

Managing forests in the 21st century Potsdam, 3-5 March 2020

Anticipating water-demanding eucalypt tree species' responses to changes in environmental drivers

Santi Sabaté^{1,2,*}, Dani Nadal-Sala^{1,3,*}, Carlos Gracia^{1,2},

Craig Barton⁴, David Ellsworth⁴, David Tissue⁴, Mark Tjoelker⁴, Belinda Medlyn⁴

- ¹Ecology section. Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona and ²CREAF, Spain.
- ³*IMK-IFU* (Karlsruhe Institute of Meteorology and Climate Research -Atmospheric Environmental Research) Germany.
- ⁴*Hawkesbury Institute for the Environment, Western Sydney University, Australia.*
- <u>These authors equally contributed to this work presentation, but it belongs to D. Nadal-Sala PhD thesis,</u> <u>from which a manuscript is in preparation.</u>

Eucalyptus saligna Sm. Stand Sydney bkue gum

- Fast-growing water- demanding sp.
- World wide used for paper pulp and biomass production.

What do we expect as responses to changes in environmental drivers?

Eucalyptus saligna growth, promoted by $\{ co_2 \)$ fertilization

will be partially offset by

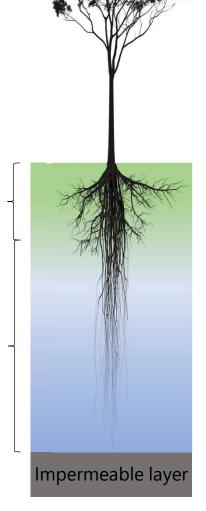
2

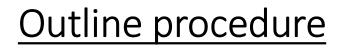
Context

Managing forests in the 21st century

Unsaturated

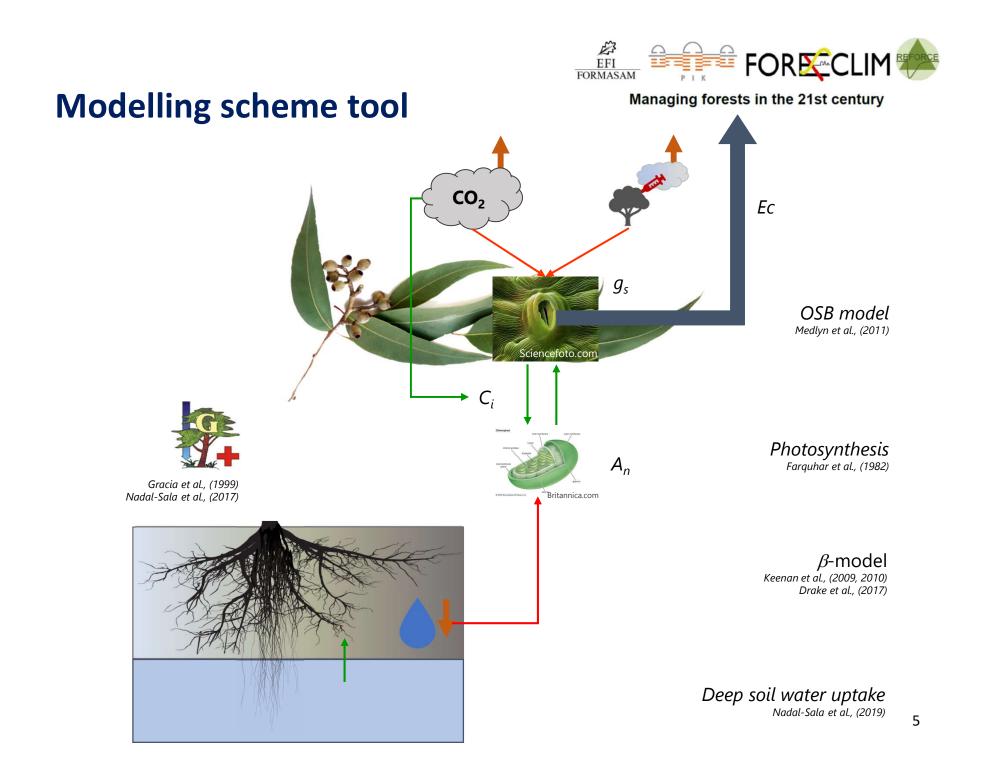
