Economic impact of climate change on forestry: An analysis at European scale

M.L. Chas-Amil¹, J.M.Da-Rocha², F.J.García-Cutrín², M.J.Gutiérrez³,

E.Sánchez², J. Sempere⁴, S.Villasante¹

¹University of Santiago de Compostela, Spain
² University of Vigo, Spain
³ University of Basque Country, Spain
⁴ El Colegio de México, Mexico

Managing Forests in the 21st century Postdam, 3-5 March 2020

Introduction

Natural forest disturbances, such as wildfires, wind and bark beetles, are critical drivers of composition, structure and functioning of forest ecosystems.

In Europe, over the period 1960-2000, an annual average of:

- 213,000 ha were affected by wildfires.
- 22,000,000 m³ of wood was damaged by disturbances, such as wind (84%) and bark beettles (16%).

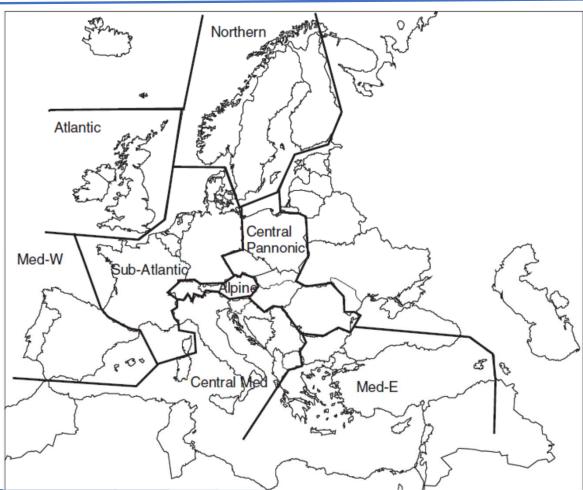
Research questions

Natural forest disturbances have also social and economic effects. Moreover, they are strongly climate-sensitive and therefore liable to be affected by climate change.

Some questions emerge:

Q1: What is the economic impact of disturbances on forest at an European scale? Q2: What is the economic impact of climate change on forest?

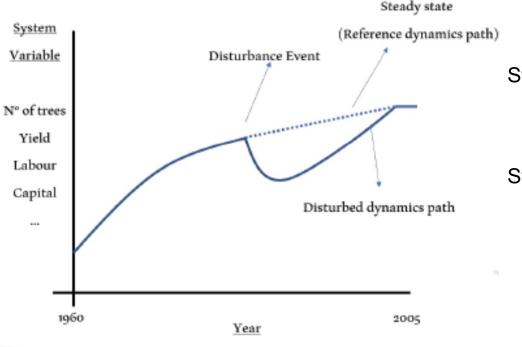
Policy-relevance:


Developing resilience based management requires to understand and measure the extent of the economic impact of disturbances.

