. Additionally, the corresponding SimEnv model coupling functionality at shell script level
(simenv_*_sh modules) can be applied. The model description file <model>.mdf collects all the state vari-
ables from all sub-models and the experiment description file <model>.edf collects all the targets for all sub-
models.

5.7 Running Coupled Models Outside SimEnv
To run a model coupled to SimEnv outside the simulation environment in its native mode as before code
transformation the following simple rules have to be applied to the model:

� For Fortran and C models:
Link the model with the object library $SE_HOME/libsimenvdummy.a instead of
$SE_HOME/libsimenv.a. SimEnv function values (return codes) from this library are zero, function
simenv_get_* forwards target_val_def to target_val_adj, simenv_get_run_* returns integer run 0 and
character run string ‘ ‘ (six blanks).

� For Python models:
Replace in the model source code

from simenv import *
by

from simenvdummy import *
function values (return codes) from simenvdummy.py are zero, dummy function simenv_get_py forwards
target_val_def to target_val_adj, simenv_get_run_py returns run 000000.

� For GAMS models:
Handle in the model source code

$include <model>_simenv_get.inc
and

$include <model>_simenv_put.inc
as comment lines.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -29-

6 Experiment Preparation
Experiment preparation is the first step in experiment performance of a model coupled to the envi-

ronment. In an experiment description file <model>.edf all information to the selected experiment type and its
numerical equipment is gathered in a structured way.

6.1 Experiment Description File <model>.edf
<model>.edf is an ASCII file that follows the coding rules in chapter 11 at page 83 with the keywords,
names, sub-keywords, and info as in Tab. 6.1.

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

descr o any <string> experiment descriptionedf <nil>
type m 1 [behaviour |

sensitivity |
monte-carlo]

experiment type

descr o 1 <string> target description
unit o 1 <string> target unit
type m 1 see Tab. 6.2 adjustment type
default m 1 <value> target default value

<target_def_val>

target target_
name

adjusts c3 1 <experiment-
specific>

experiment-specific informa-
tion

specific <nil> <experiment-
specific>

m <ex-
peri-
ment-
spe-
cific>

<experiment-
specific>

experiment-specific informa-
tion

Tab. 6.1 Elements of an experiment description file <model>.edf

To Tab. 6.1 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.
� Target names must differ from model variables and coordinate names in the model output description file

(see chapter 5.1) and from built-in and user-defined operator names for model output post-processing
(see chapter 8.6.2).

� A target name is the symbolic parameter / driver / initial value / boundary value name, corresponding to
targets of the investigated model. Correspondence is achieved by applying the SimEnv model coupling
function simenv_get_* in the model.

� The default value as specified in <model>.edf and not the default value from the model code is
used to derive the adjusted value.

� All experiment-specific information is explained in the appropriate chapters.
� Specify at least one experiment target.
� When preparing an experiment an experiment input file <model>.edf_adj is generated with the values to

be finally used for the resulting adjustments. These values are applied to the default values of the tar-
gets according to the specified adjustment type (see Tab. 6.2 below) before finally influencing the dy-
namics of the model. The sequence of elements (columns) of each record of <model>.edf_adj corre-
sponds with the sequence of targets in the target name space (see chapter 11 at page 83), the se-
quence of records corresponds with the sequence of single model runs of the experiment. For each ex-

-30- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

periment a single model run with run number 0 is generated automatically as the nominal run of the
model without adjustments. This run does not have an assigned record in <model>.edf_adj.

Adjustment type Meaning

set value setting:
Use the adjustment to the target default value within the SimEnv function
simenv_get_* as the final adjusted value.
Not available for local sensitivity analysis

add addition:
Add the declared adjustment to the target default value within the SimEnv
function simenv_get_* to get the final adjusted value to use.

multiply multiplication:
Multiply the declared adjustment with the target default value within the
SimEnv function simenv_get_* to get the final adjustment to use.
Differing implementation for local sensitivity analysis (check chapter 6.4.1).

Tab. 6.2 Adjustment types in experiment preparation

6.2 Behavioural Analysis
The experiment-specific information for experiment description files in Tab. 6.1 at page 29 is defined for
behavioural analysis as follows:

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

target target_
name

adjusts a 1 <value_list> value list of target value ad-
justments <adj_val> to apply.
For syntax see Tab. 11.4

specific <nil> comb m 1
or
any

[default |
<combination> |
file {<path>/}
<file_name>]

information how to scan the
spanned target space

Tab. 6.3 Experiment-specific elements of an edf-file for behavioural analysis

To Tab. 6.3 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.
� For <sub-keyword> = comb the following rule yields:

<info> = [default | <combination>] for available <sub-keyword> = adjusts
<info> = [file {<path>/}<file_name>] for unavailable <sub-keyword> = adjusts

� Values of a value list have to be unique for available <sub-keyword> = adjusts and each target
Assigned values from file {<path>/}<file_name> can be multiple defined for each target.

� <path> must not contain environment variables from operating system level.

6.2.1 Adjustments

Adjustment type Set Add Multiply

adjusted target value = <adj_val> <target_def_val> +
<adj_val>

<target_def_val> *
<adj_val>

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -31-

6.2.2 The Combination
� The combination <combination> defines the way in which the space spanned by the experiment targets

will be inspected by SimEnv: This is done by applying operators „*“ and „,“ to all stated experiment tar-
gets.
� The operator „*“ combines adjustments of different targets and so their resulting values combinatori-

ally (“for all mesh points in a grid”).
Compare with experiment description file (a) from Example 6.1 below.

� The operator „,“ combines adjustments of different targets and so their resulting values parallel (“on
the diagonal”).
For the operator „,“ the targets must have the same number of adjustments.
Compare with experiment description file (b) from Example 6.1 below.

� The operator „,“ has a higher priority than the operator „*“. Parentheses are not allowed:
For example, p1 * p2 , p3 * p4 always combines p2 and p3 in parallel and this combinatorially with p1
and p4. A parallel combination of p1 * p2 with p3 * p4 by (p1 * p2) , (p3 * p4) is not possible.
Compare with experiment description file (c) from Example 6.1 below.

� In <combination> each target has to be used exactly once.
� By the default combination default all experiment targets are combined combinatorially.

� comb default of the experiment description file (a) from Example 6.1 below is equivalent to comb p1 *
p2 .

� Specification of file is only allowed for unused adjusts-sub-keywords all over the edf-file.
� The adjustments are read from the adjustment data file {<path>/}<file_name>.
� All targets are assumed to be combined in parallel. Each record of the data file represents one simu-

lation run. The sequence of the adjustments (sequence of columns) in each record corresponds with
the sequence of the targets in the target name space (see chapter 11 at page 83).

� Syntax rules for value lists at page 83 yield.
� Identical adjustments for a target are allowed.
� During model output post-processing restricted capabilities for the operator behav apply for this ex-

periment layout.
� Compare with experiment description file (d) from Example 6.1 below. Combination is implicitly as

comb p1 , p2. Experiment description files (b) and (d) in Example 6.1 below describe the same ex-
periment.

6.2.3 Example

The first three experiment description files (a) to (c) represent an experiment description
according to Fig. 4.1 (a) to (c) at page 11.

Results in values ...
(a) edf descr Experiment description for the examples

edf descr in the SimEnv User’s Guide (Fig. 4.1 (a))
edf type behaviour
target p1 descr parameter p1
target p1 unit without
target p1 type add
target p1 default 1.
target p1 adjusts list 1, 3, 7, 8 ... 2,4,8,9 for p1

target p2 descr parameter p2
target p2 unit without
target p2 type multiply
target p2 default 2.
target p2 adjusts list 1, 2, 3, 4 ... 2,4,6,8 for p2

specific comb default

-32- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

(b) edf descr Fig. 4.1 (b)
edf type behaviour
target p1 type multiply
target p1 default 1.
target p1 adjusts list 1, 3, 7, 8 ... 1,3,7,8 for p1
target p2 type multiply
target p2 default 2.
target p2 adjusts equidist_end 1(0.5)2.5 ... 2,3,4,5 for p2
specific comb p1,p2

(c) edf descr Fig. 4.1 (c)
edf type behaviour
target p1 type set
target p1 default 1.
target p1 adjusts list 1, 3, 7, 8 ... 1,3,7,8 for p1
target p2 type set
target p2 default 2.
target p2 adjusts equidist_end 1(1)4 ... 1,2,3,4 for p2
target p3 type multiply
target p3 default 3.
target p3 adjusts list 1.1, 1.5, 2.4 ... 3.3,4.5,7.2 for p3
specific comb p2,p1*p3

(d) edf type behaviour file world.dat_d:
target p1 type multiply 1 0
target p1 default 1. 3 1
target p2 type add 7 2
target p2 default 2. 8 3
specific comb file world.dat_d ... (1,2),(3,3),(7,4),(8,5)

... for (p1,p2)

Example files: world.edf_a to world.edf_d

Example 6.1 Experiment description file <model>.edf for behavioural analysis

6.2.4 Experiment Performance
� Firstly, a model run 000000 with the default values of the experiment targets is performed.
� According to the keyword comb the appropriate runs are generated.
� The sequence of the runs corresponds with the sequence of the adjustments in the ASCII file

<model>.edf_adj (check chapter 0 at page 29 for more information).

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -33-

6.3 Monte-Carlo Analysis
The experiment-specific information for experiment description files in Tab. 6.1 at page 29 is defined for
Monte-Carlo analysis as follows:

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

adjusts m 1 [<distribution> |
file {<path>/}
<file_name>]

distribution and distribution
parameters to be applied for
the target or
import of an external sample
<distr_val> from <file_name>

target target_
name

sample c4 1 [random |
latin hypercube]

sampling strategy: random or
latin hypercube sampling LHS

specific <nil> runs m 1 <nr_of_runs> number of runs > 10 to be
performed for the experiment

Tab. 6.4 Experiment-specific elements of an edf-file for Monte-Carlo analysis

To Tab. 6.4 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.
� <distribution> = <distr_shortcut> (<distr_param_1> { , <distr_param_2> }) (check Tab. 6.5)
� For implicitly specified distributions according to Tab. 6.5 adjustments are applied to the specified distri-

bution parameters of the distributions. Afterwards, a sample <distr_val> is generated from the distribu-
tion with the adjusted distribution parameters. Adjustment types add and multiply are not applied to the
distribution parameter <distr_param> = standard deviation. Instead, the specified standard deviation
from the experiment description file is used (adjustment type set is applied).

� For explicitly specified samples of any distribution by the ASCII file <file_name> adjustments are applied
directly to the sample values <distr_val> from the file. For syntax rules for files check chapter 11. Each
record of the ASCII file can hold only one sample value. Sample size has to be identical to <nr_of_runs>
from the specific-keyword.

� In random sampling, there is no assurance that sampling points will cover all regions of the selected
distribution. With latin hypercube sampling LHS this shortcoming is reduced: The sampling range of the
target is divided into <nr_of_runs> intervals of equal probability according to the selected distribution and
from each interval exactly one sampling point is drawn. For more information on LHS see Imam & Helton
(1998) and Helton & Davis (2000).

� The number of runs <nr_of_runs> must be greater than 10.

6.3.1 Adjustments

Adjustment type Set Add Multiply

<target_def_val> +
<distr_param>

<target_def_val> *
<distr_param>for distribution:

adjusted distr_param = <distr_param> not for standard deviation
instead, adjustment type “set” is applied

for file:
adjusted target_value = <distr_val> <target_def_val> +

<distr_val>
<target_def_val> *
<distr_val>

-34- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

6.3.2 Distribution Functions and their Parameters

Distribution
function

<distr_
shortcut> <distr_param_1> <distr_param_2> Restriction

uniform U lower boundary upper boundary lower boundary <
upper boundary

normal N mean value variance variance > 0
lognormal L mean value of a

normally distributed
target

variance of a nor-
mally distributed
target

variance > 0

exponential E mean value --- mean value > 0

Tab. 6.5 Probability density functions and their parameters

For more information on the distribution functions see chapter 4.3 and Tab. 4.2.

6.3.3 Example

(e) edf descr Experiment description for the examples
edf descr in the SimEnv User’s Guide
edf type Monte-Carlo

target p2 descr parameter p1
target p2 unit without
target p2 type multiply
target p2 default 2.
target p2 sample latin hypercube
target p2 adjusts distr U(0.5,1.5) p2 is a realization of a uniform distrib.

between 0.5*2 and 1.5*2

target p1 type add
target p1 default 1.
target p1 sample random
target p1 adjusts distr N(0,0.4) p1 is a realization of a normal distribution

with mean = 1+0 and variance = 0.4

target p3 type add
target p3 default 3.
target p3 adjusts file world.dat_e realization of p3 is read from file

world.dat_e and afterwards 3 is added

specific runs 250

Example file: world.edf_e

Example 6.2 Experiment description file <model>.edf for Monte-Carlo analysis

6.3.4 Experiment Performance
� Firstly, a model run 000000 with the default values of the experiment targets is performed which repre-

sents the deterministic case.
� The sequence of the runs corresponds with the sequence of the adjustments in the ASCII file

<model>.edf_adj. <model>.edf_adj is generated from random numbers of the appropriate distributions
U(0,1), N(0,1), L(0,1), and/or E(1). For more information on <model>.edf_adj check chapter 0 at page 29.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -35-

� If the resulting distribution parameters do not fulfil the restrictions in Tab. 6.5 the following adaptations
are applied

Distribution Condition Adaptation

U lower boundary > upper boundary boundaries are interchanged
U lower boundary = upper boundary lower boundary := lower boundary – 0.5

upper boundary := upper boundary + 0.5
E mean < 0 mean := -mean
E mean = 0 mean := abs(model default value) for model default

 value ≠ 0
 1 else

Tab. 6.6 Probability density functions: Distribution parameters - conditions and adaptation

6.4 Local Sensitivity Analysis
The experiment-specific information for experiment description files in Tab. 6.1 at page 29 is defined for
local sensitivity analysis as follows:

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

target target_
name

adjusts f 0

specific <nil> incrs m 1 <value_list> increments <incr_val> for all
targets defined by a value list
For syntax see Tab. 11.4

Tab. 6.7 Experiment-specific elements of an edf-file for local sensitivity analysis

To Tab. 6.4 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.
� Values from the value list must be unique.
� Note that computation of adjusted values in local sensitivity analysis differs from all other experiment

types.

6.4.1 Adjustments

Adjustment type Set Add Multiply

adjusted target value = undefined for this
experiment type

<target_def_val> �
<incr_val>

<target_def_val> *
(1 � <incr_val>)

As an example, the linear sensitivity function (see chapter 4.4 at page 13) is then as follows:

for adjustment A lin =
incr

z(def)incr)z(def ��

for adjustment M lin =
incr*def

z(def)incr))(1*z(def ��

-36- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

6.4.2 Example

(f) edf descr Experiment description for the examples
edf descr in the SimEnv User’s Guide
edf type sensitivity

target p1 descr parameter p1
target p1 unit without
target p1 type add
target p1 default 1.

target p2 type multiply
target p2 default 2.

specific incrs 0.01(0.01)0.05

Example file: world.edf_f

Example 6.3 Experiment description file <model>.edf for local sensitivity analysis

6.4.3 Experiment Performance
� Each experiment target will be adjusted by the same increments as those stated in the incrs info-field
� Adjustment M with the default target value = 0 is indicated during performance of the simulation experi-

ment by a warning message to the file <model>.mlog.
� For finite sensitivity functions several runs have to be performed:

� A nominal run with the default values of the experiment targets (run number 000000)
� Per target and per increment two runs with the default values of all targets except that one under con-

sideration, where the adjustment is applied according to the above adjustment rules
� Accordingly, the number of resulting runs is 2 * number_of_targets * number_of_increments + 1

� Results of each model run are stored and sensitivity functions are applied during model output post-
processing.
The following sensitivity functions can be performed:
Linear, squared, absolute, relative as well as a symmetry test.

� The sequence of the simulation runs are determined in the following manner:
nominal run
loop over increment sequence

loop over experiment targets
adjustment for increment
adjustment for negative increment

end loop
end loop

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -37-

7 Experiment Performance
After experiment preparation experiment performance is the second step in running a model coupled

to SimEnv. Each multi-run experiment can be performed sequentially or in parallel. Besides a new-start of an
experiment a restart after an experiment interrupt or only for an experiment slice can be handled by SimEnv.

7.1 Experiment Start
� Currently an experiment can be performed sequentially on the login-machine and in parallel and/or se-

quential mode in a job class controlled by the LoadLeveler. In parallel mode the single runs of the run
ensemble are distributed to all allocated nodes with their assigned processors. One communication
processor is responsible for experiment management.

� The user can define an experiment preparation shell script <model>.ini that is performed additionally
after standard experiment preparation when starting a new experiment. For experiment restart
<model>.ini is performed only on request (see chapter 7.2 below).
In <model>.ini additional settings / checks can be performed. For return codes unless zero from
<model>.ini the experiment will not be started.). Make sure that <model>.ini has execute permission by
chmod u+x. For Python and GAMS models <model>.ini is a mandatory script with pre-defined contents.
Check chapters 5.3.1 and 5.5.1 for more information.

� The model to be applied within the SimEnv experiment has to be wrapped in the shell script
<model>.run. <model>.run is performed for each single run within the run ensemble.
� Make sure that

� . $SE_HOME/simenv_ini_sh is the first command and
� . $SE_HOME/simenv_end_sh is the last command
in <model>.run (see Tab. 5.5 at page 23 and Example 7.2 below).

� Ensure by chmod u+x that <model>.run has execute permission.
� To cancel the whole experiment after the performance of the current single because of a any condi-

tion of the current single run make sure a file <model>$run_char.err exists as an indicator to stop.
You can create this file in the model or in <model>.run. For the latter
� Perform . $SE_HOME/simenv_get_run_sh to get the current run number <run_int> and

<run_char> (see Tab. 5.5 at page 23 and Example 7.2 below).
� Touch the file <model>$run_char.err.

� Perform in <model>.run $SE_HOME/simenv_*_sh and any executable where coupling functions at
source code level simenv_*_* are used only from the current working directory.

� For GAMS models <model>.run has a pre-defined structure. Check chapter 5.5.1 for more informa-
tion.

� The model variables to be output during experiment performance are declared in the model output de-
scription file <model>.mdf

� The type and the targets of the experiment to be performed are declared in the experiment description
file <model>.edf

� Mapping between experiment targets and targets in the model source code is achieved by application of
the generic SimEnv function simenv_get_* in the model code or at shell script level.

� Output of model variables declared in <model>.mdf into SimEnv structures is achieved by the application
of the generic SimEnv function simenv_put (and simenv_slice) in the model source code or by an appro-
priate, user-written module simenv_put_sh at shell script level.

� Model output from run number <run> is stored in the file <model>.out<run_char>.[nc | ieee] if the sum
over all model output variables of a single run is less than the appropriate value specified in <model>cfg.
Otherwise, model output from the complete experiment is stored in <model>.outall.[nc | ieee].

� For each experiment type a run number 0 with the default values of all experiment targets will be per-
formed additionally to the runs declared in the experiment description file <model>.edf.

� During experiment performance a model log-file <model>.mlog is written where adjustments of experi-
ment target values and possibly workarounds for wrong re-adjustments (only for experiment type Monte-
Carlo analysis, see Tab. 6.6) are stored. All model output to the terminal is re-directed within SimEnv to
the model protocol file <model>.mlog.

-38- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

� During experiment performance an experiment log-file <model>.elog is written with the minutes of the
experiment.

� Do not start and/or submit another experiment from a working directory where an experiment is still run-
ning.

� After the experiment has been finished the model-specific output from the experiment can be wrapped
up with the optional shell script <model>.end.

� After the experiment has been finished an e-mail is send on demand (check chapter 10.1) to the address
as specified in <model>.cfg.

� For more information check Fig. 7.1.

For the shell script world_f.ini the following contents could be defined:

coarse 0.5° x 0.5° land-sea mask from file land_sea_mask.05x05
in the current directory
to a 4° x 4° resoluted land-sea-mask in file land_sea_mask.coarsed
in the current directory to use for all single runs
land_sea_mask 4 4

check return code:
iexit=$?
exit from world_f.ini with return code != 0
as an indicator not to start the experiment
exit $iexit

Example files: world_[f | c | py | sh].ini

Example 7.1 Shell script <model>.ini for user-model specific experiment preparation

For the shell script world_f.run the following contents could be defined:

always perform at begin:
. $SE_HOME/simenv_ini_sh

run the model:
world_f

assuming a model return code != 0 as an indicator to stop
the whole experiment for any reason.
Touch the file below as an indicator to SimEnv for this.
if test $? –ne 0
then

. $SE_HOME/simenv_get_run_sh
touch world_f.$run_char.err

fi

always per at end:
. $SE_HOME/simenv_end_sh

Example file: world_f.run

Example 7.2 Shell script <model>.run to wrap the user model

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -39-

For the shell script world_f.end the following contents could be defined:

remove the file of the coarsed land-sea mask
rm –f land_sea_mask.coarsed

Example file: world_[f | c | py | sh].end

Example 7.3 Shell script <model>.end for user-model specific experiment wrap-up

7.2 Experiment Restart
When an experiment was interrupted / has failed because of any reason or in the case of partial experiment
performance (see chapter 7.3 below) it can be restarted several times:
� Simply restart the experiment by simenv.rst without changing any of the SimEnv files describing the

experiment and/or the model. The only exception may be the information for the experiment-keyword in
the general model configuration file <model>.cfg.

