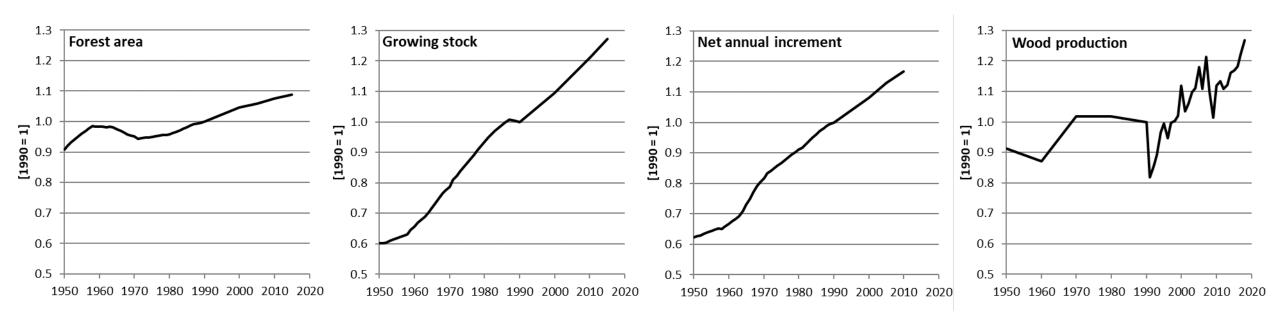
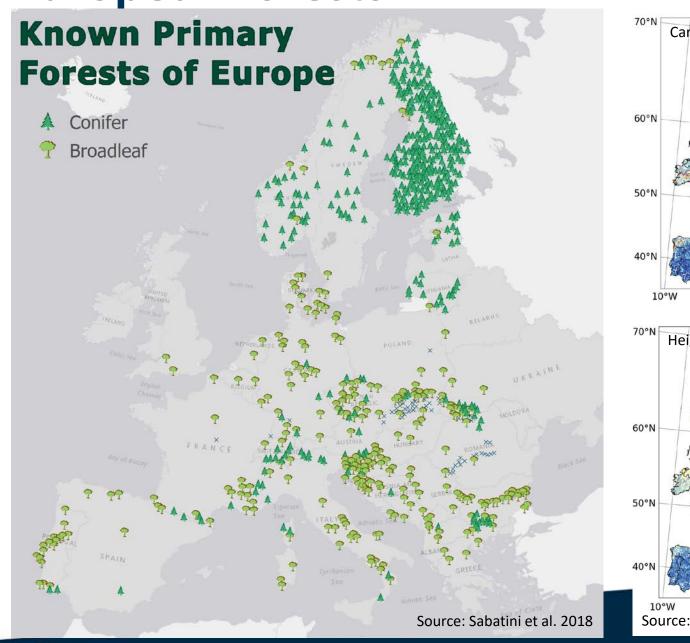


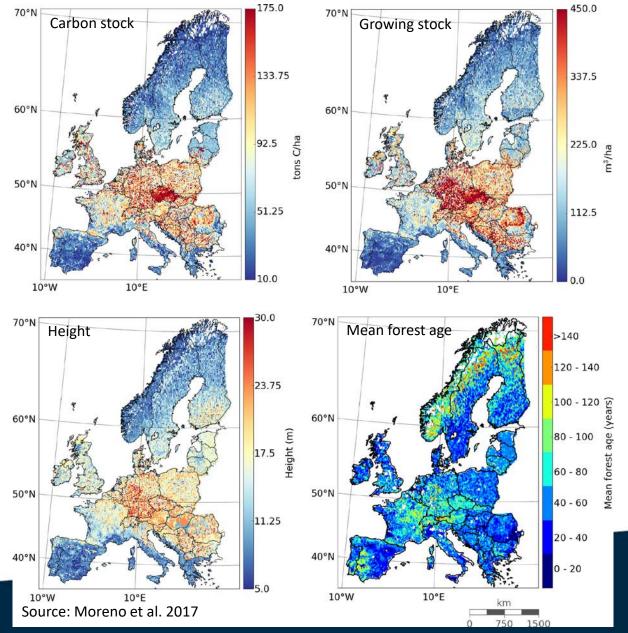
(The atlas of)