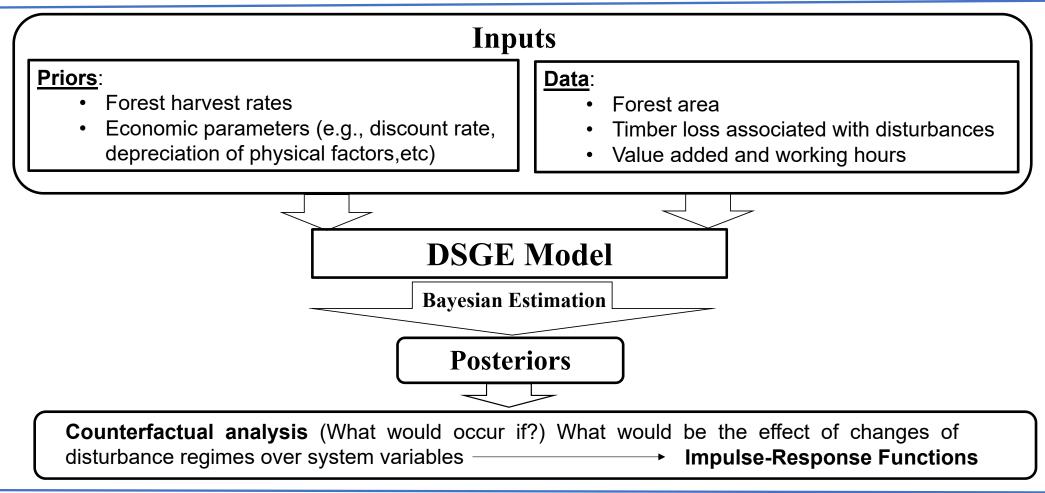
Case study: European Forest

We consider **17 European countries** (classified in 6 ecological zones based on Schelhaas et al. (2013)),

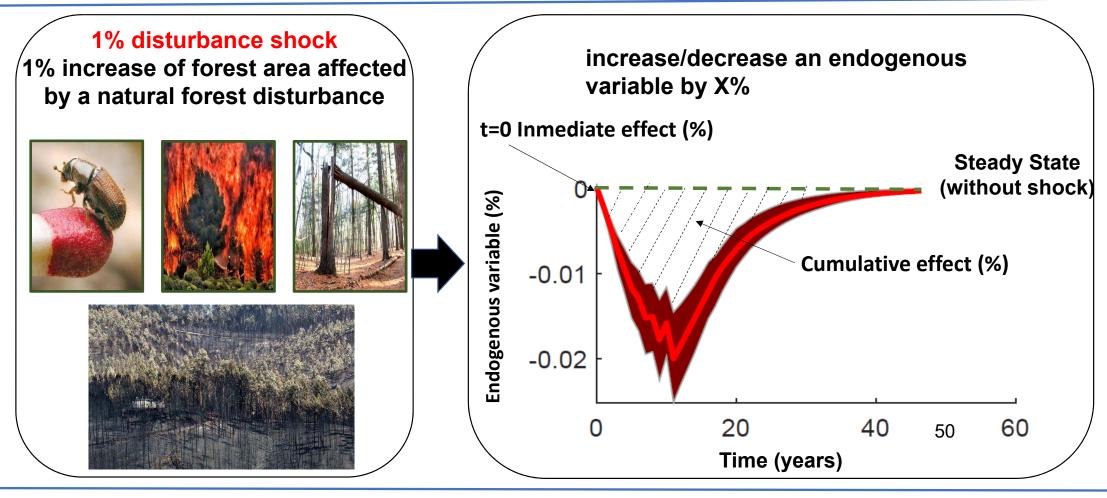
and **3 natural forest disturbances** (wildfires, wind, and bark beetles).


Period studied: 1960-2005

Division of Europe into ecological zones (Schelhaas et al. 2013 Global Change Biology)


Methods: Dynamic Integrated Forestry Model

A (macro) economic Dynamic Stochastic General Equilibrium (DSGE) model is estimated **by country and type of forest disturbance** in order to analyse the dynamic impact of disturbances.



- Step 1. Estimation by <u>Bayesian techniques</u> of the reference dynamic path (forest evolution over time without a disturbance shock), using historical data.
- Step 2. <u>Impulse-response functions</u> to asses the impact of a disturbance shock (disturbed dynamic path) to be compared to the reference dynamic path.

