

The Multi-Run Simulation Environment SimEnv

M. Flechsig, U. Böhm^(*), T. Nocke, C. Rachimow PIK – Potsdam Institute for Climate Impact Research (*) DWD Berlin

General SimEnv Approach

SimEnv is a sampling-based simulation environment for sensitivity, uncertainty and scenario analyses. It aims to quantify uncertainty and identify sensitive factors or processes of a simulation model **M**.

input factor vector (parameters, initial values) large volume multi-variate / -dimensional model output

Experiment Types

Pre-formed experiment type templates represent probabilistic, deterministic or Bayesian sampling strategies in X_k . They are equipped with numerical information to generate a sample. The result is a multi-run simulation experiment with the model for the sample

F	$\{x\}$ sample set • default factor value of M in X_2		
Factor ranking	Qualitative ranking of a large number of factors with respect to their sensitivity on model output at random trajectories in X_k For determination of most important factors to focus on afterwards		
Variance Decomposition	Orthogonal variance decomposition of model output to first order and total effects of factors by a Monte Carlo re-sampling {+} For - uncertainty analysis - model validation		
Monte Carlo Analysis	Probabilistic (pseudo, quasi, stratified random) marginal factor sampling and determination of statistical measures For - error analysis - model validation		
Local Sensitivity Analysis	Sampling in a local neighbourhood of the default factor values For local first order sensitivity measures by investigating finite difference approximations of derivatives		
Determ. Factorial Design	Deterministic inspection with a flexible screening strategy in X _k For - one-factor-at-a-time experiments - (fractional) factorial experiments - response surface methodology		
Bayesian Calibration	Qualified posterior distribution of X _k in terms of a representative sample by additional data from the system For - model parametrization / calibration - Bayesian model calibration		
Optimization	Stochastic sampling to find the global minimum of a cost function on X_k applying simulated annealing (ASA) For - model validation - control design		

Model Interface

It is based on minimal source code modifications for C/C++, Java, Fortran, Python, Matlab, Mathematica, and GAMS models, at shell level and for ASCII files by implementing a SimEnv function call

- simenv_get to get in M a sampled factor value x_i from SimEnv
- simenv_put to put model output field y from **M** to SimEnv

SimEnv experiment output is stored in self-describing Network Common Data Form NetCDF or IEEE compliant binary format.

Experiment Load Management

- Sequential on a local machine
- Distributed on a multi-core machine
- Parallel on a compute cluster, using MPI
- Optional partial experiments, experiment restart

Post-Processing and Visual Evaluation

Interactive post-processing allows

- to compute secondary output functions from model output y, reference data and other SimEnv experiments by applying chains of elemental/ selective/ analytical/ and statistical operators
- to navigate X_k and derive uncertainty and sensitivity measures for output functions over the run ensemble space by applying experiment type-specific operators

Currently, 100+ built-in operators are available. There is an interface to plug user-defined operators into the environment.

Analysis and evaluation of post-processed output and derived measures from experiment output benefit from the coupled visual analytics framework SimEnvVis.

Prospects

- Single factor experiments as multi-factor experiment types
- Multi-file support for very large experiment output
- Model interface for R

References

 SimEnvVis
 http://www.pik-potsdam.de/software/simenv

 CLM
 http://clm-community.eu

 NetCDF
 http://www.unidata.ucar.edu/packages/netcdf

MPI http://www.mpi-forum.org GAMS http://www.gams.com ASA http://ingber.com/#ASA

Example CCLM – regional climate model Baltic Sea and Northern / Central Europe Space: 0.5° lat x 0.5° lon x 20 vertical layers Time: 6 hourly model output Parametrization of the soil submodel: Dependency of latent and sensible heat fluxes lhf and shf from soil in a $X_2 = (\text{crsmin}, \text{Tend})$

Model output variable description file

coordinate lat values 35 (0.5) 67 coordinate lon values -25 (0.5) 40 coordinate time values 1 (1) 28 variable lhf coords lat , lon , time variable shf coords lat , lon , time	# defines coord. latitude with ½° resolution # defines coord. longitude # defines coord. time (6 hourly time steps) # defines lhf as lhf(lat,lon,time) # defines shf as shf(lat,lon,time)
--	---

Experiment Determ. Factorial Design: Experiment description file

factor	crsmin	sample	30 (5) 120	# specifies 19 sampled values for crsmin
factor	crsmin	default	60.	# default model value of crsmin
factor	crsmin	type	set	# directly use sampled values
factor	Tend	sample	273.1 (5) 333.1	
factor	Tend	default	313.15	
specific		comb	crsmin*Tend	# factorial screening: 19*13+1=248 runs

Post-processor

 Fig. 1: dfd(``, avg(shf)) - run(`default`, avg(shf))
 # area and temporal averaged shf bias

 Fig. 2: dfd(`sel_s(Tend=313.15)`, avg_l(`time`, shf))
 # area averaged shf bias for each time step, - run(`default`, avg_l(`time`, shf))

 # all crsmin, and the default value of Tend

Experiment Monte Carlo analysis

o manimum Manta Carla anal

SimEnv Applications at PIK

Model	Aim	Model interface
4C	Factorial designs, Bayesian calibration	Fortran
Aeolus	Factorial designs	C++
Climber-2	Monte Carlo and uncertainty analyses	Fortran
CLM	parameter screening, Monte Carlo analyses	Fortran, script level
Lagom (at GCF)	model validation, global sensitivity analysis	Java, Matlab, Mathematica,
LPJ	global / regional model applications	C, script level
REMIND / MAgPIE	parameter screening, uncertainty analyses	GAMS
Monsoon	sensitivity and Monte Carlo analyses, optimization	C, Fortran

SimEnv General Workflow

System Requirements

Component	Minimal specification
hardware	Intel-based systems and compati- bles with a 32-bit processor i386
operating system	SUSE V 9.0
shell	Bourne shell
C/C++ compiler	gcc V 3.3
Fortran compiler	ifort V 10.0 or gfortran V 4.2
Python	V 2.3
NetCDF	V 3.6.0
OpenDX	V 4.4.4
Qt	V 3.3.5
MPI	V 1.0
Java ^(*)	V 1.4
Matlab ^(*)	V 7.7
Mathematica (*)	V 4.1
GAMS (*)	Distr. 20

(*): only for running a corresponding interfaced model

Contact

Potsdam Institute for Climate Impact Research Telegrafenberg D-14473 Potsdam http://www.pik-potsdam.de

Michael Flechsig Phone: +49 - 331 - 288-2604 Mail: flechsig@pik-potsdam.de Web: http://www.pik-potsdam.de/software/simenv

Multi-Run Simulation Environment

http://www.pik-potsdam.de/software/simenv

SimEnv is a multi-run simulation environment that addresses the evaluation and usage of models with large and multi-dimensional output mainly for uncertainty, sensitivity and scenario analyses applying pre-formed sampling strategies in model parameter / initial value spaces.

Potsdam Institute for Climate Impact Research