

Locally adapted stand-scale forest management alternatives for the 21st century

Mats Mahnken, FORMASAM network Managing forests in the 21st century - 03.03.2020, Potsdam

• FORMASAM: development of locally adapted stand scale alternative forest management systems

- investigate distinct alternative management scenarios for their climate change mitigation potential
- analyse the interacting effects of climate change and forest management on forest dynamics

FORMASAM management scenarios

- 9 typical European forest stands across (PROFOUND DB, Reyer et al. 2019)
- **local expertise** for the contruction of realistic alternative management systems
- management definition by rotation period, thinning regime, harvest type, planting

FORMASAM management scenarios

TB=Thinning	from	belov	w, 17	∖ = 1	hinnii	ng fro	om at	oove,	H= F	larve	st, P=	Plant	ing									
Name	Ini	нм	FM1	FM2	FM3	FM4	FM5	FM6	FM7	FM8	FM9	FM10	FM11	FM12	FM13	FM14	FM15	FM16	FM17	FM18	FM19	Remarks
	1995	1996- 2011	2026	2041	2056	2071	2086	2101	2102	2117		2242	2243	2258								Only simulate pine and spruce (no hard-woods) and regenerate as pure pine stand.
Current generic		тв	TB20	TB20	TB20	TB20	TB20	н	Р	TB20	тв20	н	P	тв20	TB20							
Current Site-	1995	1996- 2011	2031	2051	2052	2072	2102	2122	2142	2143	2163	2193	2213	2233	2234	2254	2284	2304				
specific		тв	TA20	н	Р	TB20	TB20	TA20	н	Р	TB20	TB20	TA20	н	Р	TB20	TB20	TA20				
	1995	1996- 2011	2021	2022	2042	2082	2083	2103	2143	2144	2164	2204	2205	2225	2265	2266	2286	2326				
Bioenergy		тв	н	Р	TB25	н	Р	TB25	н	Р	TB25	н	Р	TB25	н	Р	TB25	н				
	1995	1996- 2011	2031	2071	2081	2082	2102	2132	2152	2192	2202	2203	2223	2253	2273	2313						
HWP		ТВ	TA10	TA10	н	Р	TB10	TB10	TA10	TA10	н	Р	TB10	TB10	TA10	TA10						
	1995	1996- 2011	2021	2041	2042	2062	2082	2102	2122	2123	2143	2163	2183	2203	2204	2224	2244	2264	2284	2285	2305	
Multifunctional- Adapted		тв	TA20	н	Р	тв20	тв20	TA20	н	Р	тв20	тв20	TA20	н	Р	тв20	тв20	TA20	н	Р	тв20	

Table 23: Detailed FORMASAM management schedule for Hyytiälä. Ini = Initialization data, HM = Historic Management, FM = Future Management,TB=Thinning from below, TA = Thinning from above, H= Harvest, P=Planting

FORMASAM management scenarios

	current site (CSS)	specific	bioenergy f (BE)	ocussed	harvested w products (н	vood wp)	multifunction adapted (Mit	o nally A)	no management (noMan)		
	deciduous	coniferous	deciduous	coniferous	deciduous	coniferous	deciduous	coniferous	deciduous	coniferous	
silvicultural system	shelterwood / even-aged clearcut	even-aged clearcut	even-aged clearcut / shelterwood	even-aged clearcut	even-aged clearcut / shelterwood	even-aged clearcut	even-aged clearcut	even-aged clearcut / shelterwood	-	-	
rotation length	97.5 years	107 years	70 (-27.5) years	62 (-45) years	105 (+7.5) years	118 (+11) years	90 (-7.5) years	110 (+3) years	-	-	
mean thinning return period	12 years 17 years		21 (+9) years 27 (+10) years		14 (+2) years 20 (+3) years		11 (-1) years 17 (+-0) years		-	-	
mean thinning intensity	19 % BA	19 % BA	21 (+2) % BA	25 (+6) % BA	18 (-1) % BA	13 (-6) % BA	19 (+-0) % BA	15 (-4) % BA	-	-	
thinning regime	above-below / below-above	<u>below</u> / above- below / below- above	<u>below</u> /above	below	<u>below-above</u> / above	above / below- above	<u>below-above</u> / above-below	above / below- above / above- below	-	-	
harvest type	stem only	stem only	stem + branches (+ stumps)	stem + branches (+ stumps)	stem only	stem only	stem only	stem only	-	-	
species	Fagus sylvatica	Pinus sylvestris, Picea abies	Fagus sylvatica	Pinus sylvestris, Picea abies	Fagus sylvatica	Pinus sylvestris, Picea abies	Fagus sylvatica, Pseudotsuga meziesii, Betula pendula, Picea abies, Sorbus aucparia, Quercus pubescens	Picea abies, Pinus sylvestris, Fagus sylvatica, Abies alba, Quercus robur, Betula pendula, Sorbus aucuparia	Fagus sylvatica	Pinus sylvestris Picea abies	

simulation setup

Х

	FORMASAM management scenarios										
	noMan : no management (control)										
	CSS: current site-specific (BAU)										
X	BE: bioenergy (mitigation)										
	HWP: harvested wood products (mitigation)										
	MFA: multifunctionally adapted (adaptation)										

- 8 sites simulated across Europe with alternative management scenarios
- 4-5 locally-adapted management scenarios
- simulation period: 1944-1997 to 2100

	GCMs
An	IPSL
1C	GFDL
	MIROC

climate scenarios

RCP 2.6 with CO2 fertilization (w CO2)
RCP 2.6 without CO2 fertilization (w/o CO2)
RCP 6.0 with CO2 fertilization (w CO2)
RCP 6.0 without CO2 fertilization (w/o CO2)
pre-industrial control with CO2 fixed at 286 ppm

simulation study

Ρ

PIC 286 RCP2.6 w CO2 RCP6.0 w CO2 RCP2.6 w/o CO2 RCP6.0 w/o CO2

climate change effects on productivity

- increase in **gross productivity** with temperature increase
- small ecosystem productivity increase despite increased respiration

mitigation potential and harvest rate

managment

- allocation of net ecosystem production into carbon pools / harvest is moderated by management
- potential substitution effects from harvested products

biomass carbon pool change

litter carbon pool change

soil carbon pool change

harvest rate

conclusions

- the managment system affects the net ecosystem productivity as well as allocation of assimilated carbon to carbon pools in the forest
- net ecosystem productivity increase needs to be considered in the light of potential water or nitrogen limiting conditions

• **outlook**: analysis of harmonized simulations from FORMASAM model ensemble

productivity response to climate change

- net ecosystem productivity (NEE) is overall increasing for all sites with lower (RCP 2.6) and higher (RCP 6.0) climate change pathways
- the climate change effect is even higher if CO2 fertilization is included
- surprisingly also the water limited sites have a boost in NEE - lack of disturbances in simulation

rcp26.co2

rcp26.2005co2

rcp60.2005co2

productivity response to full CO2 fertilization

- CO2 fertilization effect on net ecosystem productivity (NEE) for the lower end climate change pathway (RCP 2.6) is always positive
- for higher end climate change pathways (RCP 6.0) CO2 fertilization has for some extreme cases negative effects on NEE

GCM effect on simulated productivity

output variability introduced by GCM

 uncertainty introduced by simulated global climate model forcing data at the same magnitude of uncertainty of climate change effects itself and

picontrol