

Managing Forests in the 21. Century

Forest enterprises trapped between desperation and resignation — How ecological-economic modelling may contribute to supporting management decisions in a changing climate

<u>Carola Paul¹</u>, Jasper Fuchs¹, Nils Benfer¹, Susanne Brandl², Claudia Chreptun³, Fabian Härtl³, Thomas Knoke³

Carola.paul@uni-goettingen.de www.uni-goettingen.de/felap Twitter: @Carola Paul

¹ Department of Forest Economics and Sustainable Land-use Planning, University of Göttingen

² Bavarian Forest Research Institute (LWF)

³ Institute of Forest Management, Technical University of Munich (TUM)

Guiding questions

How can we <u>quantify</u> and <u>model</u> climate-change related economic consequences at the forest <u>enterprise</u> level? What are the main <u>challenges</u>?

How could we <u>improve</u> ecological-economic modelling to contribute to supporting <u>management decisions</u> in a changing climate?

What are the key factors driving economic mitigation potential?

Modelling economic effects of climate change at the forest enterprise level

Carola Paul | 04.03.2020

Guiding questions

How can we <u>quantify</u> and <u>model</u> climate-change related economic consequences at the forest <u>enterprise</u> level? What are the main <u>challenges</u>?

- 1. Include uncertainty in decision-making
- 2. Limits of scenario analysis

How could we <u>improve</u> ecological-economic modelling to contribute to supporting <u>management decisions</u> in a changing climate?

The example of tree species selection under climate change

What are the key factors driving economic mitigation potential?

Example application: Quantifying changes in survival probabilites

- Dataset: Level I+II ICP Data, German Crown **Condition Survey**
- Method: Survival time analysis using Weibull distribution parametrized by Accelerated failure time model
- Example application for Northwestern Germany (1.100 mm mean annual precipitation and 7.1°C mean annual temperatur)

Project SURVIVAL-KW

Example application: Incorporating risks into tree species selection under climate change

Example application: Incorporating risks into tree species selection under climate change

- It is not so much about reducing economic risks but rather about balancing risks and returns
- Species selection depends on risk attitude of the decisionmaker
- Open question: What is a desirable species composition to balance risk and returns?

Normative modelling as a complement to scenario analysis

Main challenges

- 1. Include uncertainty in decision-making
- 2. Limits of scenario analysis

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

- ¹ Matthies et al. (2019) JEM 231: 926–939
- ² Schou et al. (2015) For. Pol. Econ. 50, 11–19
- ³ Paul et al. (2019) Ann. For. Sc. 76:14 Knoke et al. (2017) Curr. For. Rep. 2(3): 93-106

Example application: The importance of tree species mixtures for reducing economic risks Optimized species compositions for different risk levels

Example application: The importance of tree species mixtures for reducing economic risks Optimized species compositions for different risk levels

Example application: The importance of tree species mixtures for reducing economic risks Optimized species compositions for different risk levels

Species mixtures are essential to reduce economic risks

⇒ How to select the level of accepted risk?

⇒ What is the effect of climate change on such an optimized portfolio?

Example application: Effects of climate change on desirable species compositions

Optimized species compositions of a risk-averse decision-maker under climate change

Objective: Maximize Value at Risk = Maximize return that is exceeded in 99% of the simulated cases

- ⇒ Normative modelling offers an objective selection out of a continous set of options, irrespective of "what there is"
- ⇒ Not useful as an ultimate "recommendation" but rather to reveal generalizable effects

Example application: Changing the management objective

Optimized species compositions of a risk-averse decision-maker considering multiple functions

Guiding questions

How can we <u>quantify</u> and <u>model</u> climate-change related economic consequences at the forest <u>enterprise</u> level? What are the main <u>challenges</u>?

How could we <u>improve</u> ecological-economic modelling to contribute to supporting <u>management decisions</u> in a changing climate?

What are the key factors driving economic mitigation potential?

The example of species selection – lessons learned

What are the key factors driving economic mitigation potential?

- Objective function of the normative model
- Alternatives offered to the model
- Individual risk attitude
- Classic economic coefficients
 - ⇒ Planting costs: What are the upper limits for a species for inclusion in the optimized portfolio?
- Wood prices and fluctuations
 - ⇒ What are the lower limits for inclusion in the optimized tree species portfolio?
- Combinations of mitigation options?

