

≜___

University of Natural Resources and Life Sciences - Vienna Department of Forest and Soil Sciences

Simulated effects of tree species diversity and species pattern on biomass production at stand level

Thomas Kainz, Werner Rammer, Manfred J. Lexer

Managing Forests in the 21st Century

03.03.2020

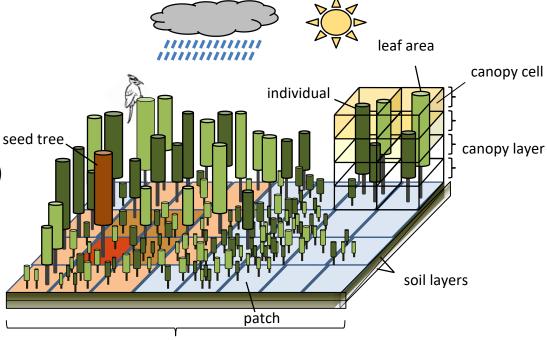
Potsdam

diversity and ecosystem productivity relationships (PDRs) state of knowledge

diversity and ecosystem productivity relationships (PDRs) state of knowledge

- overall PDR means are positive, but no universal rules
- known factors that may have an influence:
 - species richness
 - species identity effect (traits)
 - complementarity effect
 - site quality

- ..



- Q1: How is productivity related to tree species diversity when simulated with a forest ecosystem model?
- Q2: Can simulated biomass production be explained by species identity effect and complementarity effect?
- Q3: What is the effect of mixture in patches versus random mixture?

the experimental setup **PICUS v1.6**

main features

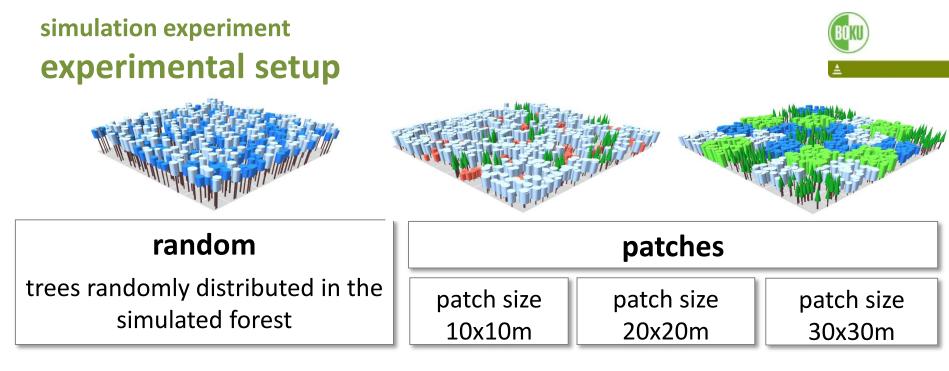
- hybrid forest gap model (3PG)
- individual tree growth
- on patches (10x10m)
- 3D canopy structure
- trees compete for light
- tree population dynamics
- watercycle module with detailed water balance and physiological water relations of vegetation
- individual trees & species compete for water in the root horizon
- requires daily weather data (rad., temp., precip., vpd)
- management module (>>not active)
- disturbance modules for storm and bark beetles (>> not active)

Mortality

stand

egenera

the experimental setup


site: Rosalia (Austria)

• site

- altitude:
- soil type:
- soil depth:
- pH:
- WHC:
- Ø annual temp.:
- annual precip.:
- 450 m a.s.l. Cambisol 100cm 4.17 155mm 8.8°C
- 774mm

initialisation

- 8 species in all combinations (PA, AA, LD, PS, FS, AP, QP, BP)
- minimum share per species 10%
- juvenile stand (80 130cm tree height)

settings

- 100 years simulation period
- no management
- no regeneration
- no disturbances

simulation experiment analysis approach (1)

• relative yield (RY) & overyielding (OY) (Pretzsch & Schütze, 2009)

RY = $\frac{\text{actual absolute yield mixed stand}}{\text{expected absolute yield of pure stand shares}}$

 $RY > 1 \rightarrow OY$ $RY < 1 \rightarrow UY$ $RY = 1 \rightarrow no PDR$

transgressive OY

actual absolute yield (AY) mixed stand > AY of pure stand of each species

• tree species diversity via Shannon Index

Shannon Index = $-\sum S_{Spi} * \ln S_{Spi}$

S_{Spi} = species share of species i

simulation experiment analysis approach (2)

species identity & complementarity effect (Loreau & Hector, 2001)