� simenv.rst has the same usage as simenv.run
� Restart can be launched on an other machine / in an other job class than that of the interrupted experi-

ment.
� Dependent on the experiment log-file <model>.elog, written in the interrupted experiment a single model

run from the complete run ensemble in the restart experiment will be
� Performed if this run has neither a start nor a finish information in the elog-file
� Not performed if this run has a start as well as a finish information in the elog file
� Performed anew if the run has a start information but no finish information in the elog-file.

For this case a model restart shell script <model>.rst can be provided by the user optionally to pre-
pare restart of this single model run (e.g., by deleting non-SimEnv temporary or output files). Make
sure that <model>.rst has execute permission by chmod u+x.
Make sure that . $SE_HOME/simenv_ini_sh is the first command in <model>.rst.
After running $SE_HOME/simenv_get_run_sh the shell script variables run_int and run_char are
available in <model>.rst (see above).

� Experiment restart works without standard SimEnv experiment preparation. Instead, experiment prepa-
ration files and other information from the interrupted experiment will be used.

� The optional experiment preparation shell script <model>.ini will be performed only on demand. This
request is specified in the configuration file <model>.cfg with the sub-keyword restart_ini.

� <model>.cfg will be checked anew for experiment restart. Avoid to change information in <model>.cfg
for a restart. The only exception is the information related to the experiment-keyword.

� Minutes of the restarted experiment will be appended to the <model>.mlog and <model>. elog files, re-
spectively from the interrupted experiment.

� Restart can be applied to an experiment several times successively.
� Experiment restart can be performed also as partial experiments, independently on the partial status of

the original model

For the model world_sh (check Example 15.4 at page 105) the following contents could be
defined for the restart script world_sh.rst:

always perform at begin
. $SE_HOME/simenv_ini_sh

get run number
. $SE_HOME/simenv_get_run_sh

remove all files from the temporary directory and the directory itself
if test –d run$run_char
then
 cd run$run_char

-40- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

 rm –f *
 cd ..
 rmdir run$run_char
fi

Example file: world_sh.rst

Example 7.4 Shell script <model>.rst to prepare model performance during experiment restart

7.3 Experiment Partial Performance
� SimEnv enables to perform an experiment partially by performing only a run slice out of the whole run

ensemble.
� Therefor assign appropriate run numbers to the corresponding experiment keywords in <model>.cfg.
� Make sure that begin run number and end run number represent run number from the experiment (in-

cluding run number 0) and that begin run number ≤ end run number.
� A partial experiment performance is also possible for an experiment restart.
� For more information check Fig. 7.1.

7.4 Job Control for Experiment Performance at a Parallel Machine
� For experiment performance controlled by the parallel operating environment POE and the LoadLeveler

make sure that the environment variable SE_HOME is set in your .profile-file correctly.
� On a login node to a parallel machine there is an additional SimEnv dialogue whether the experiment is

to be submitted by POE and the LoadLeveler to a parallel or sequential job class of this parallel machine
or is to be performed locally at the login node.

� Default job control files are supplied by SimEnv to ensure communication with POE and LoadLeveler.
These job control files may be copied to the working directory, can be modified and will then be used in-
stead of the default job control files to start an experiment at a parallel or sequential job class.
If necessary, copy $SE_HOME/simenv.jcf_par and/or $SE_HOME/simenv.jcf_seq to the working di-
rectory SimEnv is started from, modify the file(s) according to the needs of the experiment you want to
perform and / or the machine you want to use and start afterwards simenv.run (or simenv.rst). If avail-
able in the current working directory, these modified job control files are used instead of the original files
in $SE_HOME.
simenv.jcf_seq submits a job to a sequential batch class, simenv.jcf _par to a parallel batch class.

� Default job control files enable automatic restart of the experiment by the LoadLeveler after an interrupt
of the job in a parallel or sequential job class caused by POE, the LoadLeveler or the operating system.
The user does not need to restart the experiment manually after such an event.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -41-

7.5 Experiment-Related User Scripts and Files

Script /
file Explanation Used for

(*)
Exist

status

Scripts (**)

<model>.run model shell script to wrap the model executable
. $SE_HOME/simenv_ini_sh has to be the first command in
<model>.run
. $SE_HOME/simenv_end_sh has to be the last command in
<model>.run
Model coupler functions at shell script level can be applied in
<model>.run
Pre-defined contents for GAMS models
(check chapter 5.4)

S R mandatory

<model>.rst model shell script to prepare single model run restart for such
single runs that were started by not finished during the previ-
ous experiment start / restart
. $SE_HOME/simenv_ini_sh has to be the first command in
<model>.rst
. $SE_HOME/simenv_get_run_sh can be applied in
<model>.rst
(check chapter 5.4)

R optional

<model>.ini model shell script to prepare simulation experiment addition-
ally to standard SimEnv preparation
Experiment will be not performed if return code from this script
is unequal zero.
For experiment re-start <model>.ini will be performed only on
request.

S (R)

optional,
for Python
and GAMS
models
mandatory

<model>.end model shell script to clean up simulation experiment from non-
SimEnv files S R optional

Files

<model>.
<run_char>.
err

touch this file in the model, in <model>.run and/or <model>.rst
as an indicator to stop the complete experiment after single
run <run_char> has been finished

A optional

simenv.jcf_par user-specific job control file to submit an experiment to a par-
allel class by the LoadLeveler
Copy from $SE_HOME on demand

L optional

simenv.jcf_seq user-specific job control file to submit an experiment to a se-
quential class by the LoadLeveler.
Copy from $SE_HOME on demand

L optional

Tab. 7.1 Experiment-related user scripts and files
(*): script applied for
 S: Start of an experiment by $SE_HOME/simenv.run <model>
 R: Restart of an experiment by $SE_HOME/simenv.rst <model>
 file applied for
 L: LoadLeveler experiment submission
 A: All experiment perform. at the login machine or by LoadLeveler submission
(**): make sure the shell script has execute permission by chmod u+x

-42- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Fig. 7.1 Flowcharts for performing simenv.run and simenv.rst
First and last single run always refer to the corresponding settings in <model>.cfg

simenv.run <model> simenv.rst <model>

<model>.run

<model>.end

exists
<model>.<run_char>.err

<run> = last single run

stop

no

no

<run> =
first single run

yes

yes

no

return code = 0
from <model>.ini

<model>.ini

yes

start

<run> =
<run> + 1

single run completed
 in previous experiments

<model>.run

<model>.end

exists
<model>.<run_char>.err

<run> = last single run

stop

no

no

yes

yes

<run> =
 first single run

<model>.rst

single run unfinished
 in previous experiments

yes

no

no

yes

start

<run> =
<run> + 1

return code = 0
from <model>.ini

<model>.ini

restart_ini = yes
in <model>.cfg

no

yes

no

yes

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -43-

7.6 Saving Experiments
To save experiments for later use, e.g., by SimEnv post-processing, make sure to store from the experiment
the following files:
� <mdel>.out[all | <run_char>].[nc | ieee] from the model output directory
� <model>.cfg from the current working directory
� <model>.mdf from the current working directory
� <model>.edf from the current working directory
� <model>.elog (optional) from the current working directory
� <model>:mlog (optional) from the current working directory

-44- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -45-

8 Experiment Post-Processing
Goal of post-processing is to navigate within the model / experiment output space by deriving inter-

actively output functions / data that are to be visualized in experiment evaluation afterwards. Therefor
SimEnv supplies operators that can be applied to model output and reference data. There are built-in basic
and advanced operators and built-in experiment-specific operators. The user can define its own private op-
erators and easily couple them to the post-processor. Operator chains and recursions are possible. Macros
can be defined as abbreviations for operator chains.

8.1 Operands
Operands in expressions can be
� Model output variables (see below)
� Experiment targets
� Constants in integer or real*4 / float notation
� Character strings
� Operators
� Macros (see chapter 8.8)

To each operand (with the exception of character string operands) a
� Dimensionality dim(operand) and

extents ext(operand,i) with i=1,...,dim(operand) and
coordinates coord(operand,i) with i=1,...,dim(operand)
are assigned to. The dimensionality is the number of dimensions, an extent is related to each dimension
and represents the number of elements in that dimension. Extents are always greater than 1. To each
dimension a coordinate is assigned to. Coordinates have a name and from all coordinate values the co-
ordinate is defined for a subset is assigned to the extent of the dimension of the operand.

� Operators transform dimensionality, dimensions, and coordinates of the their non-character operator
arguments into unique dimensionality, dimensions and coordinates of the operator result (see chapter
8.3).

� Operands of dimensionality 0 do not have a coordinate assignment.
� Experiment targets and constants always have a dimensionality of 0.
� Consequently, a post-processor result as a sequence of operators applied to operands also has unique

dimensionality, extents and coordinates.

8.2 Model Output Variables
� A variable of dimensionality n corresponds with a n-dimensional array and is defined at a n-dimensional

grid, spanned up from the coordinate values of the assigned coordinates The complete data field of a
model output variable or parts of it can be addressed in model output post-processing (see below). Di-
mensionality, dimensions and coordinate description of this data field is derived from the model variable
description

� Model output variables are specified in the ASCII model output description file <model>.mdf by their
� Name
� Dimensionality
� Extents
� Coordinate assignment to each dimension (for all of above descriptions see Tab. 5.1 at page 16)
� Data type (see Tab. 5.2 at page 17).
� Use simenv.chk to check variables description in model output description file <model>.mdf

� Addressing of model output data fields or parts of it is done in model output post-processing by corre-
sponding model output variables names.

� For variables with a dimensionality greater than 0 it is possible to address only a part of the whole vari-
able field by

-46- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

� Specifying for a dimension an index range by
i = index_value_1 { : index_value_2 }
index_value_1 ≤ index_value_2
index_value_2 = index_value_1 if index_value_2 is missing.
i= stands for index addressing

� Specifying for a dimension an coordinate range by
c = coordinate_value_1 { : coordinate_value_2 }
coordinate_value_1 ≤ coordinate_value_2 for strictly increasing coordinate values
coordinate_value_1 ≥ coordinate_value_2 for strictly decreasing coordinate values
coordinate_value_1 = coordinate_value_2 if coordinate_value_2 is missing
c= stands for coordinate addressing

� Index and coordinate ranges are separated from each other by a comma, the sequence of ranges
for all dimensions is enclosed in brackets and is appended after the variable name.
For one variable c= and i= can be used in mixed mode for different dimensions.
* denotes the complete range of a dimension.
c= * is identical to i= * is identical to *

� In the general SimEnv configuration file <model>.cfg (see chapter 10.1 at page 73) a global default
for index and/or coordinate addressing is established for the whole post-processing session. This
global default can be overwritten locally by using c= and/or i=.

Having a model variable definition as in Example 5.1 at page 18 then in model output
post-processing

atmo and
atmo(*,*,*,*) and
atmo(c=*,*,i=*,*) and
atmo(c=88:-88,c=-178:178,c=1:16,c=1:20) and
atmo(i=1:45,i=1:90,i=1:4,i=1:20) and
atmo(i=1:45,c=-178:178,*,*) and
atmo(1:45,1:90,1:4,1:20) and (with address_default = index in model.cfg)
atmo(1:45,c=-178:178,1:4,1:20) and (with address_default = index in model.cfg)

all address all 45*90*4*20 values and
the following holds true for this addressed variable:
Dimensionality = 4
Coordinates = lat , lon , level , time
Extents = 45 , 90 , 4 , 20

atmo(*,*,*,c=11:20) addresses all values of last 10 decades
Dimensionality = 4
Coordinates = lat , lon , level , time
Extents = 45 , 90 , 4 , 10

atmo(*,*,c=1,c=1) addresses all values of the first decade for level 1
Dimensionality = 2
Coordinates = lat , lon
Extents = 45 , 90

atmo(c=0,*,1,i=20) addresses all values of level 1for the last decade at
equator
Dimensionality = 1
Coordinates = lon
Extents = 90

atmo(i=23,*,1,i=20) addresses all values of level 1for the last decade at
equator
Dimensionality = 1
Coordinates = lon
Extents = 90

atmo(c=0,c=2,c=1,c=20) addresses the value for the last decade at
(lat,lon,level,time) = (0°,2°,1,20)
Dimensionality = 0

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -47-

Coordinates = (without)
Extents = (without)

atmo(c=0,c=1:9,c=1,c=20) addresses the values for the last decade at
(lat,lon,level,time) = (0°,2°,1,20) and (0°,6°,1,20)
Dimensionality = 1
Coordinates = lon
Extents = 2

atmo(c=0,c=1,c=1,c=20) error in addressing: c=1 for lon does not exist

Example file: world.post_bas

Example 8.1 Addressing model output variables in model output post-processing

8.3 Operators
� Operators transform dimensionality, dimensions, and coordinates of the their non-character operator

arguments into unique dimensionality, dimensions and coordinates of the operator result.
There are
� Multi-argument operators that demand a certain relation between dimensionalities, dimensions and

coordinates of their arguments
� Single-argument operators that replicate dimensionality, dimensions and coordinates from the only

argument to the operator result
� Operators that increase dimensionality of the operator result and assign new coordinates to the ad-

ditional dimensions (check Tab. 8.1 below) or form new coordinates from resulting target adjust-
ments (see chapter 8.5.1 for behavioural analysis).

� SimEnv post-processing operators may have two special types of arguments:
� Character arguments:

Only character strings enclosed in ‘ ‘ are valid as arguments. Some built-in operators (e.g., count)
have a pre-defined set of valid character argument strings (e.g., for operator count strings all, def,
and undef)

� Integer or float constant arguments:
Only constants in appropriate format are valid as arguments. Model variables of dimensionality 0
(e.g., over) or general operands with dimensionality 0 (e.g., over+345) are invalid.

� If defined, character and constant arguments are always the first arguments of an operator. If both
argument types are defined for an operator then the sequence is character arguments followed by
constant arguments.

� Operators are generic with respect to the data types of their operands: Each non-character argument
can be used with operands of all defined data types (see chapter 5.1). Internally, arguments of any type
are converted to real*4 / float representation. This may lead to undefined real*8 arguments in real*4 rep-
resentation.

� Results of SimEnv post-processing operators are always of the type real*4 / float.
� SimEnv post-processing follows the standard approach for description of operators for basic as well as

advanced built-in or user-defined operators.
� Advanced built-in or user-defined operators

� Have a unique name and a number of operands
� The sequence of operands is enclosed in parentheses directly after the operator name
� Operands are separated by a comma.
� Recursions of the same operator (also for user-defined operators) are possible:

log10(min_n(3 , min_n(log10(atmo(*,*,1,c=20)) , 400) , 10*over))
� Elemental operators use the common form of notation:

glob + 345

-48- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Coordinate
name

Coordinate values
(check Tab. 11.4 for syntax) Operators

bin equidist_end 1(1) number_of_bins hgr, hgr_l, hgr_e
index equidist_end 1(1) operator_dependent minprop, maxprop,

minprop_l, maxprop_l
run equidist_end 1(1) number_of_runs ens
stat_measure equidist_end 1(1)10 stat

Tab. 8.1 Additional coordinates

8.3.1 Operands and Coordinate Checking
The requirement for a lot of operators that their arguments must have same coordinates for same dimen-
sions may restrict application of post-processing especially for hypothesis check heavily. To enable a
broader flexibility with respect to this situation a general solution is provided by SimEnv post-processing:
With the sub-keyword coord_check in the general configuration file <model>.cfg three different modi can be
assigned globally to SimEnv post-processing:
� coord_check = strong

To ensure for two arguments with same dimensionalities and extents to have same coordinates it is
necessary that
� Assigned coordinate values for corresponding dimensions are unique
� Assigned coordinate names for corresponding dimensions are unique
coord_check = strong is the default

� coord_check = weak
To ensure for two arguments with same dimensionalities and extents to have same coordinates it is
necessary that
� Assigned coordinate values for corresponding dimensions are unique
� Assigned coordinate names may differ.
Coordinate description of an appropriate operator result dimension is delivered from the first operand.

� coord_check = without
To ensure for two arguments with same dimensionalities and extents to have same coordinates
� Neither coordinate names nor coordinate values for corresponding dimensions are checked
Coordinate description of an appropriate operator result dimension is delivered from the first operand.

Check Example 8.2 for some instances.

Having a model variable definition as in Example 5.1 at page 18 then the checking rules
for coordinates are applied in the following manner to operands with dimensionality 1:

Same coordinates for
<coord_check> =Expression

strong weak without
bios(*,*,*) + atmo(c=84:-56,*,c=1,*)
(same coordinate names, same coordinate values) yes yes yes
glob(*) + hgr(20,atmo)
(differing coordinate names, same coordinate values) no yes yes
glob(c=10:20) + glob(c=6:16)
(same coordinate names, differing coordinate values) no no yes
glob(c=20) + atmo(c=0,c=2,c=1,c=1)
(two operands with dimensionality 0) yes yes yes

While determination of coordinate information is unique for <coord_check> = strong,
coordinate information is delivered from the first summand for <coord_check> = [weak | without].

Example 8.2 Checking rules for coordinates

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -49-

8.4 Built-in Elemental, Basic, and Advanced Operators

8.4.1 Built-in Elemental Operators

Name Meaning
Argument

restriction(s) /
result description

(see Tab. 8.3)

Argument
value

restriction
Precedence

(left parenthesis - first
) right parenthesis - first
arg1 ** arg2 exponentiation (2) arg1 > 0 second
arg1 * arg2 multiplication (2) third
arg1 / arg2 division (2) arg2 ≠ 0 third
arg1 + arg2 addition (dyadic +) (2) fourth
arg1 – arg2 subtraction (dyadic -) (2) fourth
+ arg identity (monadic +) (1) fourth
– arg negation (monadic -) (1) fourth

Tab. 8.2 Built-in elemental operators

� n-dimensional matrix algebra of built-in elemental operators is performed element by element
Example:
atmo(*,*,1,*) * bios(*,*,*) = “atmo(i,j,1,k) * bios(i,j,k)” for all addressed (i,j,k)

� If an argument value restriction is not fulfilled for an operand element the corresponding element of the
operator result is undefined.

Argument
restriction(s) /

result
description

Argument restriction(s) Result description
(check chapter 8.1 for syntax)

(1)
dimensionality, extents and coordinates of the
only non-character argument arg can be arbi-
trary

same dimensionality, extents and
coordinates as the only non-character
argument:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j

(2.1) all non-character arguments with same dimen-
sionality, extents and coordinates (*) arg

same dimensionality, extents and
coordinates as all the non-character
arguments:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j(2)

=
(2.1)

or
(2.2)

(2.2)

some non-character arguments with same non-
zero dimensionality, extents and coordinates (*)
arg, all the other non-character arguments with
dimensionality zero

same dimensionality, extents and
coordinates as all the non-character
arguments with non-zero dimension-
ality:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j
the zero-dimensional argument is
applied to each element of the non-
zero dimensional argument

(3) dimensionality, extents and coordinates of the
only non-character argument can be arbitrary

dimensionality 0:
dim(res) = 0

-50- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Argument
restriction(s) /

result
description

Argument restriction(s) Result description
(check chapter 8.1 for syntax)

(4.1) all non-character arguments with same dimen-
sionality, extents and coordinates (*)

dimensionality 0:
dim(res) = 0(4)

=
(4.1)

or
(4.2)

(4.2)

some non-character arguments with same non-
zero dimensionality, extents and coordinates
(*), all the other non-character arguments with
dimensionality zero

dimensionality 0:
dim(res) = 0
the zero-dimensional argument is
applied to each element of the non-
zero dimensional argument

(5)

dimensionality, extents and coordinates of the
first non-character argument arg can be arbi-
trary, all the other character arguments have to
have dimensionalities, extents and coordinates
(*) of this argument or have to have dimension-
ality 0

same dimensionality, extents and
coordinates as the first non-character
argument:
dim(res) = dim(arg)
ext(res,j) = ext(arg,j) for all j
coord(res,j) = coord(arg,j) for all j

(6) without arguments dimensionality 0:
dim(res) = 0

Tab. 8.3 Classified argument restriction(s) / result description
(*): for the different levels of checking a coordinate description see chapter 8.3.1

8.4.2 Built-in Basic and Advanced Operators

Name Meaning
Argument

restriction(s) /
result description

(see Tab. 8.3)

Argument
value

restriction
Example

Basic operators

abs(arg) absolute value (1) abs(-3) = 3.

dim(arg1,arg2) positive difference (2) dim(10,5) = 5.
dim(5,10) = 0.

exp(arg) exponentiation (1) exp(1.) = 2.7183

int(arg) truncation value (1) int(7.6) = 7.
int(-7.6) = -7

log(arg) natural logarithm (1) arg > 0 log(2.7183) = 1.
log10(arg) decade logarithm (1) arg > 0 log10(10) = 1.
mod(arg1,arg2) remainder (2) arg2 ≠ 0 mod(10,4) = 2.
nint(arg) round value (1) nint(7.6) = 8.

sign(arg) sign of value (1) sign(-3) = -1.
sign(0) = 0.

sqrt(arg) square root (1) arg ≥ 0 sqrt(4) = 2.