Paul et al. (2019) Ann For Sc 76:14

What are the key factors driving economic mitigation potentials? The importance of combining mitigation options

Risk and return of different optimized species compositions under different mitigation options

bau: business-as-usual

M: mixed stands (with species interaction)

Be (30%): admixing 30 % beech

SC*: optimized species composition

RP*: optimized rotation period bark beetle management BBM:

Dou (30%): admixing 30 % Douglas fir

Dou*: optimized share of Douglas fir (here: 65 %) +:

combinations of management responses

See Poster Session 4(2) **Jasper Fuchs**

Ecological-economic modelling for resilient forest management

Conclusions and lessons learned

Normative models using optimization approaches are an important complement to scenario analysis

- Key questions: "At what magnitude do conditions need to change to severely affect my desired outcome and management strategy"?
- Incorporating uncertainties in ecological-economic modelling is methodologically challenging but crucial for supporting management decisions The road ahead:

- Robust optimization (Knoke et al. 2017, Curr. For. Rep. 2(3): 93-106, Etemad et al. (2019) J For. Sc.
- Dynamic approaches (Härtl and Knoke Forests 10, 504)
- Spatial approach (spatial correlation, site heterogeneity)
- Resilient forest enterprises are key for resilient forest management

Carola Paul | 04.03.2020 19

Acknowledgements and Contact

Co-authors:

Jasper Fuchs, Nils Benfer, Susanne Brandl, Claudia Chreptun, Fabian Härtl, Thomas Knoke

All colleagues in SURVIVAL-KW and FOREXCLIM Project

Contact:

Carola.paul@uni-goettingen.de www.uni-goettingen.de/felap

Facebook: facebook.com/FELaP.Goettingen/

Twitter: @Carola__Paul @GoeFelaP

Sustainable yield planning at enterprise level

- YAFO model developed by Fabian Härtl at Technical Unviersity of Munich
- Solves an allocation problem allocating silvicultural measures (harvesting) to stands (or share of area within the stand) and planning period (E.g. 5 year period for next 50 years)
- How should Forest Management look like to maximize a specific objective Here: maximize **Robust Net Present Value** (NPV) of the entire enterpise under a certain accepted

Space	Time					
Stand	Periode 1	Periode 2	Periode 3	Periode 4	Periode 5	Periode 6
1	Area	Area	Area	Area	Area	Area
2	Area	Area	Area	Area	Area	Area
3	Area	Area	Area	Area	Area	Area
4	Area	Area	Area	Area	Area	Area
5	Area	Area	Area	Area	Area	Area
6	Area	Area	Area	Area	Area	Area
7	Area	Area	Area	Area	Area	Area
8	Area	Area	Area	Area	Area	Area
9	Area	Area	Area	Area	Area	Area
10	Area	Area	Area	Area	Area	Area

Abbildung: Fabian Härtl

Example enterprise

Example enterprise (by F. Härtl)

Volume development

Example enterprise (by F. Härtl)

Harvesting schedule

Harvesting (blue: <15% of stand area, yellow: >=15%, red: >=25%)

Ergebnisse: Anbau alternativer Baumarten - Holzpreise

Ergebnisse: Anbau alternativer Baumarten - Risiken

Example application: Quantifying changes in survival probabilites

- Dataset: Level I+II ICP Data, German Crown Condition Survey
- Method: Survival time analysis using Weibull distribution parametrized by Accelerated failure time model, accounting for censored and left-truncated data
- Project SURVIVAL-KW funded by "Waldklimafonds"
- Example for Northwestern Germany (1.100 mm mean annual precipitation and 7.1°C mean annual temperatur)

The Value at Risk as decision criteria

GÖTTINGEN Carola Paul | 29.02.2020

30

Sensitivity analysis

Economic input variables (Block mixture only)

Survival analysis

- No climate change effect for beech
- Share of Spruce would only fall below 50% if S(100) of beech was by 45 percentage points higher than that of spruce

Results (1): Effect of survival probabilities on optimal share of spruce in the economically optimal tree-species composition (based on VaR)

Results (1): Economic effects of altered survival probabilities compared to other management decisions

Carola Paul | 04.03.2020

34