Searching for an optimal harvest-regeneration system using multi-criteria analysis

K. Merganičová, J. Merganič, P. Valent, J. Výbošťok

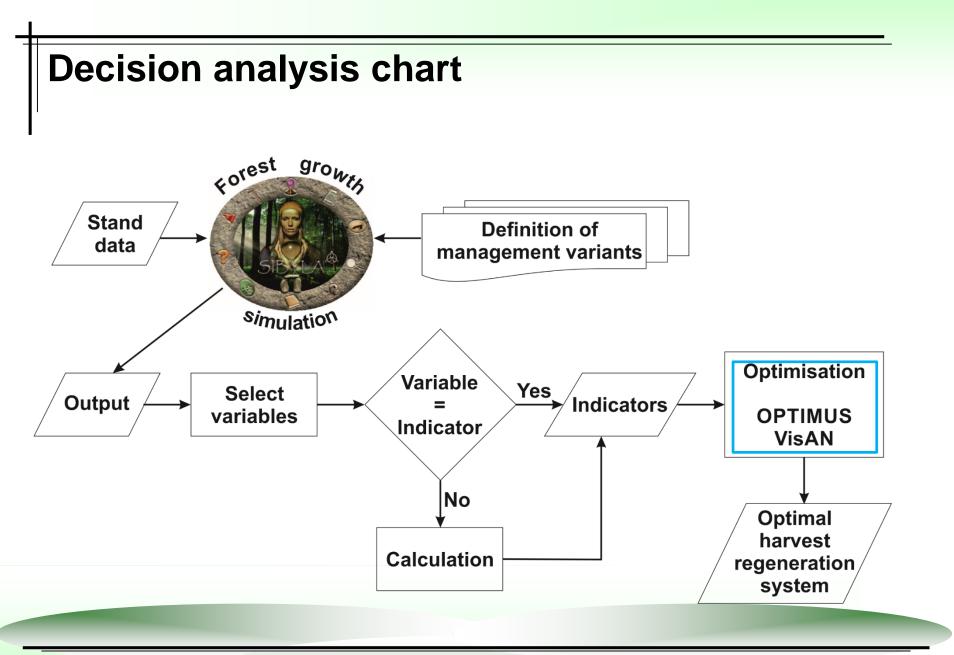
Technical University in Zvolen, Slovakia

Research question

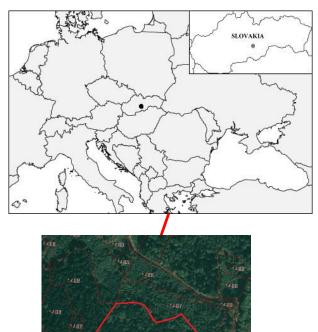
To search for management scenarios

to be applied in a secondary spruce forest of central Europe

that would optimise


Wood production,

Stand stability,



Tree species diversity

Stand data

Secondary spruce stand in central Slovakia

Central Slovakia	Calculation harvest regeneration system		
Stand age	60 years		
Species composition	Norway spruce (Picea abies) 80% European larch (Larix decidua) 10% Maple (Acer sp.) 5% Common beech (Fagus sylvatica) 5%		
Elevation	430 - 470 m a.s.l.		
Longitude	E 19°54´33.89		
Latitude	N 48°32′55.09		
Climatic region	slightly warm, and slightly moist climate		
Mean air temperature in growing season	15.4°C		
Mean precipitation total in growing season	600 mm		

Definition of

variable

Indicator

Optimisation

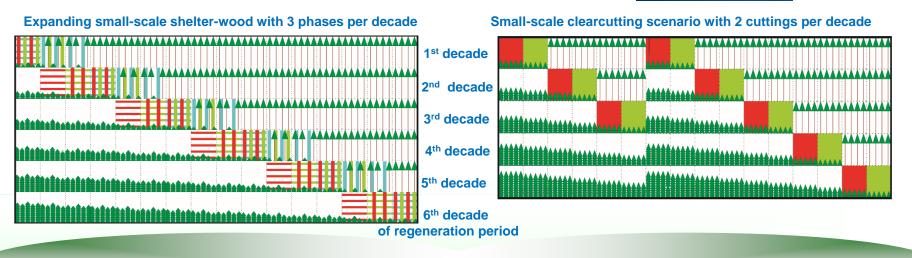
OPTIMUS VisAN

Optimal

Management variants

Stand data		finition of ement variants	
Output Select variables	Variable = Indicator	Yes Indicators	Optimisation OPTIMUS VisAN
	No Calculation		Optimal harvest regeneration system