Trigonometric operators

sin(arg) sine (1) sin(0) = 0.
cos(arg) cosine (1) cos(0) = 1.
tan(arg) tangent (1) arg ≠ π/2±n*π tan(0) = 0.
cot(arg) cotangent (1) arg ≠ ±n*π cot(1.5708) = 0.
asin(arg) arc sine (1) abs(arg) ≤ 1 asin(0) = 0.
acos(arg) arc cosine (1) abs(arg) ≤ 1 acos(1) = 0.
atan(arg) arc tangent (1) atan(0) = 0.
acot(arg) arc cotangent (1) acot(0) = 1.5708
sinh(arg) hyperbolic sine (1) sinh(0) = 0.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -51-

Name Meaning
Argument

restriction(s) /
result description

(see Tab. 8.3)

Argument
value

restriction
Example

cosh(arg) hyperbolic cosine (1) cosh(0) = 1.
tanh(arg) hyperbolic tangent (1) tanh(0) = 0.
coth(arg) hyperbolic cotangent (1) arg ≠ 0 coth(3.1416) = 1.

Miscellaneous operators

classify
(arg1,arg2)

classify arg2 into arg1
classes

(1)
dim(arg2) > 0
arg1 = number of classes
 2 ≤ arg1 ≤ number_of_values
 of arg2
 = 0: automatic determination:
 number of classes =
 max(2,number_of_values/10)
 integer constant argument

classify(
(10,atmo)

clip(arg1,arg2) clip arg2 according to
arg1

dim(arg2) > 0
dim(res), ext(res,i) depend on arg1
and arg2
arg1 = clip range
 character argument

clip(
’0,*,1,10’,
atmo)

cumul(arg1,arg2) cumulates arg2 accord-
ing to arg1

(1)
dim(arg2) > 0
arg1 = cumulation indicator
 per dimension
 character argument

cumul(‘0001’,
atmo)

experiment
(arg1,arg2,arg3)

include an other experi-
ment

(1)
arg1 = experiment directory
 character argument
arg2 = model experimented with
 character argument
arg3 = result from this experiment

experiment(
‘mod_res’,’mod’,
avg(atmo)-400.)

flip(arg1,arg2) flips arg2 according to
arg1

(1), but coordinates is also flipped
dim(arg2) > 0
arg1 = flip indicator per dimension
 character argument

flip(‘0001’,
atmo)

if(arg1,
arg2,arg3,arg4) conditional if-construct

(5)
arg1 = comparison operator
 character argument
arg2 = comparator
arg3, arg4 = new assignments

if(‘<’,atmo,400,
atmo)

mask
(arg1,arg2,arg3)

masks values (set them
undefined) by comparing
arg2 and arg3 using op-
erator arg1

(5)
arg1 = comparison operator
 character argument

mask(‘<’,atmo,
400)

matmul
(arg1,arg2) matrix multiplication

dim(arg1) = dim(arg2) = dim(res)
 = 2
ext(res,i) according to matrix multi-
plication rules

nr_of_runs number of single runs in
the experiment (6) nr_of_runs()

rank(arg1,arg2)
assigns rank numbers to
arg2 according to ranking
type argument arg1

(1)
dim(arg2) > 0
arg1 = ranking type
 [tie_plain | tie_min | tie_avg]

rank(‘tie_avg’,
atmo)

-52- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Name Meaning
Argument

restriction(s) /
result description

(see Tab. 8.3)

Argument
value

restriction
Example

run(arg1,arg2)

values of arg 2 for the
selected single run
number explicitly or im-
plicitly coded in arg1

(1)
arg1 = run number selection

= 0 for default run
 (all experiment types)
= <run_number>
 (for Monte-Carlo analysis,
 0 ≤ arg1 ≤ number_of_runs)
= selection/aggregation
 scheme
 (for behav. analysis,
 see operator behav in
 chapter 8.5.1)
character argument

run(‘0’,atmo)
run(‘sel_t(p1(4))
’,atmo)

table_fct
(arg1,arg2)

table function with linear
interpolation of table arg1
applied to arg2

(1)
arg1 = file name
 character argument

table_fct
('table.usr',
atmo)

transpose
(arg1,arg2)

transpose arg2 according
to sequence in arg1

dim(arg2) > 1
dim(res) = dim(arg2)
ext(res,i) = ext(arg2,j) (re-sorted)
arg1 = transpose sequence
 character argument

transpose
(‘3142’,atmo)

undef() undefined value (6) undef()

Tab. 8.4 Built-in advanced operators (without standard aggregation / moments operators)

The following explanations yield for the operators in Tab. 8.4:
� All operators but experiment and matmul are applied to each element of the argument(s). These

operators deal with an unfulfilled argument value restriction for an operand element in a way that the cor-
responding element of the operator result will be undefined.

� The operator classify transforms an operand arg2 that has dimensionality > 0 into arg1 classes 1 ,...,
arg1. Classes are assumed to be equidistant. Lower boundary of the dynamics range from arg2 as-
signed to class number 1 is the minimum of all values of arg2, upper boundary assigned to class number
arg1 is the maximum of all values of arg2.

� The operator clip clips an operand that has dimensionality > 0. The portion to clip from the operand
arg2 is described by character argument arg1. Argument arg1 uses syntax for model output variable ad-
dressing (see chapter 8.1 at page 45). Note, that for all dimensions of argument arg2 lower bound index
is 1. This applies also to model variables where the lower bound index is unequal 1 in the model output
description file. In general, extents differ between the result of the operator clip and the argument arg2.
Clip reduces the dimensionality of the result with respect to the argument arg2 to clip if the portion to be
clipped is limited to one value for at least one dimension.
A character argument arg1 = ‘*,*,...’ results for operator clip in the identity of argument arg2.

� The operator cumul cumulates an operand that has dimensionality > 0. Cumulation is performed for all
values of the argument arg2 from the first addressed index position up to the current index position. With
the character argument arg1 these dimensions are identified that are to be cumulated. Character 1 at
position i means cumulation across dimension i while a 0 stands for no accumulation. cumul(‘0...0’,arg)
results in the identity to arg.

� The operator experiment is to access to external SimEnv model output from the same or an other
model performed with the same or another experiment type and stored in the same or in an other model
output format. Model variables can differ from that used for the current model. Use for the experiment di-
rectory arg1 always that working directory the external experiment was started from. The external ex-
periment is always post-processed completely over all single runs. Environment variables from operating
system level in the specification of the directory are not allowed. If the imported expression has same
coordinate names as defined in the original experiment coordinate descriptions are checked against

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -53-

each other, otherwise coordinate descriptions are imported from the external into the original experi-
ment.
Attention: Make sure no SimEnv service is running from the experiment directory arg1.

� The operator flip enables flipping of variable fields. For a one-dimensional field (a vector) flip changes
the value of the first index position with the value of the last position, the value of the second position
with that of the last but one position, etc. With the character argument arg1 these dimensions are identi-
fied that are due to flip. Character 1 at position i means flipping also for dimension i while a 0 stands for
no flipping at this dimension. Flipping includes adaptation of coordinates and the assigned grid. cu-
mul(‘0...0’,arg) results in the identity to arg.

� The operator if supplies a general conditional if-construct. It operates for each element of the operand
arg2 in the following way:

if (condition(arg1,arg2)) then
res=arg3

else
res=arg4

endif
with condition(arg1,arg2): arg2 < 0 (arg1 = ‘<’)

arg2 ≤ 0 (arg1 = ‘<=’)
arg2 > 0 (arg1 = ‘>’)
arg2 ≥ 0 (arg1 = ‘>=’)
arg2 = 0 (arg1 = ‘=’)
arg2 != 0 (arg1 = ‘!=’)
arg2 def (arg1 = ‘def’)
arg2 undef (arg1 = ‘undef’)

� The operator mask supplies a method to mask values. It operates for each element of the operand arg2
in the following way:

if (condition(arg1,arg2,arg3)) then
res=undef()

else
res=arg2

endif
with condition(arg1,arg2,arg3): arg2 < arg3 (arg1 = ‘<’)

arg2 ≤ arg3 (arg1 = ‘<=’)
arg2 > arg3 (arg1 = ‘>’)
arg2 ≥ arg3 (arg1 = ‘>=’)
arg2 = arg3 (arg1 = ‘=’)
arg2 != arg3 (arg1 = ‘!=’)

� The operator matmul performs a simple matrix multiplication for 2-dimensional arguments arg1 and
arg2.

� The operator nr_of_runs returns the number of performed single runs of the current post-processed
experiment without the run number 0 of the nominal constellation. It does not have an argument.

� The operator rank transforms all values of an operand arg2 that has dimensionality > 0 into their ranks.
Small values get low ranks, large values get high ranks. Character argument arg1 determines how to
rank ties, i.e., values of arg2 that are identical or have a maximum absolute difference of 1.e-6:
Assume an argument arg2 with 6 values (4., 2., 4., 4., 4., 8.).

arg1 = ‘tie_plain’ returns ranks (2 , 1 , 2 , 2 , 2 , 3)
same minimal rank 2; next rank is 3,
does not take into account the number of identical values

arg1 = ‘tie_min’ returns ranks (2 , 1 , 2 , 2 , 2 , 6)
same minimal rank 2; next rank is 6,
taking into account the number of identical values

arg1 = ‘tie_max’ returns ranks (3.5 , 1 , 3.5 , 3.5 , 3.5 , 6)
same average rank 3.5; next rank is 6,
taking into account number of identical values

� The operator run selects a single run from the run ensemble. The operator run must not contain ex-
periment-specific (multi-run) operators as operands, while these operators may refer to the operator run.
Additionally, run must not contain itself as an argument.
Character argument arg1 can hold explicitly the run number string Monte-Carlo analysis. Run number 0
corresponds with the default single run 0 and is permitted as arg1 for all experiment types. For behav-

-54- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

ioural analysis a selection / aggregation scheme of the operator behav (see chapter 8.5.1) is applied as
arg1 to select a unique run number unequal zero. For this purpose, a single run can be selected by the
select-operator (check Tab. 8.11) of the operator behav. For Monte-Carlo analysis, single runs with a
run number unequal zero are selected explicitly. Therefore, the file <model>.edf_adj holds the targets to
be adjusted to the default values for the current experiment. Run number n corresponds with record
number n of this file. For more information on <model>.edf_adj check chapter 6.1 at page 29. For exam-
ples see Example 8.4 and Example 8.5.

� With the operator table_fct a table function arg1 is applied to each element of the operand arg2. If nec-
essary, table values are interpolated linearly. Outside the definition range of the table function the first
and/or the last table value is used. File arg1 to hold the table function must be an ASCII file with two col-
umns: The first column of each line is the argument value x, the second column the function value f(x).
Arguments have to be ordered in a strictly increasing manner. Syntax rules for comments and separa-
tors in the table function file are the same as for user defined files (check chapter 11.2). Environment
variables from operating system level in the specification of the file name arg1 are not allowed. Check
the table function world.dat_tab in the examples directory of $SE_HOME for more information.

� The operator transpose enables to transpose an operand that has a dimensionality > 1. Sequence of
extents of the transposed result is described by character argument 1: It consists of figures 1 , ...,
dim(arg2) where the figure sequence corresponds with the re-ordered sequence of the operator result
extents.
A character argument arg1 = ‘123...’ results for operator transpose in the identity of argument arg2.

� The operator undef supplies a 0-dimensional result as undefined. This operator can be used in the if-
operator.

Generic
aggregation and
moment operator

Meaning

min minimum of values
max maximum of values
sum sum of values
avg linear mean of values
var variance of values
avgg geometric mean of values
avgh harmonic mean of values
avgw weighted mean of values
hgr histogram of values
count number of values
minprop minimal, suffix related property of values
maxprop maximal, suffix related property of values

Tab. 8.5 Built-in generic standard aggregation / moment operators

The generic operators in Tab. 8.5 can be applied during model output post-processing to derive aggrega-
tions and moments from operands in different ways by appending suffixes to the generic operator name:
� Appending no suffix:

Aggregate the only non-character argument(s)
Result is a scalar (an operator result of dimensionality zero) for all but operators hgr, minprop and max-
prop.
For operator hgr dimensionality of the result is 1, the extent is the specified number of bins for the histo-
gram and the coordinate assigned has the name bin. Coordinate values are equidistant with 1 as the
first value and an increment of 1.
For operators minprop and maxprop dimensionality of the result is 1. For argument dimensionality
greater / equal 1 extent of the result is equal to the argument dimensionality. Assigned coordinate name
is index. Coordinate values are equidistant with 1 as the first value and an increment of 1. For argument
dimensionality 0 result dimensionality is 0.

� Appending suffix _n (for n arguments)

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -55-

Aggregate an arbitrary number of arguments with argument restriction(s) / result description according to
(2) in Tab. 8.3 at page 50 element by element
Currently, only operators min_n and max_n are implemented.
Result has same dimensionality, extents and coordinates as the arguments

� Appending suffix _l (for loop)
Aggregate the only non-character argument(s) separately for selected dimensions. Dimensions to select
are described by an additional loop character argument (corresponds with the group by-clause of the
standard query language SQL of relational database management systems).
Result has a lower dimensionality as the only non-character argument according to the loop character
argument.
For operator hgr_l, dimensionality is increased additionally by one, the additional extent is the specified
number of bins for the histogram and the additional coordinate assigned to has the name bin. Coordi-
nate values are equidistant with 1 as the first value and an increment of 1.

For operators minprop_l and maxprop_l dimensionality is modified in the same manner like for operators
minprop and maxprop, respectively.

Aggregation and
moment operator

Argument restriction(s) /
result description (see Tab. 8.3)

min(arg)
max(arg)
sum(arg)
avg(arg)
var(arg)
avgg(arg)
avgh(arg)

(3)

avgw(arg1,arg2) (4.1)
arg2 = weight

hgr(arg1,arg2) dim(res) = dim(arg2)+1
ext(res,dim(res)) = number of bins
coord(res,dim(res))= name = bin

 values = equidist_end 1(1) number of bins
arg1 = number of bins: 4 ≤ arg1 ≤ number_of_values or

= 0: automatic determination:
 number of bins = max(4,number_of_values/10)
integer constant

count(arg1,arg2) (3)
arg1 = character argument

= [all | def | undef]
minprop(arg)

maxprop(arg)

dim(res) = 1 for dim(arg) > 1
ext(res,1) = dim(arg)
dim(res) = 0 else
returns the index of that element of arg where the extreme is reached the first
time according to the processing sequence of the argument field arg by the
Fortran column-wise storage model.

Tab. 8.6 Built-in standard aggregation / moment operators without suffix

Aggregation and
moment operator

Argument restriction(s) /
result description (see Tab. 8.3)

min_n(arg1,...,argn)
max_n(arg1,...,argn) (4)

minprop_n(arg1,...,argn)

maxprop_n(arg1,...,argn)

(4)
returns per result element the argument position (1 ... n) where the extreme is
reached the first time. Processing sequence starts with arg1.

Tab. 8.7 Built-in standard aggregation / moment operators with suffix _n

-56- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Aggregation and
moment operator

Argument restriction(s) /
result description

min_l(arg1,arg2)
max_l(arg1,arg2)
sum_l(arg1,arg2)
avg_l(arg1,arg2)
var_l(arg1,arg2)
avgg_l(arg1,arg2)
avgh_l(arg1,arg2)
avgw_l(arg1,arg2,arg3) dim(arg2) = dim(arg3)

ext(arg2,i) = ext(arg3,i)
arg3 = weight

hgr_l(arg1,arg2,arg3) dim(res) = 1 + dim(res)
 of all other operators

ext(res,dim(res)) = number of bins
coord(res,dim(res)) = name = bin

 values = equidist_end
 1(1) number of bins

arg2 number of bins
4 ≤ arg1 ≤ number_of_values
or
0: automatic determination =
 max(4,number_of_values/10)
integer constant

count_l(arg1,arg2,arg3)

dim(non-character argument(s))
> 1

ext(non-character argument(s))
= arbitrary

dim(res), ext(res,i) according to
arg1 and the non-character argu-
ment(s)
arg1 = loop character argument

arg2 = [all | def | undef]
character argument

minprop_l(arg1,arg2)
maxprop_l(arg1,arg2)

as above, but:
dim(res) is increased by 1 w.r.t.
above.
ext(res,dim(res)) = dim(arg1)
coord(res,dim(res)): name = index

 values =
 equidist_end 1(1)”n”

returns the indices of those elements of
arg2 where the extreme is reached the first
time according to arg1 and to a Fortran-like
(column-wise) processing sequence of the
argument field arg2.

Tab. 8.8 Built-in standard aggregation / moment operators with suffix _l

The loop character argument is characterised as follows:
� The length of the string is equal to the dimensionality of the non-character argument
� The string consists of 0 and 1
� 0 at position n means: aggregate over the corresponding dimension n of the argument
� 1 at position n means: do not aggregate over the corresponding dimension n of the argument
� Loop character arguments completely formed of 0 or 1 are forbidden

For the operator hgr_l bins are determined on the base of the minimum and maximum value of the total ar-
gument arg2.

Having a model variable definition as in Example 5.1 at page 18 and
assuming address_default=coordinate in <model>.cfg then in model output post-processing

glob value of variable glob
Dimensionality = 1
Coordinates = time
Extents = 20

if(‘<’,atmo-10,10,atmo) maximum from atmo and 10 for each element of atmo
equivalent with max_n(atmo,10)
Dimensionality = 4
Coordinates = lat , lon , level , time
Extents = 45 , 90 , 4 , 20

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -57-

clip(’i=23,*,1,19:20’,atmo) last two decades for level 1 at equator
equivalent with atmo(i=23,*,1,19:20)
Dimensionality = 2
Coordinates = lon , time
Extents = 90 , 2

avg(atmo(*,*,*,19:20)) global all-level average over the last two decades
Dimensionality = 0
Coordinates = (without)
Extents = (without)

maxprop(atmo) indices of this element of atmo where the maximum of atmo
is reached the first time
Dimensionality = 1
Coordinates = index
Extents=4

min_n(atmo(84:-56,*,1,19:20),10.)
minimum per grid cell for level 1 without polar regions
for the last two decades from atmo and 10
Dimensionality = 3
Coordinates = lat , lon , time
Extents = 36 , 90 , 2

min_l(‘10’,atmo(20:-20,*,1,20))
zonal tropical level-1 minima of atmo for the last decade
Dimensionality = 1
Coordinates = lat
Extents = 11

minprop_l(‘10’,atmo(20:-20,*,1,20))
zonal tropical level-1 indices of those elements of
atmo for the last decade where the minimum is reached
the first time
Dimensionality = 2
Coordinates = lat , index
Extents = 11 , 2

hgr_l(‘10’,8,atmo(20:-20,*,1,20))
zonal tropic. level-1 histograms with 8 bins for the last dec.
Dimensionality = 2
Coordinates = lat , bin
Extents = 11, 8

avg_l(‘100’,min_l(‘1011’,atmo(20:-20,*,*,*)))
temporally averaged all-level zonal tropical minima
Dimensionality = 1
Coordinates = lat
Extents = 11

table_fct(‘world.dat_tab’,atmo)
Operator table_fct with table world.dat_tab applied to
each element of atmo
Dimensionality = 4
Coordinates = lat , lon , level , time
Extents = 45 , 90 , 4, 20

atmo - experiment(‘./other_dir’,’other_model’,atmo)
Difference for atmo between the current experiment and
another model other_model, located in directory ./other_dir
Dimensionality = 4
Coordinates = lat , lon , level , time
Extents = according to definition of atmo in other_model

Example file: world.post_adv

Example 8.3 Post-processing with advanced operators

-58- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

8.5 Experiment-Specific Operators
� Experiment-specific operators are to navigate and process in the experiment space.
� Experiment specific operators must not be applied recursively.
� Addressing a variable within an experiment specific operator normally results in application of the op-

erator on the whole run ensemble or parts of it and in aggregating across the run ensemble according to
the operator.

� Addressing a variable outside an experiment specific operator results in application of the basic, ad-
vanced and/or user-defined operator on the variable for the default run number 0 of the experiment.

� If the dimensionality of an operator result is higher than that of one of its operands the additional dimen-
sions of the result are appended to the dimensions of the operand. Examples for such operators are ens
(for Monte-Carlo analysis post-processing) and behav (for certain constellations of behavioural analysis
post-processing).