Saturated soil

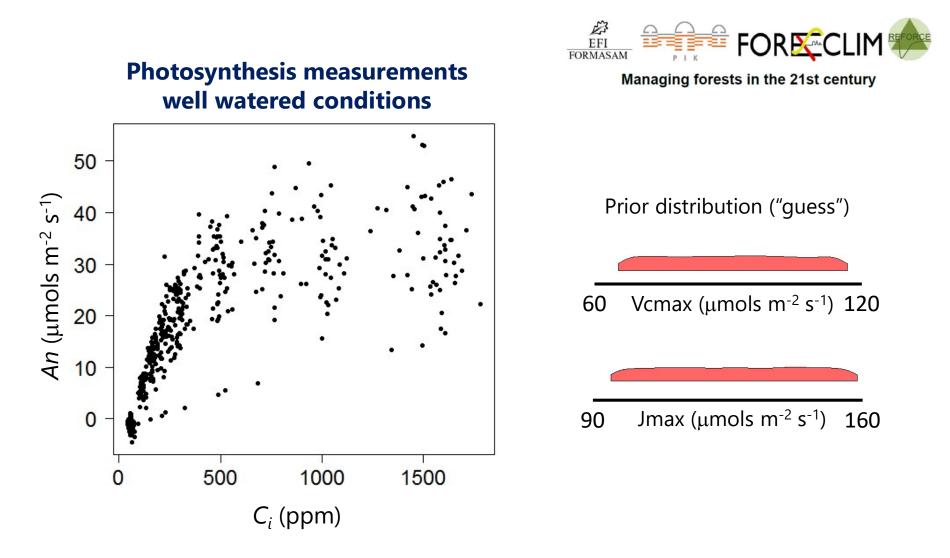

Nadal-Sala et al., (In prep)


Experimental setting available:

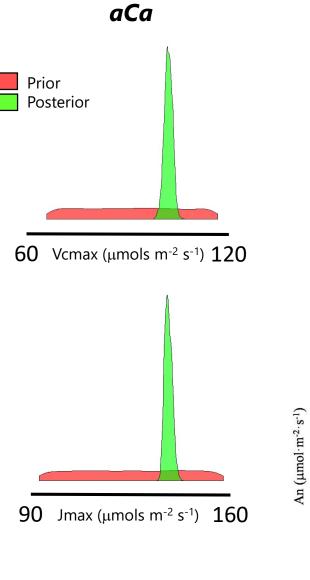
- Australian *Eucalyptus saligna* Sm. Stand
 Plantation (1000 trees ha⁻¹)
- Presence of a water-saturated table
- Photosynthesis data from 1.5yr experiment
 - WTC flux data (at 400 ppm, 620 ppm)
 - Soil dry-down for five consecutive months
- In addition,10-years stem growth data with and without irrigation.

To evaluate:


- The importance of deep-water uptake
- The growth sensitivity to environmental drivers

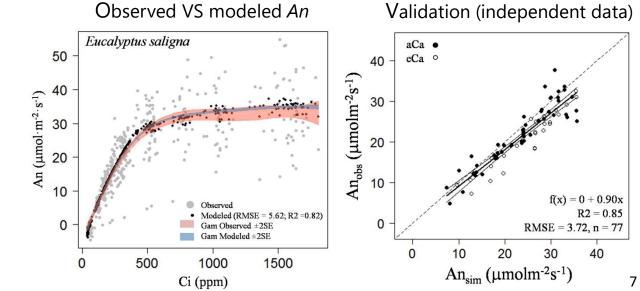


- 1. We characterised photosynthesis under two CO₂ treatments to account for photosynthesis down regulation.
- 2. We included limitation due to unsaturated soil water availability to our calibration.
- 3. We modelled deep soil water uptake importance.
- 4. We used gas exchange and stem growth data to evaluate the modelling performance.
- 5. We analysed the sensitivity to changes in rising CO2, increasing D, and reducing P.



- Inverse calibration of Farquhar model (Farquhar, 1982) from An/C_i measurements
- Measured An/C_i for aCa (400 ppm CO₂) and eCa (620 ppm CO₂) treatments.
- **Broad priors** to represent our broad initial guess.