defined by treatment type, intensity, frequency

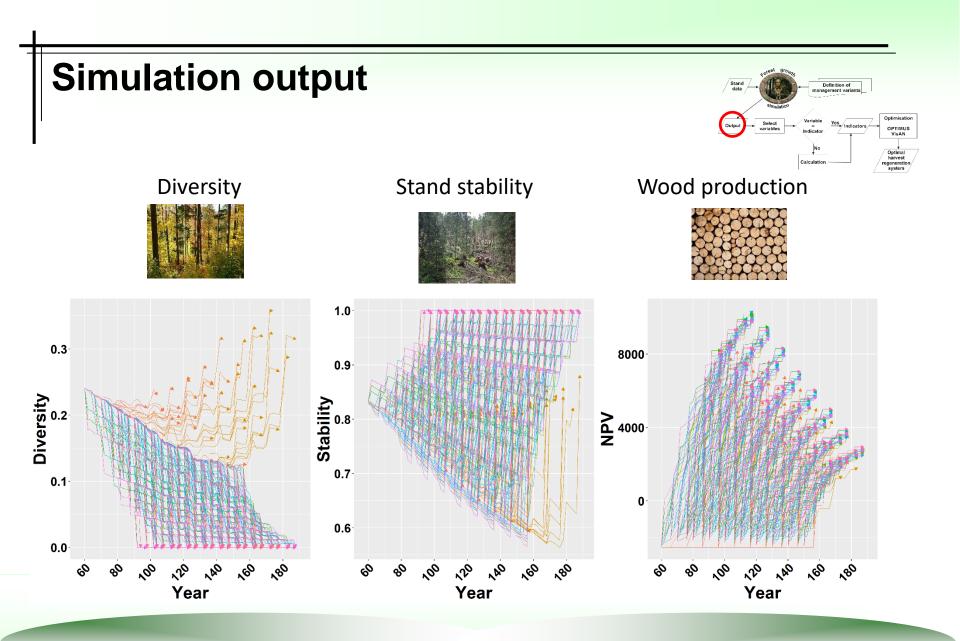

			Specification of regeneration variants				Number
	egeneration	Regeneration form	No. of cuttings No. of	No. of phases	Regeneration	Rotation	of
system		g	с С	per decade	period	period	variants
					[years]	[years]	
Clearcutting	Large scale	1		20, 30, 40, 50, 60		40	
	(area >2ha, cutting width >2 x stand height)	2		10, 20, 30, 40		32	
	Small scale	2	2		90,	40	
	(area = 1 ha, cutting width < 2 x stand height)	3	3		100,	40	
Even-aged Shelterwood	Large scale (area > 2ha, cutting width > 2 x stand height)	2	2	20, 30, 40,	110,	40	
		3	3		120, 130.	40	
	Small scale	2	2	50,	140,	40	
	(area = 1 ha, cutting width < 2 x stand height)	3	3	60	150,	40	
	Expanding small scale	2	2		160	40	
	(area = 1 ha, cutting width < 2 x height)	3	3			40	
	Target diameter	Spruce = 50 cm, Larch = 40 cm, 20, 30, 40,		20, 30, 40, 50,		40	
	(area = 1 ha, cutting width > 2 x stand height)	Maple, Beech = 45 cm 60		60		40	
Uneven-aged Selection	Coloction	Circula trace cutting	Target diameter for all tree species:			10	
	Selection	Single tree cutting	60 cm, 65 cm, 70 cm, 75 cm, 80 cm				
	No cutting		Number of target trees: 1 per hectare, 2 per hectare Age: 90, 100, 110, 120, 130, 140, 150, 160 years		8		
			, igo. 0	o, 100, 110, 120,	, 1.0, 100, 100	<i>j</i> = 2.0	Σ 450