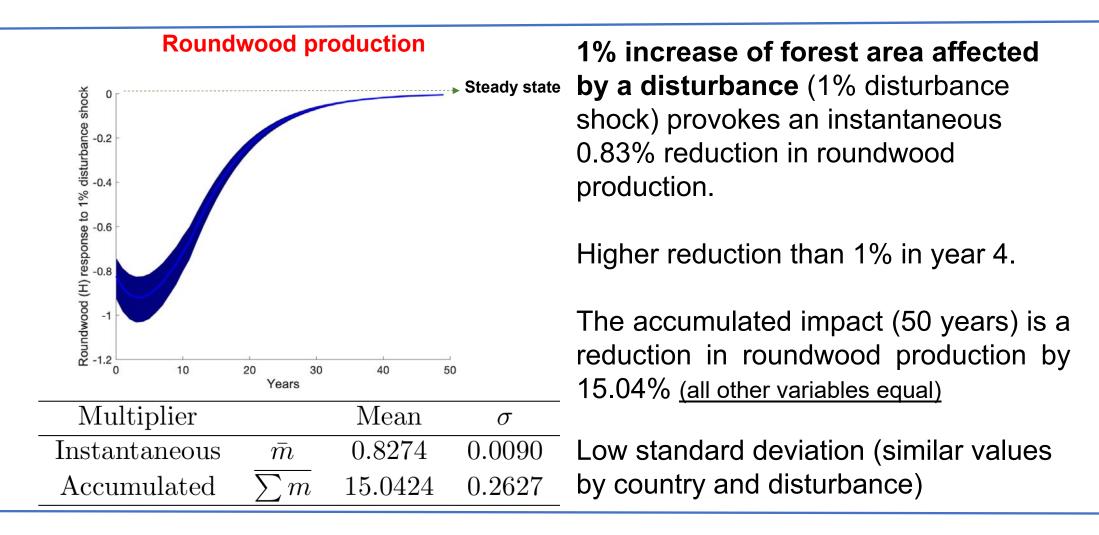
Methods: Dynamic Integrated Forestry Model

Methods: Dynamic Integrated Forestry Model

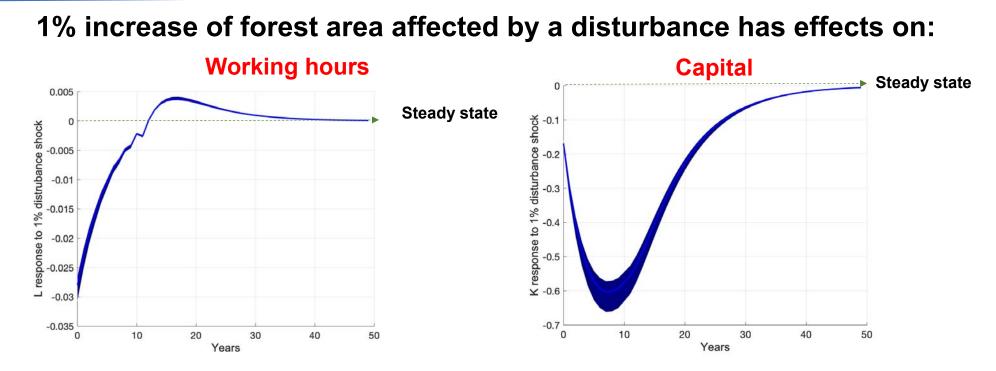
By each country and natural forest disturbance

Materials

Source • Forest area (ha) 16 Age-class structure in 10 years class Vilen et al. (2012) Timber loss associated with disturbances • Seidl et al. (2014), Schelhaas et al. (2003) (wildfires, wind and bark beetles) Roundwood production (m³) FAO: ٠ http://www.fao.org/faostat/en/#data/FO • Economic dataset (forestry sector): - Value added (Y) OECD: https://stats.oecd.org/ - Working hours (L)


	Country	OECD	FAO	Fire	Wind	Bark B.
Alpine	AUS	Х	Х	Х	Х	Х
	SWZ	Х	Х	Х	Х	Х
Pannonic	CZE	Х	Х	Х	Х	Х
	POL	Х	Х	Х	Х	X
	HUN	Х	Х	Х	n.a.	Х
Northern	FIN	Х	Х	Х	Х	n.a.
	SWE	Х	Х	Х	Х	X
	NOR	Х	Х	Х	n.a.	Х
Sub-Atlantic	DNK	Х	Х	Х	Х	n.a.
	FRA	Х	Х	Х	Х	Х
	GER	Х	Х	Х	Х	Х
	NLD	X	Х	Х	Х	Х
Mediterranean	PRT	Х	Х	Х	n.a.	n.a.
	SPA	Х	Х	Х	n.a.	n.a.
	ITA	Х	Х	Х	Х	Х
Atlantic	IRL	Х	Х	Х	Х	n.a.
	UK	Х	Х	Х	Х	n.a.