Nadal-Sala et al (in prep)



Managing forests in the 21st century

Variable	Prior		Posterior			
	Lower	Upper	2.5%	Median	97.5%	
aV _{cmax25ref} (μmol m ⁻² s ⁻¹)	60	120	98.3	99.0	99.7	
aJ _{max25ref} (µmol m ⁻² s ⁻¹)	90	160	152.0	154.3	156.2	
eV _{cmax25ref} (μmol m ⁻² s ⁻¹)	60	120	82.6	87.6	92.3	
eJ _{max25ref} (µmol m ⁻² s ⁻¹)	90	160	142.5	145.1	149.0	

Down-regulation of V_{cmax} (-12%) and J_{max} (-6%) at eCa

Nadal-Sala et al (in prep)

0.0

0.0

0.2

0.4

Managing forests in the 21st century

a) 1.5 ▲ Wet plots 25 cm • Dry plots 25 cm ▲ Wet plots 50 cm • Dry plots 50 cm $An_{obs}/An_{sim,ref}$ 1.0 0.5 $\Delta Deviance_{25} = -28\%$, n = 137 $\Delta Deviance_{50} = -28\%, n = 137$ 0.0 0.2 0.0 0.4 0.6 0.8 1.0 S (SWC · SWC_{max}⁻¹) b) 1.0 0.8 $An_{\rm sim,S}/An_{\rm sim,ref}$ 0.6 0.4 0.2 $An_{obs}/An_{sim,ref} \pm 95\%$ CI, n=137

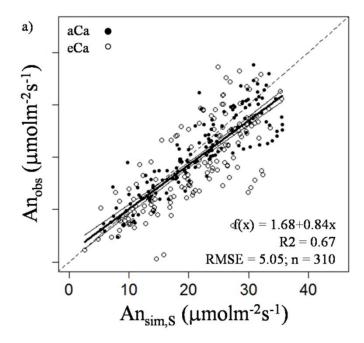
nsaturated + S_{saturated} (±95%CI)

0.8

1.0

aturated (±95%CI)

0.6

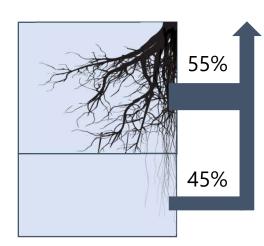

 S_{50} (SWC · SWC_{max}⁻¹)

Importance of deep water uptake

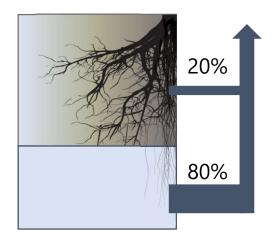
Broad priors to represent our broad initial guess

Variable	Prior		Posterior		
	Lower	Upper	2.5%	Median	97.5%
S _{min} (%)	1	10	1.1	4.3	9.6
S _{max} (%)	70	95	94.6	94.9	95.0
q	0.1	0.6	0.34	0.44	0.56
α	0.1	0.7	0.29	0.45	0.60

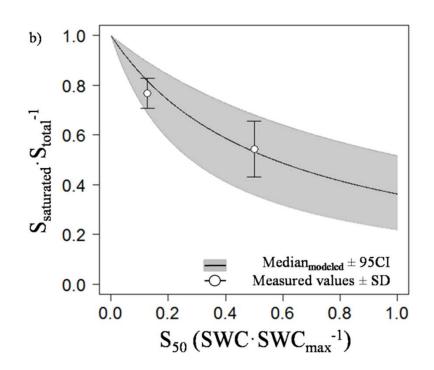
Validation against the whole dataset



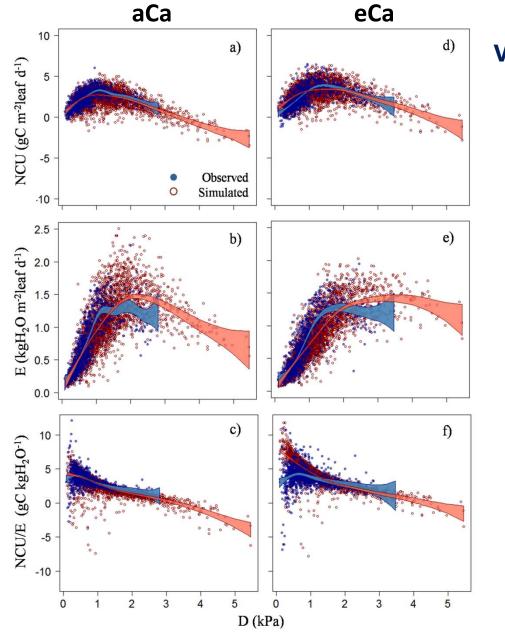
Nadal-Sala et al (in prep)