Forest growth simulation

SIBYLA

- = a simulator of forest biodynamics (Fabrika, 2005)
- an individual tree distance dependent empirical model
- concept based on SILVA 2.2 (Pretzsch et al., 2002)
- climate and site sensitive
- parameterised for spruce, fir, pine, beech, and oak

Cultivator = a module of thinning and felling


Merganičová et al. 2020: Searching for an optimal harvest-regeneration system using multi-criteria analysis. EFI FORMASAM Conference: Managing forests in the 21st century, March 03-05, 2020

Definition of

Calculatio

OPTIMUS

Multicriteria optimisation

Optimisation with regard to maximising

Wood production = NPV

$$NPV = \sum_{y=0}^{n} \left[\frac{R_y}{(1+r)^y} - \frac{C_y}{(1+r)^y} \right]$$

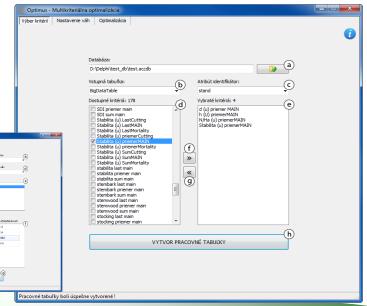
Stability = h/d ratio

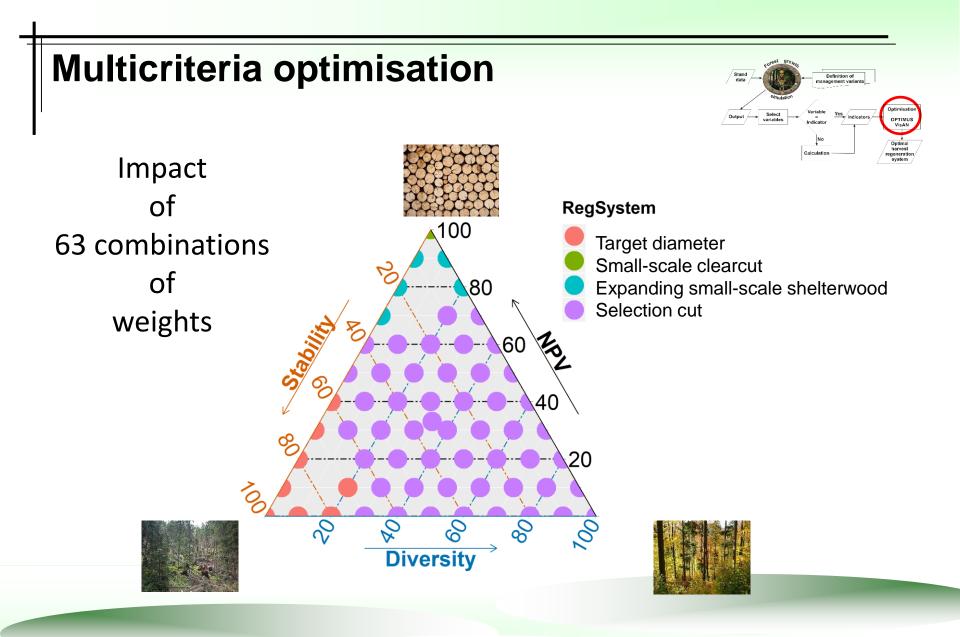
$$H' = -\sum_{i=1}^{N} p_i \cdot \log_2(p_i)$$

Testing impact of different combinations of weights on the selection of optimal variants

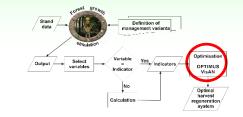
1-0-0		
0.9-0.1-0		
0.9-0-0.1	63 combinations	
0-0-1		