Tab. 8.9 summarises multi-run standard aggregation / moment operators. They work on the whole run en-
semble (for Monte-Carlo analysis) or parts of it (for certain constellations of behavioural analysis post-
processing). They are used with suffix _e for Monte-Carlo analysis and without suffix for behavioural analy-
sis.

Aggregation and
moment operator

Argument restriction(s) /
result description (see Tab. 8.3)

min(arg)
max(arg)
sum(arg)
avg(arg)
var(arg)
avgg(arg)
avgh(arg)

(1)

avgw(arg1,arg2) (2.1)
arg2 = weight

hgr(arg1,arg2)

(heuristic probability
density function)

dim(res) =dim(arg2)+1
ext(res,dim(res)) = number of bins
coord(res,dim(res))= name = bin

 values = equidist_end 1(1) number of bins
arg1 = number of bins

 4 ≤ arg1 ≤ number_of_runs or
 0: automatic determination = max(4,number_of_runs/10)
integer constant

count(arg1,arg2) (1)
arg1 = [all | def | undef]

character argument
minprop(arg)
maxprop(arg)

(1)
returns the run number where the extreme is reached the first time.
Processing sequence starts with run number 1.

Tab. 8.9 Multi-run standard aggregation / moment operators

8.5.1 Behavioural Analysis
There is only one experiment specific operator for behavioural analysis. With this operator behav
� A single run can be selected from the run ensemble
� The complete run ensemble can be addressed
� Sub-spaces from the experiment space can be addressed and
� Sub-spaces can be projected by aggregation and moment operators
dependent on the way the experiment target space was to be scanned according to the comb-sub-keyword
in the experiment description file.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -59-

To show the power of the operator behav the simple experiment layouts as described in Fig. 4.1 at page 11
are used as examples.
� With behav it is possible to address for any operand a single run out of the run ensemble by fixing values

of experiment targets p1 and p2 (for Fig. 4.1 (a)), a value of the parallel targets p1 or p2 (for Fig. 4.1
(b)), and values of targets p3 and p1 or p2 (for Fig. 4.1 (c)). Dimensionality and extents of the operator
result is the same as that of the operand.

� Without any selection in the target experiment space (p1,p2) and/or (p1,p2,p3) the dimensionality of the
operator result is formed from the dimensionality of the operand enlarged by the dimensionality of the
experiment space. Two additional dimensions are appended to the operand for Fig. 4.1 (a), one addi-
tional dimension for Fig. 4.1 (b), and two additional dimensions for Fig. 4.1 (c). For the latter two cases
it is important which of the axis p1 and p2 is used for further processing and/or output of the operator re-
sult. The extents of the appended dimensions are determined by the number of target adjustments.

� As a third option it is possible to select only a sub-space out of the experiment space to append to the
operand. For Fig. 4.1 (a) this could be the sub-space formed from the first until the third adjustment
value of p1 and all adjustment values of p2 between 3 and 7. Dimensionality of the operator result in-
creases by 2 and extents of these additional dimensions are 3 and 2 with respect to the corresponding
Example 6.1 (a) in chapter 6.2.3 at page 31.

� The operator behav also enables to aggregate operands in the experiment space. In correspondence
with the example in the last bullet point for Fig. 4.1 (a) the operand could be aggregated (e.g., aver-
aged) over the first until the third adjustment value of p1 autonomously for all runs with different values
of p2 and afterwards this intermediate result (that now depends only on p2) could be summed up for all
adjustment values of p2 between 3 and 7. Consequently the result has the same dimensionality as the
operand of behav. Sequence of performing aggregations is important.

Name Meaning
Argument

restriction(s) /
result description

Argument value
restriction

behav(arg1,arg2) navigation in the experiment
space for arg2 according to arg1

arg1= selection /
 aggregation scheme
 character argument

Tab. 8.10 Experiment-specific operators for behavioural analysis

Placeholder Explanation

<scheme> ‘ { <operator_1> {, <operator_2> ... {, <operator_n> } ... } } ‘
<operator> [<select_operator> | <aggreg_operator> | <show_operator>]
<select_operator> sel { _<target_value_type>} (<target_name> { <target_value_range> })
<aggreg_operator> <aggreg_type> {_<target_value_type>} (<target_name> { <target_value_range> })
<show_operator> show(<target_name>)
<target_name> name of the experiment target according to the experiment description file
<target_value_range> [(<value_1> { : <value_2> }) | (*)]

for <value_2> = <nul> : value_2 = value_1
(*) : use all values from <target_name>

<target_value_type> specification how to interpret <value_range>
i as adjustment Indices (indices always count from 1)
v as adjustment Values
t as resulting Target values

<aggreg_type> an aggregation / moment operator from Tab. 8.5 at page 54.
The following restrictions apply:
� Aggregations avgw and hgr can not be used
� Aggregation count has a differing syntax:

count_<target_value_type> ([all | def | undef] ,
<target_name> { <target_value_range> })

Tab. 8.11 Syntax of the selection / aggregation scheme of operator behav

-60- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

The following rules yield for the operator behav:
� The select operator has to be specified only if values are to be restricted by a corresponding target value

range.
For the aggregation and the select operator the target value type is redundant if the value range repre-
sents the full range of values by <target_name> or <target_name>(*).
sel(p1) = sel(p1(*)) = sel_i(p1) = sel_v(p1) = sel_t(p1) and all are redundant.

� The show-operator can be used to force a certain experiment target to be used in the result of the op-
erator behav if this target is used in parallel with other targets. By default, the first target of a parallel tar-
get sub-space as declared in the comb-line of the experiment description file is used in the behav-result.

� Aggregation operators reduce dimensionality of the covered experiment target space in the behav-result.
The sequence of aggregation operators the first argument of the operator behav influences the result:
Computation starts with the first aggregation operator and ends with the last:
avg(p1), min(p2) normally differs from min(p2), avg(p1)

� An unused experiment target in the selection and aggregation scheme contributes with an additional
dimension to the result of the operator behav. The extent of this additional dimension corresponds with
the number of adjustments to this target in the experiment description file.
A target that is restricted by any of the select operators also contributes with an additional dimension to
the result of the operator behav if the number of selected values is greater than 1. The extent of the ad-
ditional dimension corresponds with the number of selected values of this target by the select operator.
Consequently, an empty character string arg1 forces to output the operand arg2 over the whole target
space of the experiment.

� The name of the coordinate that is assigned to an additional dimension is the name of the corresponding
target. Coordinate description and coordinate unit (see 5.1 at page 15) are associated with the corre-
sponding information for the target from the experiment description file.
Coordinate values are formed from resulting target values. For strictly ordered target adjustments in the
experiment description file and finally for strictly ordered resulting target values the coordinate values are
ordered accordingly in an increasing or decreasing manner. Unordered target adjustments and finally
unordered target values are ordered in an increasing manner for coordinate usage.
The result of the operator behav is always arranged according to ascending coordinate values for all ad-
ditional dimensions.

� Independently from the sequence of the applied aggregation-, select- and show-operators the targets
that contribute to additional dimensions of the result of the operator behav are appended to the dimen-
sions of the operand arg2 of behav according to the sequence they are declared in the experiment de-
scription file (and not to the sequence they are used in the comb-line of the experiment description file).
From parallel changing targets that target is used in this sequence that is addressed explicitly or implic-
itly by the show-operator.

� For experiment targets that are changed in the experiment in parallel, that increase dimensionality of the
result and where a show-operator is missing the first target from this parallel sub-space in the comb-line
is used in the result.

� For experiments that use an adjustment file (keyword file) instead of adjustment definitions (keyword
comb) all experiment targets are assumed to be adjusted in parallel.

Having a model variable definition as in Example 5.1 at page 18 and
assuming address_default=coordinate in <model>.cfg
Assume the experiment layout in Example 6.1 (c) at page 32 and
the corresponding experiment description file (c) from Example 6.1 at page 31
then in result-processing

behav(‘ ’,bios(*,*,20)) last time step of bios dependent on (p2,p1) and p3
Dimensionality = 4
Coordinates = lat , lon , p2, p3
Extents = 36 , 90 , 4 , 3

behav(‘show(p1)’,bios(*,*,20))
last time step of bios dependent on (p1,p2) and p3
Dimensionality = 4
Coordinates = lat , lon , p1, p3
Extents = 36 , 90 , 4 , 3

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -61-

behav(‘sel_t(p2(4)),sel_i(p3(1))’,atmo(*,*,1,*))
select the single run out of the run ensemble for level 1
p2 = 4 and p3 = 3.3
Dimensionality = 3
Coordinates = lat , lon , time
Extents = 45 , 90 , 20

behav(‘sel_i(p2(1:3)),sel_v(p3(1:2))’,atmo(*,*,1,20))
last time step of atmo for level 1 depend. on (p2,p1) and p3
use only runs for p2 = 1, 2, 3 and for p3 = 3.3, 4.5
Dimensionality = 4
Coordinates = lat , lon , p2, p3
Extents = 45 , 90 , 3 , 2

behav(‘avg_i(p2(1:3)),sel_i(p3(2:3))’,atmo(*,*,1,*))
average atmo for level 1 and for runs with p2 =1, 2, 3
for each value of p3 = 4.5, 7.2
Dimensionality = 4
Coordinates = lat , lon , time , p3
Extents = 45 , 90 , 20 , 2

behav(‘min(p2),max(p3)’,avg(atmo(*,*,1,19:20)))
determine single minima of avg(atmo) for level 1 and the
last two decades for each value of p2
afterwards determine from that the maximum over all p3.
Dimensionality = 0
Coordinates = (without)
Extents = (without)

behav(‘max(p3),min(p2)’,avg(atmo(*,*,1,19:20)))
Result differs normally from min(p2),max(p3)
(previous expression)

behav(‘count(def,p3),sel_i(p2=1)’,bios(*,*,20))/3
determine single numbers of defined values of
bios for last decade for runs with p2=1.
Result consists of values 0 (for water) and 1 (for land)
Dimensionality = 2
Coordinates = lat , lon
Extents = 36 , 90

behav(‘ ’,atmo(*,*,1,20)-run(‘sel_i(p1(1)),sel_i(p3(3))’,
 atmo(*,*,1,20)))

deviation of the last time step of atmo for level 1
from the run with p1=1, p2=1, p3=3.3
dependent on (p2,p1) and p3
Dimensionality = 4
Coordinates = lat , lon , p2, p3
Extents = 45 , 90 , 4 , 3

Example file: world.post_c

Example 8.4 Post-processing operator behav for behavioural analysis

-62- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

8.5.2 Monte-Carlo Analysis
Tab. 8.12 shows experiment specific operators for Monte-Carlo analysis that can be used in post-
processing besides the general multi-run aggregation operators listed in Tab. 8.9 at page 58 and supple-
mented with a suffix _e. For a definition of these operators check Tab. 8.5 at page 54.

Name Meaning
Argument

restriction(s) /
result description

(see Tab. 8.3)

Argument value
restriction

cnf(arg1,arg2)
positive distance of confidence
measure from average
avg_e(arg2)

(1)
arg1 error probability

arg1 = [0.001 | 0.01 |
 0.05 | 0.1]
real*4 constant argu-
ment

cor(arg1,arg2) correlation coefficient between
arg1 and arg2 (2.1)

cov(arg1,arg2) covariance between arg1 and
arg2 (2.1)

ens(arg) whole Monte-Carlo run ensemble

dim(res) = dim(arg)+1
ext(res,dim(res)) =
 number_of_runs
coord(res,dim(res)) =
 name = run
 values =
 equidist_end 1(1)
 number_of_runs

krt(arg) kurtosis (4th moment) (1)
med(arg) median (1)

qnt(arg1,arg2) quantile of arg2
(1)

arg1 quantile value
0. ≤ arg1 ≤ 100.
real*4 constant argu-
ment

reg(arg1,arg2)
linear regression coefficient
to forecast arg2 from arg1:
arg2 = reg(arg1,arg2)*arg1 + n

(2.1)

rng(arg) range = max_e(arg) - min_e(arg) (1)
skw(arg) skewness (3rd moment) (1)

stat(arg1,arg2,ar
g3,arg4,arg5) basic statistical measures of arg5

dim(res) = dim(arg)+1
ext(res,dim(res)) = 10
coord(res,dim(res)) =
 name = stat_measure
 values =
 equidist_end 1(1)10

0. ≤ arg1 < arg2 ≤ 100.
quantile values
real*4 constant argu-
ments
arg3, arg4 = [0.001 |
 0.01 | 0.05 | 0.1]
arg3 < arg4
error probability for
confidence distance
measure
real*4 constant argu-
ments

Tab. 8.12 Experiment-specific operators for Monte-Carlo analysis
(without standard aggregation / moment operators)

The following explanations yield for the operators in Tab. 8.12:
� The operator stat supplies basic statistical measures for argument arg5. The operator stat is a stand-

alone operator: It must not be operand of any other operator. Contrary, argument arg5 can be composed
from other non-multi-run operators. To store the statistical measures, dimensionality of stat is that of ar-
gument arg5, appended by an additional dimension with an extent of 10. Appended coordinate descrip-
tion is pre-defined by SimEnv (check Tab. 8.1).

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -63-

These 10 data fields correspond with the following statistical measures:
1. Deterministic run (run # 0)
2. Run ensemble minimum
3. Run ensemble maximum
4. Run ensemble average
5. Run ensemble variance
6. Run ensemble median
7. Run ensemble quantile of quantile value arg1
8. Run ensemble quantile of quantile value arg2
9. Run ensemble positive distance of confidence measure from run ensemble average for value arg3
10. Run ensemble positive distance of confidence measure from run ensemble average for value arg3

For the definition of the statistical measures check the corresponding single operators in Tab. 8.9 and
Tab. 8.12. Operator stat has been designed for application of an appropriate visualization technique in
result evaluation in future.

Having a model variable definition as in Example 5.1 at page 18 and
assuming address_default=coordinate in <model>.cfg
Assume the Monte-Carlo experiment from Example 6.2 (e) at page 34
then in model output post-processing

avg_e(p1*atmo(*,*,1,19:20)) global run ensemble average of p1*atmo for level 1
and the last two decades
Dimensionality = 3
Coordinates = lat , lon , time
Extents = 45 , 90 , 2

avg(atmo(*,*,1,19:20)) global average of atmo for level 1 and the last two decades
for run number 0
Dimensionality = 0
Coordinates = (without)
Extents = (without)

ens(atmo(*,*,1,20) run ensemble values of atmo for level 1 and the last decade
Dimensionality = 3
Coordinates = lat , lon , run
Extents = 45 , 90 , 250

minprop_e(atmo(*,*,1,19:20)) run ensemble run number for level 1 and the last two
decades
where the minimum of atmo is reached the first time
Dimensionality = 3
Coordinates = lat , lon , time
Extents = 45 , 90 , 2

var_e(atmo(*,*,1,19:20))–atmo(*,*,1,19:20)
anomaly for run ensemble variance from the nominal
run for level 1 the last two decades
Dimensionality = 3
Coordinates = lat , lon , time
Extents = 45 , 90 , 2

var_e(atmo(*,*,1,19:20)-run(‘0’,atmo(*,*,1,19:20)))
global run ensemble variance of the anomaly of atmo for
level 1 and the last two decades.
Differs normally from the previous expression
Dimensionality 4
Coordinates = lat , lon , time
Extents = 45 , 90 , 4 , 20

hgr_e(0,min_l(‘10’,atmo(20:-20,*,1,20)))
histogram with 25 bins for the zonal tropical minima
for level 1 and the last decade
Dimensionality = 2

-64- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Coordinates = lat , bin
Extents = 11 , 25

stat(25,75,0.01,0.05, min_l(‘10’,atmo(20:-20,*,1,20)))
basic statistical measures for the zonal tropical minima
of atmo for level 1 and the last decade
Dimensionality = 2
Coordinates = lat , stat_measure
Extents = 11 , 10

Example file: world.post_e

Example 8.5 Post-processing operators for Monte-Carlo analysis

8.6 User-Defined Operators

8.6.1 Declaration of User-Defined Operator Dynamics
� User-defined operators consist of a declarative and a computational part.

� In the declarative part consistency of the non-character operands are checked and dimensionality,
extents and coordinates of the result are defined.

� In the computational part the result of the operator in dependency of the operands is computed.
� User-defined operators are specified in the ASCII operator description file <model>.odf. This file is used

to check user-defined operators syntactically during result-post-processing.
� Check usr_opr_<opr>.f and apply the assigned operator <opr> for examples of user-defined operators.
� In SimEnv the declarative and computational part of an user-defined operator <opr> is hosted in a file

usr_opr_<opr>.f. The assigned executable has the name <opr>.opr and has to be located in this direc-
tory that is stated in <model>.cfg as the hosting directory opr_directory for user-defined operators.

� Use the shell script operator_f.lnk <opr> to compile and link from usr_opr_<opr>.f an executable
<opr>.opr that represents the user-defined operator <opr>.

� Use the simenv.chk to check user-defined operators
� Any user-defined operator can be transformed directly without changes to a built-in operator
� The functions to declare and compute user-defined operators listed below use a named common block

simenv.

Function
name

Function
description

Inputs /
outputs /

function value
Inputs / outputs / function value

description

Functions to host declarative and computational part in <model>.f

icheck_user_
def_operator
(
)

checks consis-
tency of operator
arguments and
defines dimen-
sionality and di-
mensions of result

integer*4
icheck_user_de
f_operator
(function value)

return code
= 0 ok
≠ 0 inconsistency between operands

real*4
result(1)
(output)

result vector of the operatoricompute_user_
def_operator
(
result
)

computes result of
the operator in
dependency on
operands integer*4

icompute_user_
def_operator
(function value)

return code
= 0 ok
≠ 0 user-defined interrupt of calculation

Tab. 8.13 Operator functions: Declarative and computational part

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -65-

Function
name

Function
description

Inputs /
outputs /

function value
Inputs / outputs / function value

description

Functions to get and put structure information in declarative and computational part

integer*4
iarg
(input)

argument number

character*100
char
(output)

string of the character argument

iget_char_arg
(
iarg,
char
)

gets string and
length of the string
of a character
argument

integer*4
iget_char_arg
(function value)

length of character argument

integer*4
iarg
(input)

argument number, 0 for result

integer*4
iext(9)
(output)

extents iext(1) ... iext(iget_dim_arg) of argument /
result

iget_dim_arg
(
iarg,
iext
)

iarg4 > 0:
gets dimensionality
and extents of an
argument
iarg4 = 0:
gets dimensionality
and extents of the
result

integer*4
iget_dim_arg
(function value)

dimensionality of argument / result

integer*4
iarg
(input)

argument number, 0 for resultiget_len_arg
(
iarg
)

iarg4 > 0:
gets length of an
argument
iarg4 = 0:
gets length of re-
sult

integer*4
iget_len_arg
(function value)

length of argument / result

iget_nr_arg
(
)

gets number of
arguments of the
current operator

integer*4
iget_nr_arg
(function value)

number of arguments

integer*4
iarg
(input)

argument number, 0 for resultiget_type_arg
(
iarg
)

iarg4 > 0:
gets data type of
an argument
iarg4 = 0:
gets data type of
result

integer*4
iget_type_arg
(function value)

type of argument / result
= -1 byte = 4 float
= -2 short = 8 double
= -4 int

iget_co_chk_
modus
(
)

gets level of coor-
dinate check for
arguments ac-
cording to
<model>.cfg

integer*4
iget_co_chk_
modus
(function value)

level of coordinate check for arguments
= 0 without
= 1 weak
= 2 strong

integer*4
iarg
(input)

argument number

integer*4
ico_blk(9)
(output)

block number of the coordinate
ico_blk(1) ... ico_blk(idimens)

integer*4
ico_beg(9)
(output)

begin numbers of the coordinate
ico_beg(1) ... ico_beg(idimens)

iget_co_arg
(
iarg,
ico_blk,
ico_beg
)

gets coordinate
block numbers and
coordinate begin
numbers of an
argument

integer*4
iget_co_arg
(function value)

return code
= 0 ok

-66- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Function
name

Function
description

Inputs /
outputs /

function value
Inputs / outputs / function value

description

integer*4
ico_blk
(input)

block number of the coordinate

integer*4
ico_pos
(input)

position of the value to get within all coordinate
values

real*4
co_val
(output)

coordinate value

iget_co_val
(
ico_blk,
ico_pos,
co_val
)

gets coordinate
value at a position
from a coordinate

integer*4
iget_co_arg
(function value)

return code
= 0 ok
= 1 ico_pos out of range
= 2 storage exceeded

integer*4
iarg1
(input)

argument number

integer*4
iarg2
(input)

argument number

ichk_2args
(
iarg1,
iarg2,
)

checks two argu-
ments on same
dimensionality,
extents and coor-
dinates

integer*4
ichk_2args
(function value)

return code
= 0 ok
= 1 differing dimensionalities
= 2 differing extents
= 3 differing coordinates according to

<model>.cfg
= 4 iarg1=iarg2

integer*4
inplace
(input)

potential inplace-indicator for result.
result can be computed in-place with the following
non-character arguments
= -1 all
= 0 none
> 0 e.g. = 135 with args 1, 3 or 5

integer*4
idimens
(input)

dimensionality of the result

integer*4
iext(9)
(input)

only for idimens > 0:
extents iext(1) ... iext(idimens) of the result

integer*4
ico_blk(9)
(input)

only for idimens > 0:
coordinate block numbers ico_blk(1) ...
ico_blk(idimens) of the result

integer*4
ico_beg(9)
(input)

only for idimens > 0:
coordinate begin numbers in block ico_blk
ico_beg(1) ... ico_beg(idimens) of the result

iput_struct_res
(
inplace,
idimens
[,
iext,
ico_blk,
ico_beg
]
)

puts potential in-
place-storage,
dimensionality,
extents, coordinate
bock and begin
numbers of the
result

Currently, only
coordinates from
the arguments can
be assigned to the
result.