Materials: Data coverage


Results: Q1. Economic multipliers by country and disturbance

			F	lire	W	ind	Ba	ark
			t=0	all	t=0	all	t=0	all
1% increase of forest	Alpine	AUT	0.8327	15.0139	0.8408	15.1595	0.8375	15.1009
area affected by fire has		CHE	0.8311	15.1989	0.8378	15.3221	0.8415	15.3899
5	Pannonic	CZE	0.8471	15.0153	0.8355	14.8089	0.8338	14.7783
an inmediate reduction of		POL	0.8259	14.4806	0.8306	14.5638	0.8361	14.6602
0,8327% on roundwood		HUN	0.8251	14.8773	0.8325	15.0101	0.8352	15.0585
production in Austria,	Northern	FIN	0.8165	14.9069	0.8409	15.3523	0.8367	15.2740
•		SWE	0.8318	15.2119	0.8284	15.1508	0.8111	14.8342
and 15.0139%		NOR	0.8259	15.4752	0.8336	15.6185	0.8277	15.5089
cumulative reduction in	Sub Atlantic	DNK	0.8299	15.2339	0.8228	15.1023	0.8345	15.3171
		FRA	0.8328	15.0155	0.8297	14.9594	0.8439	15.2147
50 years.		DEU	0.8355	15.0642	0.8360	15.0726	0.8306	14.9759
(all other variables remain		NLD	0.8288	15.2850	0.8161	15.0521	0.8388	15.4707
equal)	Mediterranean	\mathbf{PRT}	0.8288	13.3792	0.8334	13.4535	0.8481	13.6910
		ESP	0.8296	15.5408	0.8303	15.5528	0.8351	15.6438
Similar results by country		ITA	0.8399	15.1426	0.8357	15.0675	0.8357	15.0676
	Atlantic	IRL	0.8302	15.6038	0.8377	15.7440	0.8288	15.5769
and disturbance		GBR	0.8248	15.2626	0.8255	15.2759	0.8419	15.5787

Results: Q1. Economic multipliers (mean)

Results: Q1. Economic response to a 1% disturbance shock

Intertemporal Substitution:

Damage destroy natural capital inducing intertemporal leisure substitution (less working hours) and less investments (less capital)

Results: Q1. Economic response to a 1% disturbance shock

1% increase of forest area affected by a disturbance has effects on:

In order to mitigate the impact on income, "harvesting intensity" increases until year 5 (compensation of first years losses)

Results: Posteriors

	Wildfires	Wind	Bark beetles
Alpine	0.56	28.37	7.06
Pannonic	0.56	10.56	4.00
Northern	0.07	10.69	2.07
Sub Atlantic	0.46	30.73	3.30
Mediterranean	19.87	8.40	0.04
Atlantic	0.44	23.40	

Based on the model, we obtained the mean % of forest area affected by each disturbance in each country.

For example, wind has affected an average of 28% of Alpine forest in the period studied.

Results: Q2. Economic impact of climate change

• This model permits to simulate the economic impact of different scenarios.

Example. Climate change provokes the extend of Mediterranean wildfire regime (intensity and frequency) to the sub-Atlantic area.

	All disturbances			
	t=0	accumulated		
Status Quo	16,66	99,87		
Scenario	20,16	128,94		

Cumulative loss in 50 years due to the scenario proposed

128,94- 99,87= 29,07% of the total annual roundwood production in Europe (approximately 116,000,000 m³)

Assuming an average price of $40 \notin m^3$, the damage in 50 years, due to the scenario proposed, would be: 4,640,000,000 \notin (all other variables equal)

Conclusions

- 1% disturbance shock causes a 0.83% reduction in roundwood production in year 1
- This is caused, in part, by the intertemporal substitution effect.
- Total (dynamic) impact implies a 15% decrease in roundwood production.
- Climate change: The model permits to simulate different scenarios

Acknowledgments

- REFORCE/PCIN-2017-054, and FP7 ERA-NET Sumforest.
- ECOBAS

Thank you!