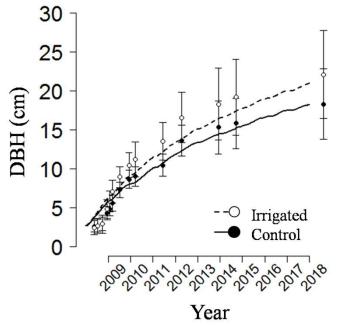
Managing forests in the 21st century


Wet conditions

Dry conditions


Importance of deep-water uptake

As S₅₀ dries, the proportion of water uptake from deeper soil layers increase


Modelled shift in water source agrees with observations from (*Duursma et al., 2011*)

Validation at canopy and at stand level

- Good agreement with observed C and H₂O fluxes responses to D
- Model also reproduces the positive effect of irrigation

Nadal-Sala et al (in prep)

An, E and WUE Sensitivity

 Reference
 Percent change respect to reference values (%)
 The main driver for gas fluxes in *E. saligna* is projected to be eCa.

200

180

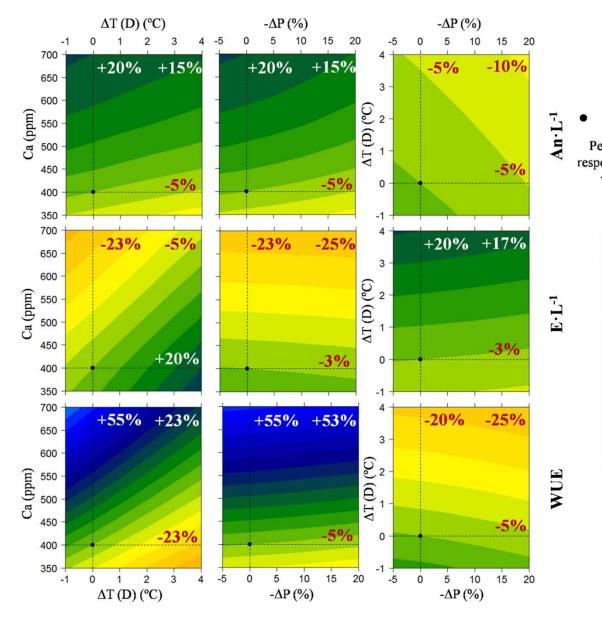
160

- 140

- 120

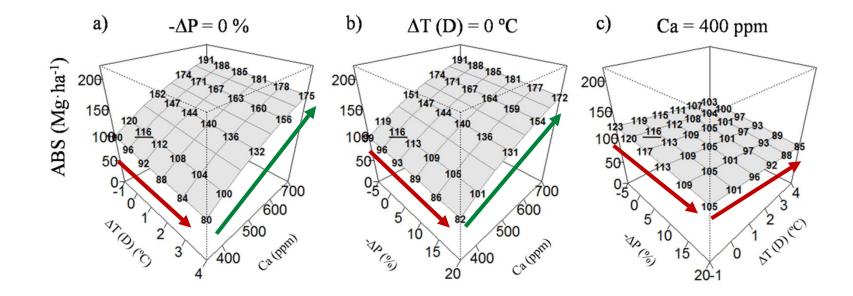
- 100

80


60

- 40

- 20


0

- Increasing D reduces An and increases transpiration. It also reduces WUE.
- The limitation on photosynthesis due to increased D is similar than the one imposed by reduced P.

Aboveground biomass stock (ABS Mg ha⁻¹) sensitivity responses

Aboveground biomass stock (ABS Mg ha⁻¹) **increases** ~60% after 10 years of simulated growth **at eCa**.

Combined **reductions in P** and **increases in D** limit this fertilization **down to a 35% increase in ABS**

In summary

- Farquhar model, and β -model + Deep water uptake models calibration
- Exhaustive step by step validation procedure based on measurements
- Eucalyptus saligna strongly dependent on deep water reservoirs
- **co**₂ projected to be **the main environmental driver** (fertilization)
- Aridity increases due to fertilization

Thank you!