Apply only in the
declarative part.

integer*4
iput_dim_res
(function value)

return code
= 0 ok
≠ 0 inconsistency between operands

Tab. 8.14 Operator functions to get and put structural information

All of these functions return -999 as an error indicator if the argument iarg is undefined.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -67-

Function
name

Function
description

Inputs /
outputs /

function value
Inputs / outputs / function value

description

Functions to get and check argument values and put results in computational part

integer*4
index
(input)

vector index of an argumentarg1
(
index
)
...
arg9
(
index
)

gets value of a
non-character
argument with
index index

real*4
arg1
...
arg9
(function value)

value of an argument
arguments of any type are transferred to real*4
representation

real*8
value
(input)

value to be checkedclip_undef
(
value
)

overflow: checks
a real*8 value on
an undefined
real*4 result
underflow: sets a
real*8 value to
zero if appropriate

real*4
clip_undef
(function value)

clipped value normally identified with a result res
e.g., res(i)=clip_undef(value8)

real*4
value
(input)

argument to be checkedis_undef
(
value
)

checks whether
value is undefined
before processing
it integer*4

is_undef
(function value)

= 0 value is defined
= 1 value is undefined

set_undef
(
)

sets a result to be
undefined

real*4
set_undef
(function value)

normally identified with a result res
e.g., res(i)=set_undef()

Tab. 8.15 Operator function to get / check / put arguments and results

n-dimensional matrices are forwarded to user-defined operators as one-dimensional vectors, using the For-
tran column-wise storage model:
Matrices are stored column-wise to the vector, starting with the highest dimension.

In Example 15.6 at page 109 implementation of the user-defined operator div is described in detail.

-68- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

8.6.2 Operator Definition File <model>.odf
<model>.odf is an ASCII file that follows the coding rules in chapter 11 at page 83 with the keywords,
names, sub-keywords, and info as in Tab. 8.16. <model>.odf describes the user-defined operators.

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

odf <nil> descr o any <string> general operator descriptions
descr o 1 <string> operator description
nr_args m 1 <integer_value> number of arguments defined

for the operator
operator_name
0< <integer_value> < 10

operator operator_
name

nr_charargs m 1 <integer_value> from <integer_val>:
number of character argu-
ments defined for the operator
operator_name
0 ≤ <integer_value> ≤ nr_args

Tab. 8.16 Elements of an operator description file <model>.odf

To Tab. 8.16 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.

odf descr Operator description for the
odf descr examples in the SimEnv User’s Guide

operator char_test descr test character arguments
operator char_test nr_args 3
operator char_test nr_char_args 2

operator corr_coeff descr correlation coefficient
operator corr_coeff nr_args 2
operator corr_coeff nr_char_args 0

operator div descr division
operator div nr_args 2
operator div nr_char_args 0

operator simple_div descr division without special cases
operator simple_div nr_args 2
operator simple_div nr_char_args 0

operator mat_mul descr matrix multiplication
operator mat_mul nr_args 2
operator mat_mul nr_char_args 0

Example files: world_[f | c | py | sh].odf

Example 8.6 User-defined operator description file <model>.odf

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -69-

8.6.3 Handling Undefined Results
In user-defined operators
� Check always whether an argument value val is undefined by is_undef(val) before it is processed.
� Set a result to be undefined by the function set_undef()

Check usr_opr_div.f for a detailed example
� If things go so wrong that processing of the whole expression has to be stopped alternatively it is possi-

ble to
� Set all elements of the results to be undefined
� Set icompute_user_def_operator ≠ 0 (otherwise set it always = 0)
� In both cases processing of the next operators will be suppressed and consequently processing of

the expression will be stopped
� Check usr_opr_char_test.f for a detailed example

8.7 Undefined Results
� By performing operator chains and because of possibly unwritten model output during simulation parts of

the intermediate and/or final result values can be undefined within the real*4 / float data representation.
� If an operand is completely undefined the computation of the result is stopped without evaluating the

following operands and operators.
� For nodata value representation check Tab. 10.12.
� For model output with the SimEnv model coupling interface functions the following data type specific

nodata values to represent undefined (unwritten) model output are used:

8.8 Macro Definitions
� A macro in model output post-processing is an abbreviation for an expression, consisting of operator

chains applied on operands.
� Generally, they are model related and they are defined by the user.
� Macros are identified in an post-processing expression by the suffix _m.
� A macro is plugged into an expression by putting it into parentheses during parsing:

equ_100yrs_m*test_mac_m
from Example 8.7 below is identical to
(avg(atmo(c=20:-20,*,c=1,c=11:20))-400)*(1+(2+3)*4)

� Macros must not contain macros.
� Use simenv.chk to check macros. During the macro check validity of the following information is not

checked:
� Un-pre-defined character arguments of built-in operators (check Tab. 15.7)
� Constant arguments of built-in operators (check Tab. 15.8)
� Character arguments of user-defined operators
� Operators with respect to dimensionality and dimensions of its operands

In SimEnv macros are hold in the file <model>.mac. <model>.mac is an ASCII file that follows the coding
rules in chapter 11 at page 83 with the keywords, names, sub-keywords, and info as in Tab. 8.17.
<model>.mac describes the user-defined macros.

-70- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

<keyword> <name> <sub-
keyword>

Line
type

Max.
num-
ber
of

lines

<info> Explanation

mac <nil> descr o any <string> general macro descriptions
descr o 1 <string> macro description
unit m 1 <string> unit of the value of the macro

macro macro_
name

define m any <string> macro definition string
macro definition can be ar-
ranged at a series of define-
lines

Tab. 8.17 Elements of an macro description file <model>.mac

To Tab. 8.17 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.

mac descr Macro definitions for the
mac descr examples in the SimEnv User’s Guide

macro equ_100yrs descr 2nd century tropical level 1 average
macro equ_100yrs unit without
macro equ_100yrs define avg(atmo(c=20:-20,*,c=1,c=11:20))

macro tst descr test macro
macro tst define 1+(2+3)*
macro tst define 4

Example files: world_[f | c | py | sh].mac

Example 8.7 User-defined macro definition file <model>.mac

8.9 Miscellaneous
� Continuation of expressions on a new input line after , + - * /
� White spaces are filtered out from the input string, also from character arguments

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -71-

9 Visual Experiment Evaluation
Experiment evaluation is based on application of visualization techniques to the output data, com-

puted during experiment post-processing and stored in NetCDF format. Currently, a preliminary version is
implemented.

Analysis and evaluation of post-processed data selected and derived from large amount of relevant model
output benefits from visualization techniques. Based on metadata information of the post-processed experi-
ment type, the applied operator chain, and the dimensionalities of the post-processor output pre-formed
visualization modules are evaluated by a suitability coefficient how they can map the data in an appropriate
manner.
The visualization modules offer a high degree of user support and interactivity to cope with multi-dimensional
data structures. They cover among others standard techniques such as isolines, isosurfaces, direct volume
rendering and a 3D difference visualization techniques (for spatial and temporal data visualization). Further-
more, approaches to navigate intuitively through large multi-dimensional data sets have been applied, in-
cluding details on demand, interactive filtering and animation. Using the OpenDX visualization platform tech-
niques have been designed and implemented, suited in the context of analysis and evaluation of simulated
multi-run output functions.

Currently, visual experiment evaluation is the only SimEnv service that comes with a graphical user inter-
face. In this user interface a help-services is implemented that should be used to gather additional informa-
tion on how to select post-processed results for visualization and on visualization techniques provided by
SimEnv.

-72- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -73-

10 General Control, Services, User Files, and Settings
In a general configuration file <model>.cfg the user controls general settings for the simulation envi-

ronment. Besides simulation performance and model output post-processing SimEnv supplies a set of aux-
iliary services to check status of the model, to dump model and post-processor output and files and to clean
a model from output files. General settings reflect case sensitivity, nodata values and other information re-
lated to SimEnv.

10.1 General Configuration File <model>.cfg
In the ASCII file <model>.cfg general SimEnv control variables can be declared. <model>.mdf is an ASCII
file that follows the coding rules in chapter 11 at page 83 with the keywords, names, sub-keywords, and info
as in Tab. 10.1.

<keyword> <name> <sub-keyword> Line
type

Max.
num-
ber
of

lines

<info> Explanation

cfg <nil> descr o any <string> general configuration
description

begin_run o 1 <integer_value> begin single run number
end_run o 1 [last |

<integer_value>]
end single run number

experiment <nil>

email o 1 <string> email notification address
out_directory o 1 <directory> model output directory
out_format o 1 [netcdf | ieee] model output format
out_size_
threshold

o 1 <integer_value> file size threshold in kBytes
for lumped model output

model <nil>

out_ieee_
blocksize

o 1 <integer_value> block size in kBytes for IEEE
model output

out_directory o 1 <directory> post-processing output direc-
tory

out_format o 1 [netcdf | ieee |
ascii]

post-processing output format

address_default o 1 [coordinate |
index]

post-processing address de-
fault for model variables

coord_check o 1 [strong | weak |
without]

post-processing coordinate
check by operators

postproc <nil>

opr_directory o 1 <directory> directory the post-processors
looks for user-defined opera-
tor executables

Tab. 10.1 Elements of a general configuration file <model>.cfg

To Tab. 10.1 the following additional rules and explanations apply:
� For the description of line type check Tab. 11.3 at page 84.

-74- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

<keyword> <sub-keyword> <info>-default
value (*)

For more
information see chapter

out_directory ./ above
out_format NetCDF 12
out_size_threshold 10 below

model

out_ieee_blocksize 50 below
begin_run 0 7.1 - 7.3
end_run last 7.1 - 7.3

experiment

email <nil> 7.1
out_directory ./ above
out_format NetCDF 12
address_default coordinate 8.2 and below
coord_check strong 8.3.1 and below

postproc

opr_directory ./ 8.6

Tab. 10.2 <info> values and value defaults for general configuration file
(*): in the case of absence of the appropriate sub-keyword

The following explanations yield:
� <string>, <directory>, and <integer_value> are placeholder for corresponding strings.
� For <keyword> = experiment, <sub-keyword>= [begin_run | end_run]:

SimEnv enables to perform an experiment partially by performing only an experiment slice out of the
whole run ensemble (see chapter 7.3 at page 40). Therefor assign appropriate run numbers to this two
descriptors. Make sure that begin and end run represent run number from the experiment (including run
number 0) and that begin run ≤ end run. The string ‘last’ always represents the last simulation run of the
whole run ensemble.

� For <keyword> = experiment, <sub-keyword>= email:
After performing an experiment an email is sent to the email address specified in <string>.

� For <keyword> = model, <sub-keyword> = out_size_threshold:
Specify here the threshold in kBytes for the sum of the size of all model output variables (according to
their extents and data types) that is used to decide whether the SimEnv model output data for the whole
run ensemble is stored into one file <model>.outall.[nc | ieee] or in single output files
<model>.out<run_char>.[nc | ieee].

� For <keyword> = model, <sub-keyword> = out_ieee_blocksize:
IEEE compliant model output for single files is written in single records with a length of
<out_ieee_blocksize> kBytes. If <out_size_threshold> is less than this value, this value is adapted to
<out_size_threshold>.

� For <keyword> = postproc, <sub-keyword> = address_default:
During post-processing portions of multi-dimensional model output variables can be addressed by coor-
dinate (c= ...) or index (i= ...) reference. A default is established here.

� For <keyword> = postproc, <sub-keyword> = coord_check:
During post-processing feasibility of application of an operator on its operands is checked with respect to
the coordinate description of the operands. Different levels of this check are possible. A default is estab-
lished here.

Please keep in mind to ensure consistency of control settings in <model>.cfg across different SimEnv tasks.
As an example you have to run experimentation, post-processing and dump with the same model output file
size threshold out_size_threshold from <model>.cfg for binary output.

cfg descr General configuration file for the
cfg descr examples in the SimEnv User’s Guide

model out_directory mod_out
model out_format netcdf
model out_size_threshold 100

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -75-

experiment begin_run 0
experiment end_run last

postproc out_directory res_out
postproc out_format netcdf
postproc address_default index
postproc coord_check strong
postproc opr_directory ./usr_opr

Example 10.1 User-defined general configuration file <model>.cfg

10.2 Main and Auxiliary Services
The following SimEnv service commands are available from the SimEnv home directory $SE_HOME. Be-
sides experiment performance and model output post-processing there are additional auxiliary SimEnv
services to check input information consistency, to monitor the status of simulation experiments, to dump
files of model and post-processor output and to wrap up the SimEnv workspace.

SimEnv
command Use to

Main Services

simenv.run
<model>

prepare and run an experiment

simenv.rst
<model>

restart an experiment

simenv.res
<model>
{[new | append |
replace]}
{<run>}

perform experiment result post-processing for run number <run> or for the whole run
ensemble (<run> = -1, default). If post-processor output is written in NetCDF format
afterwards simenv.vis can be started for this post-processor output file.
Before entering post-processing that output file with the highest two-digit number
<res_char> <model>.res<res_char>.[nc | ieee | ascii] is identified and a new result
file for <res+1> is written / the result files is appended / or the result file is replaced by
a new one.

simenv.vis
<model>
{[latest | <res>]}

perform visual post-processor output visualization for that NetCDF post-processor
output file with the highest two digit number <res_char> (latest, default) or with the file
number <res>.
Visualization runs on a remote host.

simenv.cpl
<model>
{<run>}
{<file>}

complete sequence of SimEnv commands
simenv.chk, simenv.run, simenv.res, simenv.vis
simenv.res is performed with input file <file> (if available) and interactively, for both
optionally only for single run <run>.

Auxiliary Services

simenv.chk
<model>

check on model script files (<model>.run, <model>.rst, <model>.ini, <model>.end)
check <model>.cfg

<model>.odf
<model>.mdf
<model>.edf
<model>.gdf
<model>.mac
existing model and post-processor output files

generate pre-experiment output statistics

-76- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

SimEnv
command Use to

simenv.sts
<model>
{<sleep>}

get status of an experiment that was started from a login node of a parallel machine
and that is running in a parallel or sequential job class of this machine.
To use this command login to the parallel machine and change to the working direc-
tory the experiment was started from.
Does only work properly for model start, but not for model restart.

simenv.dmp
<model>

dump SimEnv model output and post-processor output files
Files to dump have to match the SimEnv file name convention for model and/or post-
processor output and are expected to be in the directories as stated in <model>.cfg.
Model output variables and post-processor results in IEEE and/or ASCII format with a
dimensionality greater than 1 are listed according to Fortran column-wise storage
model for multi-dimensional fields.
To use this command change to the working directory the experiment and post-
processing were started from.

simenv.cln
<model>

clean up model and post-processor output files
Deletes all model output files, post-processor output files, log-files, and auxiliary files
of a model.
To use this command change to the working directory the experiment and post-
processing were started from.

simenv.cpy
<model>

copy all SimEnv example files <model>* from the examples directory of $SE_HOME
to the current directory. Additionally, example files of user-defined operators and for
models world_[f | c| py | sh]* common user defined files are copied. All files are only
copied of they do not already exist in the current directory, this SimEnv service is
started from.

simenv.hlp
<topic>

acquire basic SimEnv help information

simenv.key
<user_name>

generate a ssh2-key to automatically access to the visualization server
Start this service at machine aix02 only one time before the first use of simenv.vis.
To get this access finally contact the SimEnv developers after running the service.

Tab. 10.3 Service commands

Do not start a SimEnv service from a working directory, excepted simenv.sts, if there is a running SimEnv
service that was started from this working directory.

10.3 User Scripts and Files

Script / file
(in the current

working
directory)

Explanation Exist status
For more

information
see chapter

<model>.cfg ASCII user-defined general configuration file optional 10.1
<model>.mdf ASCII user-defined model (variables) description file mandatory 5.1
<model>.edf ASCII user-defined experiment description file mandatory 6.1
<model>.mac ASCII user-defined macro description file optional 8.8
<model>.odf ASCII user-defined operator description file optional 8.6.2
<model>.gdf ASCII user-defined GAMS model output description

file
mandatory for
GAMS models

5.5.2

<model>.run (*) model shell script to wrap the model executable mandatory 7.5
<model>.rst (*) model shell script to prepare single model run restart optional 7.5
<model>.ini (*) model shell script to prepare simulation experiment

additionally to standard SimEnv preparation
optional,
mandatory for
Python and
GAMS models

7.5

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -77-

Script / file
(in the current

working
directory)

Explanation Exist status
For more

information
see chapter

<model>.end (*) model shell script to clean up simulation experiment optional,
mandatory for
GAMS models

7.5

<model>.
<run_char>.
err

touch this file in the model, in <model>.run and/or
<model>.rst as an indicator to stop the complete ex-
periment after <model>.run has been finished for sin-
gle model run <run_char>

optional 7.5

simenv.jcf_par user-specific job control file to submit a job by the
LoadLeveler to a parallel class

optional 7.5

simenv.jcf_seq user-specific job control file to submit a job by the
LoadLeveler to a sequential class

optional 7.5

<opr>.opr
(in the opr-
directory
according to
<model>.cfg)

executable for user-defined operator <opr> optional 8.6

Tab. 10.4 User scripts and files
(*): make sure the shell script has execute permission by chmod u+x

File Generated in Explanation

Permanent files

<model>.edf_adj
in the current working
directory

experiment preparation ASCII adjustment input file for the run ensemble
derived from <model>.edf.
Record no. n corresponds to single run no. n.
Value no. m of each record is the adjustment for
experiment target no. m in the edf-file

<model>.out<run_char>
.[nc | ieee]
in the model
out_directory according
to <model>.cfg

model performance
if model output of a single
run ≥ out_size_threshold
from <model>.cfg

model output of run number <run>
to be processed by the post-processor
(for experiment performance in a parallel job class
at a parallel machine files
<model>.out<run_char>.[nc | ieee] are created
temporarily)

<model>.outall
.[nc | ieee]
in the model
out_directory according
to <model>.cfg

model performance
if model output of a single
run < out_size_threshold
from <model>.cfg

model output of all runs
to be processed by the post-processor

<model>.elog
in the current working
directory

model performance ASCII minutes file of experiment performance
(simenv.run and all simenv.rst)

<model>.mlog
in the current working
directory

model performance ASCII minutes file of model performance
(simenv.run and all simenv.rst)

<model>.res<res_char>
.[nc | ieee | ascii]
in the experiment
out_directory according
to <model>.cfg

experiment post-processing output file of a post-processor session

-78- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

File Generated in Explanation

Temporary files
(do not delete during experiment performance)

simenv.cfg
in the current working
directory

all tasks structured ASCII representation of <model>.cfg

<model>.
[mdf | edf | odf | mac]
_bin
in the current working
directory

experiment preparation,
experiment post-processing

structured binary representation
of <model>.[mdf | edf | odf | mac]

<model>.parid
in the current working
directory

experiment performance ASCII file with job number from an experiment
submitted by LoadLeveler for performance of the
command simenv.sts

simenv_*.tmp
in the current working
directory

different tasks auxiliary files

check chapter 5.5.3 model performance auxiliary files for GAMS models

Tab. 10.5 User files generated during SimEnv performance

Fig. 10.1 sketches usage of SimEnv user scripts and files in the course of model coupling, experiment
preparation and performance, post-processing, and evaluation.

Experiment
Post-

processing

Experiment
Performance

Experiment
Preparation

Model
Preparation

<model>.mdf !
<model>.run !
<model>.rst
<model>.ini

<model>.end
<model>.gdf

Model
description

<model>.edf !