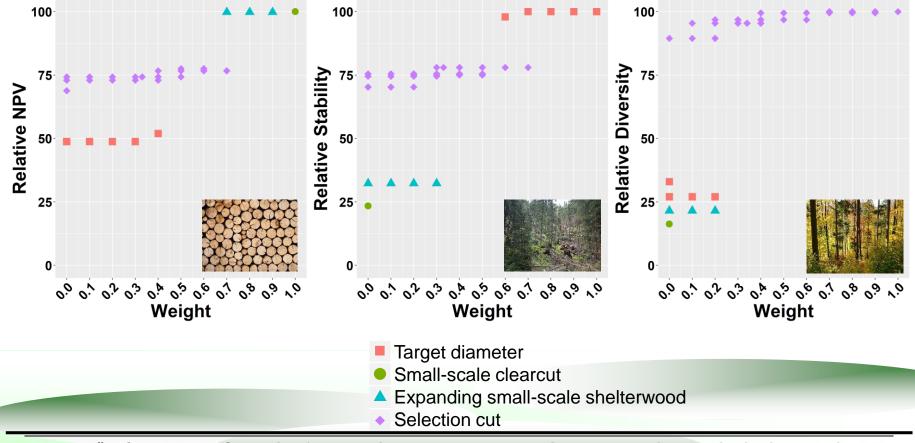
Multicriteria optimisation

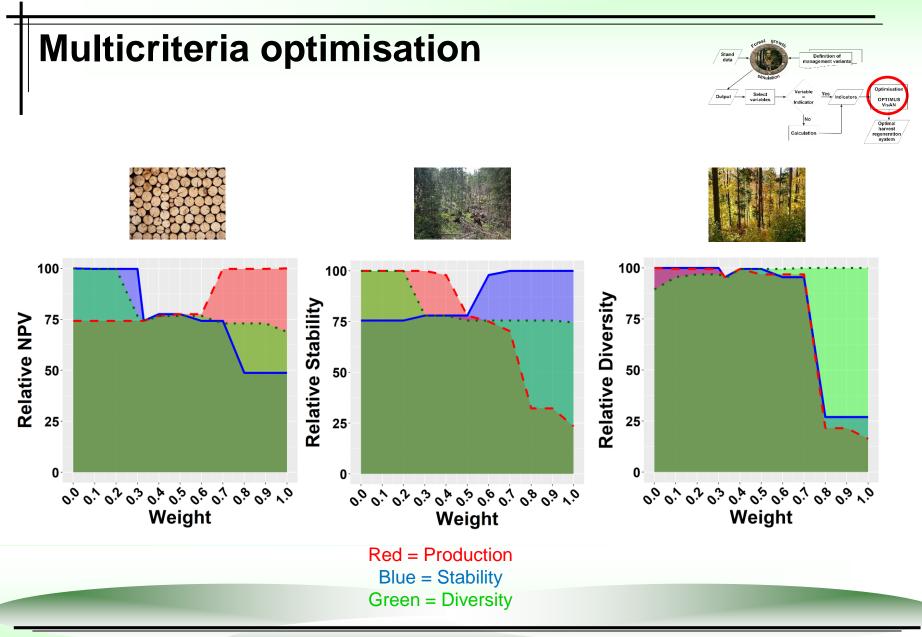



OPTIMUS = an optimisation tool

- developed at Technical University Zvolen
- enables user-specified optimisation based on multiple criteria, optimisation techniques and different approaches of weight calculation


Steps:


- 1. Selection of criteria for optimisation (max. 95)
- 2. Selection of a method for weight calculation
- 3. Selection of an optimisation technique:
 - Conjunctive and disjunctive method
 - PRIAM method
 - Order method
 - Lexicographical method
 - Score method
 - Weighted summation
 - Basic variant
 - Analytic Hierarchy Process (AHP)



Multicriteria optimisation

Conclusion

Different management systems are preferable to maximise different forest functions

Optimisation of contradictory goals is required

Our optimisation tool enables us to analyse trade-offs between different forest functions and the impact of their weights on decision

Methods based on close-to-nature management systems were found most suitable for fulfilling the ensemble of selected functions in a secondary spruce forest

Thank you for your attention

This work was financed by the EFI FORMASAM 01/2018, and the Slovak Research and Development Agency under contracts No. APVV-15-0265, APVV-18-0305, APVV-16-0325, APVV-15-0714.