- mean & CV of the species traits
 - light response
 - potential max. height at the age of 100 [m]
 - leaf area allometric exponent

statistical analysis

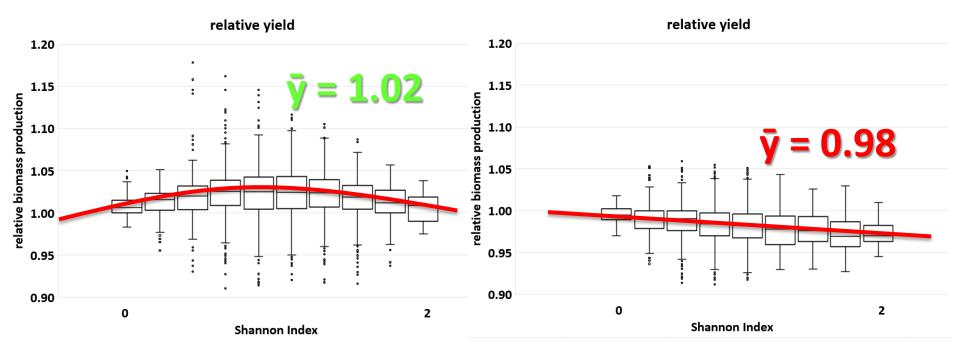
- Pearson correlations
- uni & multivariate OLS regressions

 $RY = a + b * x_1 + c * x_2 + d * x_3 + ...$

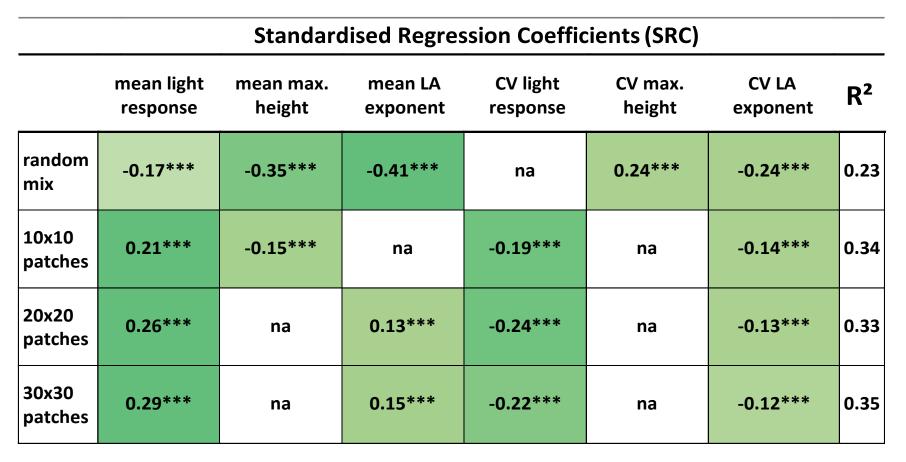
 $x_1 \dots x_i$ = mean & CV of the species traits

multicollinearity (VIF)

results effects of diversity on absolute yield


random mixture patches absolute yield absolute yield 650 000 650 000 = 431 t **430 t** 600 000 600 000 biomass production kg/ha 200 000 420 000 000 000 000 biomass production kg/ha 550 000 500 000 8 450 000 400 000 350 000 350 000 -300 000 300 000 0 2 0.2 2 Shannon Index Shannon Index

results effects of diversity on relative yield


random mixture

patches

% of stands	random mix	patches
overyielding	80%	18%
transgressive OY	6%	0.6%

results species identity and complementarity explain variation in RY

R² = coefficient of determination

* level of significance α = 0.05

** α = 0.01

*** α = 0.001

influence

ce 🛛

conclusions

- diversity has positive influence in random mixture, effect is lost in patch mixtures (also Morin et al., 2011; Vila et al., 2007)
- 80% of simulated random mixed stands show OY and 6% show transgressive OY (similar in Morin et al., 2011)
 - reveals the importance of this topic
- diversity optimum for OY in random mixture (see Paquette & Messier, 2011)
 - 3 to 4 species may be enough diversity?
- species identity and complementarity effect explain 23-35% of variation in RY, 21% in meta analysis by Zhang et al.(2012)

≜_

University of Natural Resources and Life Sciences - Vienna Department of Forest and Soil Sciences

contact:

Thomas Kainz University of Natural Resources and Life Sciences, Vienna Institute of Silviculture Peter Jordan-Straße 82, 1190 Vienna, Austria Tel.: +43 - 1 - 47654 91327 e-mail: thomas.kainz@boku.ac.at

.....