Experiment
description

<model>.elog
<model>.mlog

<model>.parlog

Experiment
logs

<model>.mac
<model>.odf
User macros
and operators

<model>.out*.*

Model outputs

<model>.res*.*
Post-pro-

cessor output

<model>.cfg

General
configuration

Experiment
Evaluation

Visualize
results

NetCDF (CF)
IEEE binary

ASCII

ASCII

Supported formats:

 ! = mandatory file

<operator>.opr

Fig. 10.1 SimEnv user scripts and files

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -79-

10.4 Environment Variables
The following operating system environment variables are used by SimEnv:

Environment
variable Meaning Value

SE_HOME SimEnv home directory set to /usr/local/simenv/1.01/bin
SE_RUN run number of a single run,

set in <model>.run
defined within a SimEnv experiment

SE_1STRUN first single run of a experiment,
set in <model>.run

yes or no

PYTHONPATH path to search PYTHON and PYTHON
files

machine dependent
has to be expanded by $SE_HOME

Tab. 10.6 Environment variables

10.5 Case Sensitivity

Where? Entity Sensitivity Example

� keyword
� name

(with the exception of the
GAMS model file name)

� sub-keyword

case
insensitive experiment end_run LAST

user-defined files
(see Tab. 11.1)

� information
(with the exception of any
file name and information
for <sub-keyword> =
[descr | unit |
<string>_directory])

case
insensitive cfg descr This is...

� operator name
� number
� macro name
� macro identifier _m

case
insensitive exp(atmo) + 3*EXP(ATMO)

� character argument
of built-in operators with-
out pre-defined values

case
sensitive file name argument of operator table_fct

� character argument
of built-in operators with
pre-defined values

case
insensitive

all, def and undef as pre-defined
character arguments for operator count

post-processing

� character argument
of user-defined operators

case
sensitive

character arguments of operator
char_test

Tab. 10.7 Case sensitivity of SimEnv entities

-80- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

10.6 Built-in Items, Reserved Names
Tab. 10.8 lists the built-in (pre-defined) model variables that are generally output during experiment per-
formance to SimEnv model output structures and are available in model output post-processing without de-
fining them in the model output description file <model>.mdf.

Model variable
name

Dimen-
sionality Extents Data type Meaning

sim_time 0 float elapsed simulation time in seconds (rounded
to 2 decimal places) per single run for
<model>.run

Tab. 10.8 Built-in model variables

Tab. 10.9 lists the built-in (pre-defined) coordinates that are used in model output post-processing when
additional dimensions are generated by an operator.

Coordinate
name Operator Meaning

bin hgr, hgr_l, hgr_e bin number
index minprop, maxprop, minprop_l, maxprop_l index number
run ens run number
stat_measure stat basic statistical measures
<target_name> behav target

Tab. 10.9 Built-in coordinates

Tab. 10.10 lists the built-in (pre-defined) shell script variables that are used in $SE_HOME/simenv_*_sh and
finally in <model>.run.

Shell script vari-
able name Meaning

run_int current run number as integer
run_char current run number as character string
target_name target name for simenv_get_sh
target_def_val default target value for simenv_get_sh
simenv_hlp*_sh auxiliary variable

Tab. 10.10 Built-in shell script variables in $SE_HOME/simenv_*_sh

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -81-

Tab. 10.11 lists the reserved (forbidden) names and file names that can not be declared in user-defined
files.

Element Reserved (forbidden) names

model name <model> simenv
in any combination of upper and lower cases
built-in model variables
according to Tab. 10.8
built-in coordinates
according to Tab. 10.9
built-in shell script variables
according to Tab. 10.10

<name>
in user-defined files
model.[mdf | edf | odf | mac]
excepted for GAMS model
source code file names
(check chapter 11)

special keywords in <model>.edf for behavioural
analysis
default file

<file_name>
in <info>
in user-defined files
model.[mdf | edf | odf | mac]
(check chapter 11)

SimEnv file names
according to Tab. 10.4 and Tab. 10.5

Tab. 10.11 Reserved names and file names in user-defined files and for models

10.7 Nodata Representation
For model output with the SimEnv model coupling interface functions and for post-processor output the fol-
lowing data type specific nodata values are used to represent undefined (unwritten) model output or unde-
fined post-processor output:

Data type Nodata value

integer*1 127
integer*2 32767
integer*4 2147483648
real*4 3.4E+38
real*8 1.79D+308

Tab. 10.12 Data type related nodata values

-82- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -83-

11 Structure of User-Defined Files
Basic information to describe general control settings of SimEnv, model output variables, the ex-

periment itself, macros and user-defined operators as well as GAMS model specific information is stored in
user-defined files. They are ASCII files and have a common structure that is described in this chapter.

11.1 General Structure
All user-defined files listed in Tab. 11.1 have the same structure. They are ASCII-files with the following
record structure:

{ <sep> } <keyword> <sep> { <name> <sep> } <sub-keyword> <sep> <info> { <sep> }

with
� <name> is the name of

� a model variable,
� a GAMS model source file
� an experiment target,
� a coordinate,
� a user-defined operator or
� a macro
Declaration of <name> depends on the related keyword <keyword>
<name> is case insensitive, excepted for the GAMS model source file

� <keyword> is a string
Normally, more than one line with differing sub-keywords belong
to one “keyword-block”.
<keyword> is case insensitive

� <sub-keyword> is a string
Sub-keywords are defined only in relation to the user file and the keyword
under consideration.
<sub-keyword> is case insensitive

� <info> = <substring> { <sep> <substring> ... }
is a string with user file, keyword and sub-keyword related information.
<info> is case insensitive with the exception of any file name and/or directory and
information for sub-keywords = [descr | unit]

� <sep> is a sequence of white spaces

Lines consisting only from separator characters as well as lines starting with a # as the first non-separator
character are handled as comment lines. For case sensitivity of all information <info> in user files check Tab.
10.7 at page 79.

See descriptionFile Contents in chapter at page

<model>.cfg general configuration file 10.1 73
<model>.mdf model output description file 5.1 15
<model>.gdf GAMS description file 5.5.2 26
<model>.edf experiment description file 6.1 29
<model>.odf operator description file 8.6.2 68
<model>.mac macro description file 8.8 69

Tab. 11.1 User-defined files

-84- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Element Constraints

line length max. 160 characters
max. 20 characters
first character has to be a letter (*)
must not end on _m (*)
must not contain elemental operators and characters . and : (*)
(check Tab. 8.2 at page 49)

<name>

for further constraints check Tab. 10.11 at page 81
for sub-keyword = descr without <name>: max. 512 characters
(total sum over all lines)
for sub-keyword = descr with <name>: max. 128 characters
for sub-keyword = <string>_directory: max. 70 characters

must not contain environmental variables
for sub-keyword = unit: max. 32 characters

<info>

for further constraints check Tab. 10.11 at page 81

Tab. 11.2 Constraints in user-defined files
(*): excepted for GAMS model source code file names

The line type in a description table for a user-defined file specifies whether a keyword / sub-keyword combi-
nation can be omitted.

Abbre-
viation User file Explanation

m all files mandatory
o all files optional
c1 <model>.mdf

keyword = variable
sub-keyword = [coords |
 var_extents]

conditional 1:
forbidden for variables with dimensionality = 0
mandatory for variables with dimensionality > 0

c2 <model>.mdf
keyword = variable
sub-keyword = coord_extents

conditional 2:
forbidden for variables with dimensionality = 0
optional for variables with dimensionality > 0

c3 <model>.edf
keyword = target
sub-keyword = adjusts

conditional 3:
mandatory for experiment type = Monte-Carlo analysis
forbidden for experiment type = local sensitivity analysis
conditional for experiment type = behavioural analysis

c4 <model>.edf
keyword = edf
sub-keyword = Monte-Carlo
keyword = target
sub-keyword = sampling

conditional 4:
mandatory for adjusts = from specified distribution
forbidden for adjusts = from external file

A <model>.edf
for behavioural analysis
keyword = target
sub-keyword = adjusts

alternatively:
either mandatory for all experiment targets
or forbidden for all experiment targets

F <model>.edf
for local sensitivity analysis
keyword = target
sub-keyword = adjusts

forbidden

Tab. 11.3 Line types in user-defined files

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -85-

mac descr This is a macro description file
mac descr for the SimEnv User’s Guide

macro pol_atmo descr atmo outside polar reg., final time, level 1
macro pol_atmo unit without
macro pol_atmo define atmo(c=84:-56,*,c=1,c=20)

macro m1 define avg(glob(c=11:20))
...

Example 11.1 Structure of a user-defined file

Sequence of keyword and sub-keyword lines can be arbitrary. For reasons of readability it is recommended
to use a block structure like in the above example. Sequence of names in the separated name spaces
(name spaces of coordinates, model variables, experiment targets, user-defined operators, macros) during
processing is determined by the sequence the name occur the first time in the appropriate user file.

11.2 Value Lists
For variables, coordinates and experiment targets value lists are supplied by the <info>-item. Value lists
describe a sequence of values together with an order. The number of described values is greater than 1.
Value lists may be restricted to strictly monotonous sequences. They follow the syntax rules in Tab. 11.4.

Value-list type Syntax Explanation

explicit list <value1> , ... , <valuen> explicit list of values
same syntax rules as for one
record of a file with a value list
(see below)

by reference file {<path>/}<file_name> file {<path>/}<file_name>
contains the explicit value list

implicit
with end-element

equidist_end <beg_val> (<incr_val>) <end_val> description of an equidistant list
of values with
begin value <beg_val>
increment <incr_val>
end value <end_val>
<beg_val> ≠ <end_val>
<incr_val> ≠ 0.

implicit
with number
of values

equidist_nmb <beg_val> (<incr_val>) <nmb_vals> description of an equidistant list
of values with
begin value <beg_val>
increment <incr_val>
number of values <nmb_vals>
<beg_val> ≠ <end_val>
<incr_val> ≠ 0.
<nmb_vals> > 0, integer

Tab. 11.4 Syntax rules for value lists

Syntax rules for a file {<path>/}<file_name> with a list of values
� <path> must not contain environment variables from operating system level
� If <path> is specified in a relative manner it relates to the current working directory, the / a SimEnv serv-

ice where <path> is used was started from.
� Has to be an ASCII file
� May be a multi-record file
� Max. record length: 1000 characters
� Values are separated from each other by white spaces or comma

-86- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

� A series of connected (running) separators is treated as a single separator
� Record end is handled as a separator
� Real values can be stated in integer, real or exponential (scientific) format
� Records formed only from white spaces or records starting with first non-white space character # are

handled as comments

1. list 3, 5, 7, 9, 11 describes the five values 3, 5, 7, 9, 11
2. equisist_end 3 (2) 11 is equivalent to 1.
3. equidist_nmb 3 (2) 5 is equivalent to 1.
4. file my_vals.dat is equivalent to 1. with my_vals.dat = 3, , 5,

 7
 9,11

5. equidist_end 3 (2) 11.9 is equivalent to 1.
6. equidist_end 11 (-2) 3 differs from 1. – 4.:

values are identical, ordering sequence differs

Example 11.2 Examples of value lists

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -87-

12 Model and Post-Processor Output Data Structures
This chapter summarizes information on available data structures for model and post-processor out-

put. SimEnv supports several output formats from the experiment and the post-processor. NetCDF is a self-
describing data format and can be used for model and post-processor output. Another format specifications
for both outputs is IEEE compliant binary format and ASCII for post-processor output. This chapter describes
all the used data structures.

Dependent on the specification of the supported post-processor output formats in <model>.cfg model output
can be stored in NetCDF format and post-processor output in NetCDF, IEEE or ASCII format.
During experiment performance model output is written either to single output files <model>.out<run_char>.
[nc | ascii] per experiment single run or to a common output file <model>.outall.[nc | ieee] for all single
runs from the experiment run ensemble. Output to single or a common file(s) depends on specification of the
value for the out_size_threshold sub-keyword in <model>.cfg. <run_char> is a six-digit placeholder for the
corresponding single run number.
During model output post-processing output and structure of results is written to <model>.res<res_char>.[nc
| ieee | ascii]. <res_char> is a two-digit placeholder for the number of the result file. It ranges from 01 to 99.
For IEEE and ASCII model output and post-processor output formats, multi-dimensional data is organized in
the Fortran column-wise storage model.

12.1 NetCDF Model and Post-Processor Output
The intention for supplying NetCDF format for model and post-processor output is to provide the possibility
to generate self-describing, platform-independent data files with metadata that can be interpreted by subse-
quent visualization techniques. The conventions applied for SimEnv represent a compromise between ex-
isting standards and the metadata requirements for a flexible and expressive visualization that is adapted to
the requirements of the specific data sets of concern. SimEnv follows the NetCDF Climate and Forecast
(NetCDF CF) metadata convention 1.0-beta4. Currently, SimEnv supports only up to 4-dimensional NetCDF
output during experiment and post-processor performance.

Model output data types as declared in the model output description file <model>.mdf are transferred into
NetCDF data types automatically (check the Table below). By default, post-processor output data is of type
float.

SimEnv data type NetCDF data type

byte or int*1 NF_BYTE
short or int*2 NF_SHORT
int or int*4 NF_INT
float or real*4 NF_FLOAT
double or real*8 NF_DOUBLE

Tab. 12.1 NetCDF data types

12.1.1 Global Attributes
The global attributes used in SimEnv from the CF standard are :institution and :convention. In addition, the
following global attributes are defined for model and post-processor output:

Name Value Data type

:creation_time �YYYY-MM-DD HH:MM:SS	 char
:model_name �model	 char
:model_description model description according to <model>.mdf char
:model_description_file {�path>/}<model>.mdf char

-88- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Name Value Data type

:experiment_type [behaviour | Monte-Carlo | sensitivity] char
:experiment_description experiment description according to <model>.edf char
:experiment_description_file {�path>/}<model>.edf char
:number_of_runs �number of runs	 int

Tab. 12.2 Additional global NetCDF attributes

12.1.2 Variable Labelling and Variable Attributes
For coordinate variables, two cases of labelling are distinguished:
� If for a given predefined variable, target, model variable or post-processor result one of its coordinates

spans the entire range of its general dimension, the already existing coordinate definition is used.
� Otherwise, this concerned coordinate is re-defined using the notation

<variable_name>_dim_<coordinate_name>.

The following variable attributes are used according to the CF 1.0-beta4 standard:

Name Value Data type

�variable_name	:standard_name [�coordinate_name	 |
�predef_coordinate_name	 |
 �predef_var_name	 |
 �target_name	 |
 �variable_name	 |
 �result_name]

char

�variable_name	:long_name [�coordinate_description	 |
 �predef_coordinate_description	 |
 �predef_variable_description	 |
 �target_description	 |
 �variable_description	 |
 �result_applied_operator_sequence]

char

�variable_name	:missing_value �variable type-depending missing value	 type-dep.
�variable_name	:axis
(single coordinate variables only)

[X | Y | Z | T | bin | run | …] char

�variable_name	:unit [�coordinate_unit	 |
 �predef_coordinate_unit	 |
 �predef_variable_unit	 |
 �target_unit	 |
 �variable_unit	 |
 �result_unit]

char

�variable_name	:coordinates
(multi-dimensional coordinate
variables only)

�par1_lon> <par1_lat> char

�variable_name	:fill_value �variable type-depending fill value	 type-dep.

Tab. 12.3 Variable NetCDF attributes

� For post-processor output, the :standard_name attribute simply counts the number of applied opera-
tions because the result name of an arbitrary operation is not known in general. For that reason, the
:long_name attribute would re-sample the :standard_name attribute and it is used instead to provide the
complete description of the applied operator sequence without defining an additional attribute.
If macros are included, these are resolved and elementary operations are included only.

� For the :axis attribute of a coordinate variable exist defaults.
For each post-processor result, the first coordinate is assumed to be the „X-axis“, the second and third
coordinate are assumed to represent the „Y-“ and „Z-axis“, and the fourth dimension is time T.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -89-

For model results, these attribute values are assigned to coordinate variables describing geographical
longitude, geographical latitude, level or height and time. In case other coordinate names are used,
these are simply also used for the axis attribute.

� The :unit attribute is actually estimated for model output only depending on the description of the corre-
sponding variable keywords in the <model>.mdf file. For post-processing output, it is only used as a
placeholder and not calculated from the applied operator sequence so far.

� The :coordinates attribute serves to define coordinates depending on other ones and so to allow coor-
dinate transformations. Actually, this attribute is not used.

� Actually, the :fill_value attribute is not applied to coordinate variables. It is identically to the
:missing_value attribute but open for other definitions.

For visualization requirements, the following additional variable attributes have been defined for SimEnv:

Name Value Data type

�variable_name	:monotony
(coordinate variables only)

[increasing | decreasing | none] char

�variable_name	:coo_type [1 | 2] integer
�variable_name	:data_range �min> <max	 char
�variable_name	:index_range_<coordinate	
(coordinate variables only)

�min_index> <max_index	 int

�variable_name	:simenv_data_kind [Predefined Model Variable |
 Model Target |
 Model Output Variable |
 postproc_result]

char

�variable_name	:var_representation [positions | connections] or both char
�variable_name	:grid_shift �shift_x> <shift_y	 real,

dimension(2)
�variable_name	:north_pole �lon_pole> <lat_pole	 real,

dimension(2)

Tab. 12.4 Variable NetCDF attributes for visualization

� The :monotony attribute is applied to coordinate variables only and estimated from the coordinate val-
ues as defined in the <model	.mdf file. During post-processing additional coordinates can be generated
for which no monotony may be estimated. In such cases, the attribute is set to “none”.

� The :coo_type attribute describes the grid representation of a given coordinate. A value of 1 indicates
that all coordinate values are provided explicitly (suitable, e.g., for irregular grids). A value of 2 indicates
a regular grid and a coordinate representation by its start value, increment and end value.

� The :data_range attribute provides the real range that is covered by the related variable in the recent
NetCDF file.

� The :index_range attribute is used only in case a predefined variable, target, model variable or post-
processing result covers not the complete range of a dimension as defined for a coordinate variable. It
describes that sub-space for which the concerned target, variable or result is defined.

� The :var_representation attribute is introduced to specify what operations are allowed on the data.
� The :grid_shift attribute is actually still a placeholder for variables that are not defined in the centre of a

grid box when quasi-regular grids are used.
� The :north_pole attribute can be used if rotated grids are applied.

12.2 IEEE Compliant Binary Model Output
IEEE compliant binary model output is written in records of fixed length to <model>.out<run_char>.ieee
and/or <model>.outall.ieee. Record length is determined by the sub-keyword out_ieee_blocksize and in in-
terrelation to the sub-keyword out_size_threshold in <model>.cfg. For these two sub-keywords and potential
modification of the value for out_ieee_blocksize check Tab. 10.1. Sequence of data for each single run is as
follows:
� Experiment targets as specified in <model>.edf

Sequence as in <model>.edf

-90- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

� Built-in (pre-defined) model output variables
Sequence as in Tab. 10.8

� Model output variables
Sequence as in <model>.mdf

Storage demand for each model variable / target is according to its dimensionality, extents and data type.
Storage demand in bytes for each model variable / target is readjusted to the smallest number of bytes di-
visible by 8, where the data can be stored. Multi-dimensional data fields are organized in the Fortran column-
wise storage model.
In <model>.outall.ieee each single run starts with a new record. Sequence of single runs corresponds with
sequence of the single run numbers <run>: Data from default single run 0 is stored in the first and potentially
the following records.

Having a model output description file as in Example 5.1 and an experiment description file
as in Example 6.1(a) each single run is stored in the following way:

target / extents data type storage demand storage demand
model [Byte] adjusted [Byte]
variable

p1 1 float 4 8
p2 1 float 4 8
sim_time 1 float 4 8
atmo 45 x 90 x 4 x 20 float 1.296.000 1.296.000
bios 36 x 90 x 20 float 259.200 259.200
glob 20 int 80 80
over 1 int 4 8

 1.555.312

With out_ieee_blocksize = 100, which transforms to 100*1024 =102.400 Bytes, one single
run needs 16 records of a fixed length of 102.400 Bytes. Remaining bytes in the last record are
undefined.

Example 12.1 IEEE compliant model output data structure

12.3 IEEE Compliant Binary and ASCII Post-Processor Output
The IEEE post-processor output file is an unformatted binary file with IEEE real*4 number representation,
the ASCII post-processor version is a formatted ASCII file. Files for both output file formats have for each
result subsequently the following structure:

record no. 1 integer*4 length of the character string of the operator sequence
record no. 2 char character string of the operator sequence
record no. 3 integer*4 dimensionality idim of the result
record no. 4 integer*4 dimensions 1, ... idim for idim > 0

-1 else
record no. 5 ... real*4 result_values(1) ... result_value(length_result)

in records of 10 values
with length_result = product of all dimensions for idim > 0

 = 1 else

The vector result_value is equivalent to the representation of the result by a matrix of the dimensionality from
the first record with dimensions from the second record in the Fortran column-wise storage model. The no-
data element for undefined result values is set to 3.4E38.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -91-

The following Fortran code reads a post-processing binary output file <model>.res<res_char>.ieee in its
general structure:

 program read_res_ieee_file
 real*4, pointer, dimension(:) :: result_values
 integer*4 idimensionality, idimensions(9), length_name, length_values
 character*500 result_name
 open(unit=1,file='model.res03.ieee',form='unformatted',status='old')
 iostat=0
 do while (iostat.eq.0)
 read(1,iostat=iostat) length_name
 if(iostat.eq.0) then
 read(1) result_name(1:length_name)
 read(1) idimensionality
 length_values=1
 if(idimensionality.gt.0) then
 read(1) (idimensions(i),i=1,idimensionality)
 do i=1,idimensionality
 length_values=length_values*idimensions(i)
 enddo
 else
 read(1) idummy
 endif
 allocate(result_values(length_values))
 ibeg=1
 do while (ibeg.le.length_values)
 iend=min0(ibeg+9,length_values)
 read(1) (result_values(i),i=ibeg,iend)
 enddo
c further processing ...
 deallocate (result_values)
 endif
 enddo
 close(unit=1)
 end

Example 12.2 IEEE compliant post-processor export interface

-92- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -93-

13 Prospects
SimEnv development and improvement is user-driven. Here you can find a list of the main develop-

ment pathways in future.

General
� Graphical user interface
� Linux and Windows portability
� Unique number representations for binary output (big endians vs. small endians)

Model coupling

Experiment preparation
� Experiment types stochastic analysis and gradient-free optimization technique

Experiment performance
� Experiment performance for distributed models across networks

Experiment post-processing
� Multi-file model output storage
� Additional advanced operators (netcdf_data, regrid, coarse, sort, ...)
� Advanced uncertainty and global sensitivity analyses operators
� Experiment specific operators for local sensitivity analysis
� C-interface for user-defined operators
� Flexible assignment of data types to operator results

(currently: only real*4)
� Shared memory access (C-shm*-functions) for user-defined operators to avoid data exchange by exter-

nal files
� Wrapping of pure C-operators in Fortran to use them as built-in operators

Experiment evaluation
� Advanced techniques for graphical representation of post-processor output, especially for multi-run op-

erators

-94- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -95-

14 References
Bohr, J. (1998) A summary on Probabilities

http://ic.net/~jnbohr/java/CdfDemoMain.html
Flechsig, M. (1998) SPRINT-S: A Parallelization Tool for Experiments with Simulation Models. PIK-Report

No. 47, Potsdam Institute for Climate Impact Research, Potsdam and
http://www.pik-potsdam.de/reports/pr-47/pr47.pdf

Helton, J.C., Davis, F.J. (2000): Sampling-Based Methods.
In: Saltelli et.al (2000)

Imam, R.L., Helton, J.C. (1998): An Investigation of Uncertainty and Sensitivity Analysis Techniques for
Computer Models. Risk Anal. 8(1), 71-90

Saltelli, A., Chan, K., Scott, E.M. (eds.) (2000) Sensitivity Analysis. J. Wiley & Sons, Chichester
Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M. (2004) Sensitivity Analysis in Practice: A Guide to As-

sessing Scientific Models. J. Wiley & Sons, Chichester (to appear)
Waszkewitz, J., Lenzen, P., Gillet, N. (2001) The PINGO package: Procedural interface for Grib formatted

objects. Max-Planck-Institute for Meteorology, Hamburg and
http://www.mad.zmaw.de/Pingo/pingohome.html

Wenzel, V., Kücken, M., Flechsig, M. (1995) MOSES - Modellierung und Simulation ökologischer Systeme.
PIK-Report No. 13, Potsdam Institute for Climate Impact Research, Potsdam

Wenzel, V., Matthäus, E., Flechsig, M. (1990) One Decade of SONCHES. Syst. Anal. Mod. and Sim. 7, 411-
428

Wierzbicki, A.P. (1984) Models and Sensitivity of Control Systems. Studies in Automation and Control. Vol.
5. Elsevier, Amsterdam

-96- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -97-

15 Appendices

-98- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -99-

15.1 Version Implementation

15.1.1 How to Link User Models
For user models implemented in C or Fortran the following libraries have to be linked to the model to couple
it to the simulation environment:
� $SE_HOME/libsimenv.a
� /usr/local/lib/libnetcdf.a
For running models again outside SimEnv check chapter 5.7.

15.1.2 Example Models and User Files
For the following models corresponding files of Tab. 10.4 of can be copied from the corresponding exam-
ples-directory of $SE_HOME to the user’s working directory by running the SimEnv command simenv.cpy
<model> from the working directory:

<model> Source code Explanation

world_f Fortran global atmosphere - biosphere test model
at a (lat x lon x level x time) = (45 x 90 x 4 x 20) resolution

world_c C global atmosphere - biosphere test model
at a (lat x lon x level x time) = (45 x 90 x 4 x 20) resolution

world_py Python global atmosphere - biosphere test model
at a (lat x lon x level x time) = (45 x 90 x 4 x 20) resolution

world_sh shell script level global atmosphere - biosphere test model
at a (lat x lon x level x time) = (45 x 90 x 4 x 20) resolution

world_f_1x1 Fortran global atmosphere - biosphere test model
at a (lat x lon x level x time) = (180 x 360 x 16 x 20) resolution

pixel_f Fortran global atmosphere - biosphere test model for one lat-lon constella-
tion at a (level x time) = (4 x 20) resolution

gams_model GAMS GAMS model from Example 15.5

Tab. 15.1 Implemented models for current version
for <model> = world_* check also Example 1.1

Additionally, the following files are available in the corresponding examples directory of $SE_HOME:

File Explanation

<model>.[f | c | py | gms] model source code
<model> model executable compiled and linked from <model>.[f | c]
world.edf_[a | b | c | d | e | f] experiment description files corresponding to Example 6.1, Example

6.2, and Example 6.3 to be copied to world_[f | c | py | sh].edf
and/or world_f_1x1

world.post_[c | e | bas | adv] post-processor input file (complete experiment) for world.edf_[c | e]
(simenv.res world_[f | c | py | sh] [new | append | replace]
 < world.edf_[c | e])
and/or all experiments (selected single run <run>)
(simenv.res world_[f | c | py | sh] [new | append | replace] <run>
 < world.edf_[bas | adv])

world.dat_[d | e | tab] data files for world.edf_[d | e] and/or world.post_adv
usr_opr_<opr>.f source code for user-defined operator <opr>
<opr>.opr executable for user-defined operator <opr>
model_[f | c].lnk <model> compile <model>.[f | c] and link executable <model>
usr_opr_<opr>.f source code file for user-defined post-processing operator <opr>

-100- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

File Explanation

operator_f.lnk <opr> compile usr_opr_<opr>.f and link executable <opr>.opr for user-
defined post-processing operator <opr>

Tab. 15.2 Implemented model-related user files for current version
for <opr> see Tab. 15.3 below

15.1.3 User-Defined Operators
The following user-defined operators are available from the corresponding examples directory of
$SE_HOME:

Name Explanation /
restriction Example

char_test('char1',’char2',arg) character test see source code

corr_coeff(arg1,arg2) correlation coefficient R corr_coeff(bios,-bios) =
-1.

div(arg1,arg2)
division as an example how the cor-
responding built in basic operator
works

div(-2,-4) = 0.5

mat_mul matrix multiplication of 2-
dimensional operands mat_mul(mat1,mat2)

simple_div(arg1,arg2) division without consideration of
overflow, underflow, division by zero simple_div(-2,-4) = 0.5

Tab. 15.3 Available user-defined operators

15.1.4 Technical Limitations
Entity Limitation

Model coupling and experiment preparation entities

max. length of a name [characters] 20
max. dimensionality of a model output variable 9
max. dimensionality of a model output variable stored in NetCDF format 4
max. dimensionality of a model output variable for Python models 4
max. dimensionality of a model output variable for GAMS models 2
max. number of model output variables in <model>.mdf 50
max. number of coordinates in <model>.mdf 30
max. number of experiment targets in <model>.edf 50
max. number of slice definitions during model coupling 30
max. number of single model runs in an experiment 999.999
max. number of coordinate values and target adjustment values 2.000
max. number of user-defined operators in <model>.odf 45

Post-processing entities (per expression)

max. number of arguments of an operator 9
max. dimensionality of a result output variable stored in NetCDF format 4
max. number of post-processor output files 99
max. number of characters of an expression 512
max. number of all operands and operators of an expression 200
max. number of characters of an constant 20
max. number of constants 30

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -101-

Entity Limitation

max. number of allocatable memory segments 10
max. allocatable memory [MBytes] 240

Tab. 15.4 Current SimEnv limitations

-102- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

15.2 Examples for Model Coupling and User-Defined Operators

15.2.1 Fortran Model
With respect to Example 5.1 the following Fortran code world_f.f could be used to describe the model cou-
pled to SimEnv. SimEnv modifications are marked in bold.

program world_f
 integer*4 simenv_ini_f, simenv_get_f, simenv_get_run_f
 integer*4 simenv_slice_f, simenv_put_f, simenv_end_f
c declare atmo without temporal dimension
c because it is computed in place and simenv_slice is used
 real*4 atmo(0:44,0:89,0:3)
 real*4 bios(0:35,0:89,0:19)
 integer*4 glob(0:19)
 integer*4 over
 integer*4 run_int
 character*6 run_char

 istatus = simenv_ini_f()
c check return code for the model coupling functions at least here
 if(istatus.ne.0) call exit_(1)
c only if necessary:
 istatus = simenv_get_run(run_int,run_char)
 p1 = 1.
 p2 = 2.
 p3 = 3.
 p4 = 4.
 istatus = simenv_get_f(‘p1’,p1,p1)
 istatus = simenv_get_f(‘p2’,p2,p2)
 istatus = simenv_get_f(‘p3’,p3,p3)
 istatus = simenv_get_f(‘p4’,p4,p4)
 do idecade = 0,3
c compute dynamics of atmo and bios over space and time,
c of glob over time, all dependent on p1,p2,p3
c ...
 istatus = simenv_slice_f(‘atmo’,4,idecade,idecade)
 istatus = simenv_put_f(‘atmo’,atmo)
 enddo
 istatus = simenv_put_f(‘bios’,bios)
 istatus = simenv_put_f(‘glob’,glob)
c compute dynamics of over
c ...
 istatus = simenv_put_f(‘over’,over)
 istatus = simenv_end_f()
 end

Example file:world_f.f

Example 15.1 Model coupling for Fortran models - model world_f.f

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -103-

15.2.2 C Model
With respect to Example 5.1 the following C code world_c.c could be used to describe the model coupled to
SimEnv. SimEnv modifications are marked in bold.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
extern int simenv_ini_c (void);
extern int simenv_get_run_c(int *, char *);
extern int simenv_get_c (char *, float *, float *);
extern int simenv_slice_c (char *, int *, int *, int *);
extern int simenv_put_c (char *, char *);
extern int simenv_end_c (void);
/* declare atmo without temporal dimension */
/* because it is computed in place and simenv_slice is used */
static float atmo[45][90][4];
static float bios[36][90][20];
static int glob[20];
static int over

main(void)
{
 float p1,p2,p3,p4;
 int run_int;
 char run_char[6];
 int istatus,idecade,idim;
 istatus = simenv_ini_c();
/* check return code of model coupling functions at least here */
 if(istatus != 0) return 1;
/* only if necessary: */
 istatus = simenv_get_run_c(&run_int,run_char);
 p1 = 1.;
 p2 = 2.;
 p3 = 3.;
 p4 = 4.;
 istatus = simenv_get_c(‘p1’,&p1,&p1);
 istatus = simenv_get_c(‘p2’,&p2,&p2);
 istatus = simenv_get_c(‘p3’,&p3,&p3);
 istatus = simenv_get_c(‘p4’,&p4,&p4);
 for (idecade=0; idecade<=3; idecade++)
/* compute dynamics of atmo and bios in over space and time, */
/* of glob over time, all dependent on p1,p2,p3 */
/* ... */
 { idim=4;
 istatus = simenv_slice_c(‘atmo’,&idim,&idecade,&idecade);
 istatus = simenv_put_c(‘atmo’,(char *) &atmo);
 }
 istatus = simenv_put_c(‘bios’,(char *) &bios);
 istatus = simenv_put_c(‘glob’,(char *) &glob);
/* compute dynamics of over */
/* ... */
 istatus = simenv_put_c(‘over’, ,(char *) &over);
 istatus = simenv_end_c();
 return 0;
}

Example file: world_c.c

Example 15.2 Model coupling for C models – model world_c.c

-104- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

15.2.3 Python Model
With respect to Example 5.1 the following Python code world_py.py could be used to describe the model
coupled to SimEnv. SimEnv modifications are marked in bold.

#!/usr/local/bin/python
import string
import os
from simenv import *
from math import *
from Numeric import *

atmo=zeros([45,90,4,20], Float)
bios=zeros([36,90,20], Float)
glob=zeros([20], Float)
simenv_ini_py()
only if necessary:
run_int = int(simenv_get_run_py())
p1=1.
p2=2.
p3=3.
p4=4.
p1 = float(simenv_get_py(‘p1’,p1))
p2 = float(simenv_get_py(‘p2’,p2))
p3 = float(simenv_get_py(‘p3’,p3))
p4 = float(simenv_get_py(‘p4’,p4))
for idecade in range(20):
compute dynamics of atmo and bios in over space and time,
of glob over time, all dependent on p1,p2,p3,p4
...
atmo=reshape(atmo,45*90*4*20,))
simenv_put_py(‘atmo’,atmo)
bios=reshape(atmo,45*90*20,))
simenv_put_py(‘bios’,bios)
simenv_put_py(‘glob’,glob)
compute dynamics of over
...
simenv_put_py(‘over’,over)
simenv_end_py()

Example file:world_py.py

Example 15.3 Model coupling for Python models – model world_py.py

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -105-

15.2.4 Model Coupling at Shell Script Level
Assume any experiment. Assume model executable world_sh to target values p1 to p4 as arguments from
the command line.
The shell script world_sh.run with a coupling at shell script level to run the model world_sh and to transform
model output to SimEnv could look like:

always perform at begin
. $SE_HOME/simenv_ini_sh

get experiment targets at shell script level
target_name=’p1’
target_def_val=1.
. $SE_HOME/simenv_get_sh
target_name=’p2’
target_def_val=2.
. $SE_HOME/simenv_get_sh
target_name=’p3’
target_def_val=3.
. $SE_HOME/simenv_get_sh
target_name=’p4’
target_def_val=4.
. $SE_HOME/simenv_get_sh

create temporary directory run<run_char> to perform the model there
. $SE_HOME/simenv_get_run_sh
mkdir run$run_char

run the model
cp land_sea_mask.coarsed run$run_char
cd run$run_char
../world_sh $p1 $p2 $p3 $p4
cd ..

read model results and output them to SimEnv
perform this always in the current working directory
since it uses simenv_*_* at language level
world_shput

clear and remove directory
cd run$run_char
rm -f *
cd ..
rmdir run$run_char

always perform at end
. $SE_HOME/simenv_end_sh

Example file: world_sh.run

Example 15.4 Model coupling at shell script level – model shell script world_sh.run

-106- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

15.2.5 GAMS Model
The SimEnv version comes with a coupled GAMS model gams_model.gms and all associated files that
fully correspond with the GAMS example model at http://www.gams.com/docs/gams/Tutorial.pdf. Modifica-
tions for SimEnv are marked in bold.

SETS
 I canning plants / SEATTLE, SAN-DIEGO /
 J markets / NEW-YORK, CHICAGO, TOPEKA / ;
PARAMETERS
 A(I) capacity of plant i in cases
 / SEATTLE 350
 SAN-DIEGO 600 /
 B(J) demand at market j in cases
 / NEW-YORK 325
 CHICAGO 300
 TOPEKA 275 / ;

* - Before using parameter (here: dem_ny and dem_ch) as SimEnv experiment
* targets they have to be declared as GAMS parameters with
* their default values from above.
* - then insert $include <model>_simenv_get.inc
* simenv_get.inc is generated automatically based on <model>.edf
* - and assign adjusted targets to model variables
 PARAMETERS
 dem_ny /325.0/
 dem_ch /300.0/;
 $include gams_model_simenv_get.inc
 B("NEW-YORK") = dem_ny;
 B("CHICAGO") = dem_ch;

TABLE D(I,J) distance in thousands of miles
 NEW-YORK CHICAGO TOPEKA
 SEATTLE 2.5 1.7 1.8
 SAN-DIEGO 2.5 1.8 1.4 ;
SCALAR F freight in dollars per case per thousand miles /90/

* get the model status as a model output
 modstat is set to transport.modelstat ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;
 C(I,J) = F * D(I,J) / 1000 ;
VARIABLES
 X(I,J) shipment quantities in cases
 Z total transportation costs in thousands of dollars ;
POSITIVE VARIABLE X ;
EQUATIONS
 COST define objective function
 SUPPLY(I) observe supply limit at plant i
 DEMAND(J) satisfy demand at market j ;
COST .. Z =E= SUM((I,J), C(I,J)*X(I,J)) ;
SUPPLY(I) .. SUM(J, X(I,J)) =L= A(I) ;
DEMAND(J) .. SUM(I, X(I,J)) =G= B(J) ;
MODEL TRANSPORT /ALL/ ;
SOLVE TRANSPORT USING LP MINIMIZING Z ;

* After solving the equations $include simenv_put.inc
* has to be inserted.
* simenv_put.inc is generated automatically by SimEnv

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -107-

* based on <model>.edf and <model>.gdf
* Additional GAMS commands are possible after the last modification
 modstat = transport.modelstat
 $include gams_model_simenv_put.inc

Example file:gams_model.gms

Example 15.5 Model coupling for GAMS models – model gams_model.gms

-108- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

15.2.6 User-Defined Operator
Implementation of the user-defined operator mat_mul in the file usr_opr_mat_mul.f:

function icheck_user_def_operator()
c declare fields to hold extents and coordinates
 dimension iext1(9),iext2(9)
 dimension ico_blk1(9),ico_blk2(9)
 dimension ico_beg1(9),ico_beg2(9)

c get dimensionality idimens, extents iext,
c coordinate block number ico_blk and
c begin number for coordinates ico_beg in coordinate block ico_blk
 idimens1=iget_dim_arg(1,iext1)
 idimens2=iget_dim_arg(2,iext2)
 iok=iget_co_arg(1,ico_blk1,ico_beg1)
 iok=iget_co_arg(2,ico_blk2,ico_beg2)
c get check modus for coordinates
 ichk_modus=iget_co_chk_modus()

 if(idimens1.ne.2.or.idimens2.ne.2) then
c wrong dimensionalities
 ierror=1
 else
 if(iext1(2).ne.iext2(1)) then
c wrong extents
 ierror=2
 else
 if(ico_blk1(2).eq.ico_blk2(1)) then
c coordinates identical
 if(ico_beg1(2).eq.ico_beg2(1)) then
 iret=31
 else
 iret=33
 endif
 else
c differing coordinates
 iret=32
 if(ichk_modus.eq.1) then
c check only for weak coordinate
 do j=0,iext1(2)-1
c get coordinate values
 iretv1=iget_coord_val(
 # ico_blk1(2),ico_beg1(2)+j,value1)
 iretv2=iget_coord_val(
 # ico_blk2(1),ico_beg2(1)+j,value2)
c iret=33: differing coordinate values
 if(value1.ne.value2) iret=33
 enddo
 endif
 endif
 ierror=0
 if(ichk_modus.eq.2) then
 if(iret.gt.31) ierror=3
 elseif(ichk_modus.eq.1) then
 if(iret.gt.32) ierror=3
 endif
 endif
 endif

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -109-

 if(ierror.eq.0) then
 iext1(2)=iext2(2)
 ico_blk1(2)=ico_blk2(2)
 ico_beg1(2)=ico_beg2(2)
 iok=iput_struct_res(0,idimens1,iext1,ico_blk1,ico_beg1)
 endif

c return error code
 icheck_user_def_operator=ierror
 return
 end

 function icompute_user_def_operator(res)
c SimEnv operator results are always of type real*4
 real*4 res(1)
c auxiliary variables
 integer*4 iext1(9),iext2(9)
 real*8 value8

c get dimensionality idimens and extents iext for both arguments
 idimens=iget_dim_arg(1,iext1)
 idimens=iget_dim_arg(2,iext2)

c perform matrix multiplication
 m=0
 do k=1,iext2(2)
 ioffs2=(k-1)*iext2(1)
 do i=1,iext1(1)
 ioffs1=i
c res(i,k) = sum(arg1(i,l) * arg2(l,k))
 value8=0.
 indi_defined=0
 do l=1,iext1(2)
 ia1=ioffs1+(l-1)*iext1(1)
 ia2=ioffs2+l
 fac1=arg1(ia1)
 fac2=arg2(ia2)
 if(is_undef(fac1)+is_undef(fac2).eq.0) then
 indi_defined=1
 value8=value8+fac1*fac2
 endif
 enddo
 m=m+1
 if(indi_defined.eq.0) then
 res(m)=set_undef()
 else
 res(m)=clip_undef(value8)
 endif
 enddo
 enddo

c return error code
 icompute_user_def_operator=0
 return
 end

Example file: usr_opr_mat_mul.f

Example 15.6 User-defined operator module – operator mat_mul

-110- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

15.3 Post-Processor Built-in Operators (in Thematic Order)
arg general numerical argument
const_arg constant value argument
char_arg character argument

Name Meaning

Elemental operators

arg1 + arg2 addition
arg1 - arg2 subtraction
arg1 * arg2 multiplication
arg1 / arg2 division
arg1 ** arg2 exponentiation
+ arg identity
- arg negation
(arg) parentheses

Basic operators

abs(arg) absolute value
dim(arg1,arg2) positive difference
exp(arg) exponentiation
int(arg) truncation value
log(arg) natural logarithm
log10(arg) decade logarithm
mod(arg1,arg2) remainder
nint(arg) round value
sign(arg) sign of value
sqrt(arg) square root

Trigonometric operators

sin(arg) sine
cos(arg) cosine
tan(arg) tangent
cot(arg) cotangent
asin(arg) arc sine
acos(arg) arc cosine
atan(arg) arc tangent
acot(arg) arc cotangent
sinh(arg) hyperbolic sine
cosh(arg) hyperbolic cosine
tanh(arg) hyperbolic tangent
coth(arg) hyperbolic cotangent

Miscellaneous operators

classify(const_arg,arg) classification of arg into const_arg classes
clip(char_arg,arg) clip arg according to char_arg
cumul(char_arg,arg) cumulates arg according to char_arg
experiment(char_arg1,
 char_arg2,arg)

include an other experiment

flip(char_arg,arg) flip arg according to char_arg
if(char_arg,arg1,arg2,arg3) general purpose conditional if-construct
mask(char_arg,arg1,arg2) mask elements of argument arg1

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -111-

Name Meaning

matmul(arg1,arg2) matrix multiplication
nr_of_runs() number of single runs of the current experiment
rank(char_arg,arg) rank of arg according to char_arg
run(char_arg,arg) values of arg for a single run selected by char_arg
table_fct(char_arg,arg) table function with linear interpolation of table char_arg for position arg
transpose(char_arg,arg) transpose arg according to char_arg
undef() undefined element

Aggregation and moment operators for arguments

min(arg) argument minimum of values
max(arg) argument maximum of values
sum(arg) argument sum of values
avg(arg) argument linear mean of values
var(arg) argument variance of values
avgg(arg) argument geometric mean of values
avgh(arg) argument harmonic mean of values
avgw(arg1,arg2) argument weighted mean of values
hgr(const_arg,arg) argument histogram of values
count(char_arg,arg) count number of values
minprop(arg) index of the element where the minimum is reached the first time
maxprop(arg) index of the element where the maximum is reached the first time

Multiple aggregation and moment operators for arguments

min_n(arg1,...,argn) minimum per element
max_n(arg1,...,argn) maximum per element
minprop_n(arg1,...,argn) argument position (1 ... n) where the minimum is reached the first time
maxprop_n(arg1,...,argn) argument position (1 ... n) where the maximum is reached the first time

Dimension-related aggregation and moment operators for arguments

min_l(char_arg,arg) dimension-related argument minima of values
max_l(char_arg,arg) dimension-related argument maxima of values
sum_l(char_arg,arg) dimension-related argument sums of values
avg_l(char_arg,arg) dimension-related argument linear means of values
var_l(char_arg,arg) dimension-related argument variances of values
avgg_l(char_arg,arg) dimension-related argument geometric means of values
avgh_l(char_arg,arg) dimension-related argument harmonic means of values
avgw_l(char_arg,arg1,arg2) dimension-related argument weighted means of values
hgr_l(char_arg,const_arg,arg) dimension-related argument histograms of values
count_l(char_arg1,char_arg2,
 arg)

dimension-related count numbers of values

minprop_l(char_arg,arg) dimension-related argument position (1 ... n) where the minimum is
reached the first time

maxprop_l(char_arg,arg) dimension-related argument position (1 ... n) where the maximum is
reached the first time

Multi-run operators (behavioural analysis)

behav(char_arg,arg) general purpose operator for navigating and aggregating in the experiment
space

Multi-run operators (Monte-Carlo analysis)

cnf(const_arg,arg) positive distance of confidence line from average avg_e(arg)
cor(arg1,arg2) correlation coefficient between arg1 and arg2
cov(arg1,arg2) covariance between arg1 and arg2

-112- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Name Meaning

ens(arg) whole Monte-Carlo run ensemble
krt(arg) kurtosis (4th moment)
med(arg) median
qnt(const_arg,arg) quantile of arg
reg(arg1,arg2) linear regression coefficient to forecast arg2 from arg1
rng(arg) range = max_e(arg) - min_e(arg)
skw(arg) skewness (3rd moment)
stat(const_arg1,const_arg2,
const_arg3,const_arg4,arg5)

basic statistical summaries

min_e(arg) run ensemble minimum
max_e(arg) run ensemble maximum
sum_e(arg) run ensemble sum
avg_e(arg) run ensemble average
var_e(arg) run ensemble variance
avgg_e(arg) run ensemble geometric average
avgh_e(arg) run ensemble harmonic average
avgw_e(arg1,arg2) run ensemble weighted average
hgr_e(const_arg,arg) heuristic probability density function
count_e(char_arg,arg) run ensemble count number of values
minprop_e(arg) run number where the minimum is reached the first time
maxprop_e(arg) run number where the maximum is reached the first time

Tab. 15.5 Post-processor built-in operators (in thematic order)

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -113-

15.4 Post-Processor Built-in Operators (in Alphabetic Order)
arg general numerical argument
const_arg constant value argument
char_arg character argument

Name Meaning

arg1 + arg2 addition
arg1 - arg2 subtraction
arg1 * arg2 multiplication
arg1 / arg2 division
arg1 ** arg2 exponentiation
+ arg identity
- arg negation
(arg) parentheses
abs(arg) absolute value
acos(arg) arc cosine
acot(arg) arc cotangent
asin(arg) arc sine
atan(arg) arc tangent
avg(arg) argument linear mean of values
avg_e(arg) run ensemble average
avg_l(char_arg,arg) dimension-related argument linear means of values
avgg(arg) argument geometric mean of values
avgg_e(arg) run ensemble geometric average
avgg_l(char_arg,arg) dimension-related argument geometric means of values
avgh(arg) argument harmonic mean of values
avgh_e(arg) run ensemble harmonic average
avgh_l(char_arg,arg) dimension-related argument harmonic means of values
avgw(arg1,arg2) argument weighted mean of values
avgw_e(arg1,arg2) run ensemble weighted average
avgw_l(char_arg,arg1,arg2) dimension-related argument weighted means of values

behav(char_arg,arg) general purpose operator for navigating and aggregating in the experiment
space

classify(const_arg,arg) classification of arg into const_arg classes
clip(char_arg,arg) clip arg according to char_arg
cnf(const_arg,arg) positive distance of confidence line from average avg_e(arg)
cor(arg1,arg2) correlation coefficient between arg1 and arg2
cos(arg) cosine
cosh(arg) hyperbolic cosine
cot(arg) cotangent
coth(arg) hyperbolic cotangent
count(char_arg,arg) count number of values
count_e(char_arg,arg) run ensemble count
count_l(char_arg1,char_arg2,
 arg)

dimension-related count numbers of values

cov(arg1,arg2) covariance between arg1 and arg2
cumul(char_arg,arg) cumulates arg according to char_arg
dim(arg1,arg2) positive difference
ens(arg) whole Monte-Carlo run ensemble
exp(arg) exponentiation

-114- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

Name Meaning

experiment(char_arg1,
 char_arg2,arg)

include an other experiment

flip(char_arg,arg) flip arg according to char_arg
hgr(const_arg,arg) argument histogram of values
hgr_e(const_arg,arg) heuristic probability density function
hgr_l(char_arg,const_arg,arg) dimension-related argument histograms of values
if(char_arg,arg1,arg2,arg3) general purpose conditional if-construct
int(arg) truncation value
krt(arg) kurtosis (4th moment)
log(arg) natural logarithm
log10(arg) decade logarithm
mask(char_arg,arg1,arg2) mask elements of argument arg1
matmul(arg1,arg2) matrix multiplication
max(arg) argument maximum of values
max_e(arg) run ensemble maximum
max_l(char_arg,arg) dimension-related argument maxima of values
max_n(arg1,...,argn) maximum per element
maxprop(arg) index of the element where the maximum is reached the first time
maxprop_e(arg) run number where the maximum is reached the first time
maxprop_l(char_arg,arg) dimension-related argument position (1 ... n) where the maximum is

reached the first time
maxprop_n(arg1,...,argn) argument position (1 ... n) where the maximum is reached the first time
med(arg) median
min(arg) argument minimum of values
min_e(arg) run ensemble minimum
min_l(char_arg,arg) dimension-related argument minima of values
min_n(arg1,...,argn) minimum per element
minprop(arg) index of the element where the minimum is reached the first time
minprop_e(arg) run number where the minimum is reached the first time
minprop_l(char_arg,arg) dimension-related argument position (1 ... n) where the minimum is

reached the first time
minprop_n(arg1,...,argn) argument position (1 ... n) where the minimum is reached the first time
mod(arg1,arg2) remainder
nint(arg) round value
nr_of_runs() number of single runs of the current experiment
qnt(const_arg,arg) quantile of arg
rank(char_arg,arg) rank of arg according to char_arg
reg(arg1,arg2) linear regression coefficient to forecast arg2 from arg1
rng(arg) range = max_e(arg) - min_e(arg)
run(char_arg,arg) values of arg for a single run selected by char_arg
sign(arg) sign of value
sin(arg) sine
sinh(arg) hyperbolic sine
skw(arg) skewness (3rd moment)
sqrt(arg) square root
stat(const_arg1,const_arg2,
const_arg3,const_arg4,arg5)

basic statistical summaries

sum(arg) argument sum of values
sum_e(arg) run ensemble sum
sum_l(char_arg,arg) dimension-related argument sums of values
table_fct(char_arg,arg) table function with linear interpolation of table char_arg for position arg
tan(arg) tangent
tanh(arg) hyperbolic tangent

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -115-

Name Meaning

transpose(char_arg,arg) transpose arg according to char_arg
undef() undefined element
var(arg) argument variance of values
var_e(arg) run ensemble variance
var_l(char_arg,arg) dimension-related argument variances of values

Tab. 15.6 Post-processor built-in operators (in alphabetical order)

-116- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

15.5 Character Arguments of Built-in Operators
Tab. 15.7 summarises for built-in operators character argument values. User-defined operators can not
have pre-defined character argument values.

Operator Argument
number

Argument value
(without quotation marks)

avg_l 1 sequence of digits 0 and 1
avgg_l 1 sequence of digits 0 and 1
avgh_l 1 sequence of digits 0 and 1
avgw_l 1 sequence of digits 0 and 1
behav 1 (not pre-defined)
clip 1 (not pre-defined)
count 1 [all | def | undef]
count_e 1 [all | def | undef]
count_l 1 sequence of digits 0 and 1
count_l 2 [all | def | undef]
cumul 1 sequence of digits 0 and 1
experiment 1 (not pre-defined)
experiment 2 (not pre-defined)
flip 1 sequence of digits 0 and 1
hgr_l 1 sequence of digits 0 and 1
if 1 [< | <= | > | >= | = | != | def | undef]
mask 1 [< | <= | > | >= | = | !=]
max_l 1 sequence of digits 0 and 1
maxprop_l 1 sequence of digits 0 and 1
min_l 1 sequence of digits 0 and 1
minprop_l 1 sequence of digits 0 and 1
rank 1 [tie_plain | tie_min | tie_avg]
run 1 [run number | not pre-defined]
sum_l 1 sequence of digits 0 and 1
table_fct 1 (not pre-defined)
transpose 1 sequence of digits 1 to 9
var_l 1 sequence of digits 0 and 1

Tab. 15.7 Character arguments of built-in operators

The length of the character string argument with a sequence of digits corresponds with the dimensionality of
the non-character argument under investigation.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -117-

15.6 Constant Arguments of Built-in Operators
Tab. 15.7 summarises for built-in operators constant argument values. User-defined operators can not have
pre-defined constant argument values.

Operator Argument
number

Argument
type Argument value

classify 1 integer [0 | ≥ 2]
cnf 1 real [0.001 | 0.01 | 0.05 | 0.1]
hgr 1 integer [0 | ≥ 4]
hgr_e 1 integer [0 | ≥ 4]
hgr_l 2 integer [0 | ≥ 4]
qnt 1 real 0. ≤ arg1 ≤ 100.
stat 1 real 0. ≤ arg1 ≤ 100.
stat 2 real 0. ≤ arg2 ≤ 100.
stat 3 real [0.001 | 0.01 | 0.05 | 0.1]
stat 4 real [0.001 | 0.01 | 0.05 | 0.1]

Tab. 15.8 Constant arguments of built-in operators

-118- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

15.7 Glossary
The glossary defines terms in that sense they are used in this User’s Guide. An arrow � refers to another
term in the glossary.

Adjustment: Numerical modification of a � target during an � experiment. Adjustments are related to an �
experiment type and are described in the experiment description � user-defined file.

ASCII: The American Standard Code for Information and Interchange developed by the American National
Standards Institute (http://www.ansi.org) is used in SimEnv to store information in � user-defined
files.

Behavioural analysis: � Experiment type to inspect behaviour of a � model in a space, spanned up by �
targets. The target space is scanned in a deterministic manner, applying pre-defined � adjust-
ments of the targets with a flexible scanning strategy for target sub-spaces.

Coordinate coord: In the model description � user-defined file each � dimension of a � variable with a �
dimensionality greater than 0 a coordinate is assigned to. A coordinate has a unique name and
strictly monotonous ordered coordinate values. The number of coordinate values corresponds with
the � extent for this dimension. Consequently, each model variable with a dimensionality greater
than 0 resides at a assigned (multi-dimensional) � grid.

Coupling: Coupling means interfacing a � model to SimEnv and enabling finally experimenting with a
model within SimEnv. There are coupling interfaces at programming language level for C, Fortran,
� Python, and � GAMS. Additionally, models can be coupled at the shell script level by using
shell script syntax elements. For all coupling techniques, the model is wrapped into a shell script.

Data type: The type of a � variable as declared in the � model and the corresponding model description �
user-defined file. SimEnv data types are byte, short, int, float, and double.

Default value: The nominal (standard) numerical value of an experiment � target. The default value is
specified in the experiment description � user-defined file and for � coupling at the language level
also in the model code.

Dimension: � dimensionality

Dimensionality dim: The number of dimensions of a model � variable or of an � operand in model output
post-processing. In the model description � user-defined file each variable a dimensionality is as-
signed to that corresponds with the dimensionality of the related model output field in the model
source code. Dimensionality 0 corresponds to a scalar, dimensionality 1 to a vector, dimensionality
2 to a matrix.

Environment variable: At UNIX operating system level the so called environment is set up as an array of
operating-system and user-defined environment variables that have the form Name=Value. The
Value of a Name can be addressed by $Name. In SimEnv directory and path strings or parts of it
with environment variables are forbidden.

Experiment: Performing simulation runs with a � model in a co-ordinated manner by applying � experi-
ment types and running the model in a run ensemble, i.e., a series of single simulation runs.

Experiment target: � target

Experiment type: Pre-defined multi-run simulation experiment. In the process of experiment preparation
(defining an experiment by describing it in the experiment description � user-defined file) � tar-
gets are assigned to an experiment type and experiment-specific � adjustments and other infor-
mation are assigned to the targets. Currently available experiment types are � behavioural analy-
sis, � Monte-Carlo analysis, and � local sensitivity analysis.

Extent ext: The number of values for a dimension (from the � dimensionality) of a model � variable or of
an � operand in model output post-processing. Extents are always greater than 1. Model variables
and operands of dimensionality 0 do not have an extent.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -119-

Fortran column-wise storage model: A rule how to map multi-dimensional field data to a 1-dimensional
vector. A data field field(1:ext1 , ... , 1:extdim) of � dimensionality dim and � extents ext1, ..., extdim
is mapped in the following way on a 1-dimensional vector vect(1:ext1*...*extdim)

ipo=0
do idim = 1 , extdim
 ...
 do i2 = 1 , ext2
 do i1 = 1 , ext1
 ipo = ipo + 1
 vect(ipo) = field(i1 , i2 , ... , idim)
 enddo
 enddo
 ...
enddo

GAMS: The General Algebraic Modeling System (http://www.gams.com) is a high-level modeling system for
mathematical programming problems. It consists of a language compiler and a stable of integrated
high-performance solvers. GAMS is tailored for complex, large scale modeling applications, and
allows to build large maintainable models that can be adapted quickly to new situations.

Grid: Regular topological structure for a model � variable or an � operator result in post-processing,
spanned up as the Cartesian product of the assigned � coordinates to the variable or the operator
result.

IEEE: SimEnv can use on demand for storage of model and post-processor output the Institute of Electrical
and Electronics Engineers (http://www.ieee.org) standard #754 for binary storage of floating point
numbers.

Macro: An abbreviation for a unique expression, formed from a chain of operands and operators to apply
during post-processing. Macros can be embedded into other expressions and are plugged into the
expression during its evaluation. Macros are described in the macro description � user-defined
file.

Model: A model is a deterministic or stochastic algorithm, coded in one or a number of computer programs
that transforms a sequence of input values (� targets) into a sequence of output values (� vari-
ables). Normally, inputs are parameters, initial values, boundary values, or driving forces to the
model, outputs are state variables of the model. For many cases, the model will be state determi-
nistic, time and space dependent. For SimEnv, the model, its targets and variables are interfaced
in the process of model � coupling.

Model coupling: � coupling

Model output post-processing operator: � operator

Model variable: � variable

Monte-Carlo analysis: � Experiment type with pre-single run perturbations of experiment � targets. Each
perturbed target a � probability density function pdf with function parameters is assigned to. Dur-
ing the � experiment � adjustments of the targets are realizations from the pdf’s using random
number techniques. In experiment post-processing statistical measures can be derived from model
output of the run ensemble. A prominent statistical measure is the heuristic pdf (histogram) of a
model � variable and its relation to the pdf’s of the targets.

NetCDF: Network Common Data Form is an interface for array-oriented data access and a library that pro-
vides an implementation of the interface. The NetCDF library also defines a machine-independent
format for representing scientific data. Together, the interface, library, and format support the crea-
tion, access, and sharing of scientific data. The NetCDF software was developed at the Unidata
Program Center in Boulder, Colorado (http://www.unidata.ucar.edu). NetCDF is freely available.
SimEnv follows for model output and post-processing output storage the NetCDF Climate and
Forecast (CF) metadata convention 1.0-beta4
(http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html) and extends it.

-120- Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004

OpenDX: The Open Data Explorer OpenDX (http://www.opendx.org) is a uniquely full-featured open source
project and software package for the visualization of scientific, engineering and analytical data: Its
open system design is built on a standard interface environment. The data model provides users
with great flexibility in creating visualizations. OpenDX is based on IBM’s Visualization Data Ex-
plorer.

Operand: Argument of an � operator in SimEnv model output post-processing. An operand can be a model
� variable, an experiment � target, a constant, a character string, � a macro and an operator.

Operator: Computational algorithm how to transform the values of a sequence of � operands into a se-
quence of operator results during model output post-processing. An operator transforms � dimen-
sionality, � extents, and � coordinates from the operands into the corresponding information for
the operator result. There are built-in elemental, basic, and advanced operators as well as built-in
operators related to specific � experiment types. Additionally, SimEnv offers specification of user-
defined operators according to an operator interface. User-defined operators are announced to the
system in the operator description � user-defined file.

Probability density function pdf: A probability density function serves to represent a probability distribution
in terms of integrals. A probability distribution assigns to every interval of real numbers a probabil-
ity.

Python: Python (http://www.python.org) is an portable, interpreted, interactive, object-oriented programming
language. It incorporates modules, exceptions, dynamic typing, and very high level dynamic data
types, and classes.

Local sensitivity analysis: � Experiment type with incremental � adjustments of � targets in the neigh-
bourhood of the � default values of the targets. A local sensitivity analysis in SimEnv is always
performed independently for all targets involved.

Target: Element of the input set of a � model. Targets are manipulated numerically during an � experi-
ment. Targets can be addressed in model output post-processing and they have there a � dimen-
sionality of zero.

Target adjustment: � adjustment

User-defined files: A set of � ASCII files to describe � model-, � experiment-, � operator-, � macro-,
and � GAMS model specific information and to determine general SimEnv settings. All user-
defined files follow the same syntax rules.

Variable: Element of the output set of a � model that is stored in a SimEnv model or post-processor output
format. Variables are defined in the model as well as in the appropriate model description � user
file. Each variable has a unique � data type, a � dimensionality, � extents and an assigned �
grid. Normally, variable consists of a series of values, forming fields.

White spaces: � ASCII characters space (blank) and horizontal tabulator used in � user-defined files or
within expressions in model output post-processing.

Working directory: The directory, a SimEnv service was started from.

Multi-Run Simulation Environment SimEnv User’s Guide for Version V1.01 03-Feb-2004 -121-