Forest management practices in Europe

Hans Verkerk & Marcus Lindner

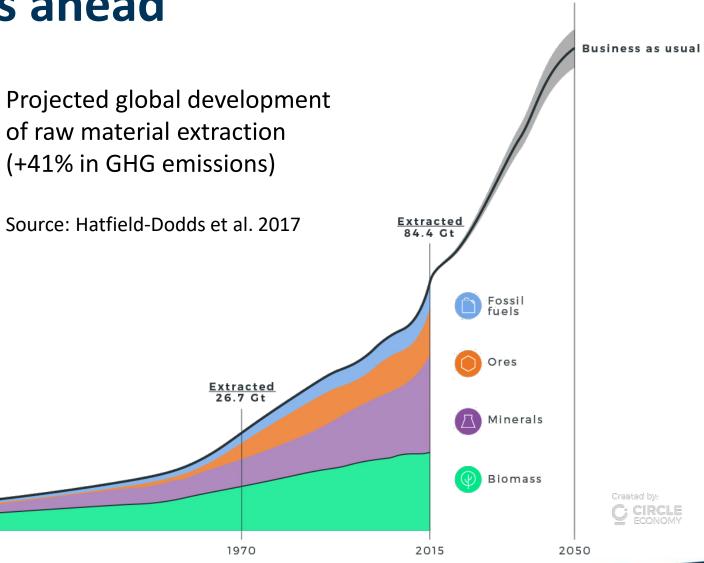
Managing forests in the 21st century, 3-5 March 2020, Potsdam


European forests


• Large changes in European forest resources during recent decades

Source: adapted from Verkerk 2015; multiple data sources

European forests



Management challenges ahead

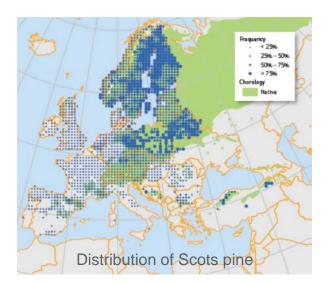
1900

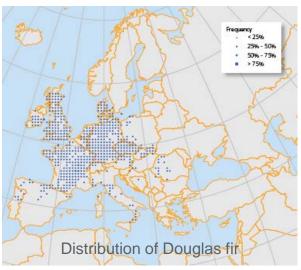
 Increasing global demand for materials due to a growing and increasingly rich global population

- How will future demands affect European forests?
 - Latest outlooks suggest no major changes in roundwood harvest and consumption until 2030 (Jonsson et al. 2018)

Management challenges ahead

Climate change and large disturbances projected to affect Europe's forests

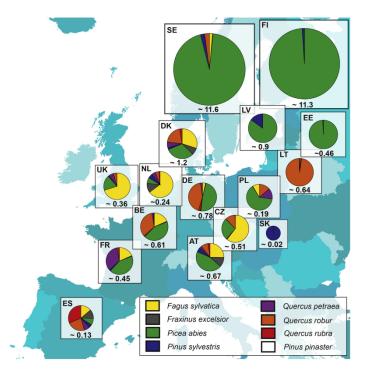

Forest management in Europe


- Improved information is needed on how forests are currently managed in Europe
 - Development of overview of forest management in Europe in GenTree project
- Overview per forest management decision
 - Forest management approach frage Duncker et al. ext see
 - Main source of in the state of the state of
- Compression of the following management of the compression of the comp
 - te 3. quality descriptions from an agement practices in a country
 - countries, involution experts (external to the project!)
- Focus on EU for period >1990

Forest management decisions

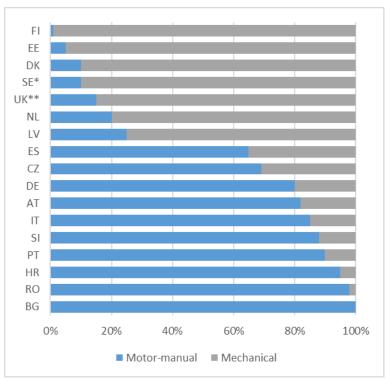
Decision	Silvicultural operations	Considerations		
Naturalness of tree	Selection of tree species	Species composition in relation to the potential natural vegetation, share of		
species composition	Selection of tree species	site-adapted tree species, share of introduced tree species		
Type of regeneration	Stand establishment	Planting, seeding, natural regeneration, or coppice		
Forest reproductive	Selection of tree genotypes	Use of improved breeding material, use of genetically modified organisms		
material	Selection of thee genotypes	ose of improved breeding material, use of genetically modified organisms		
Machine operation	Fertilizing, Liming, Soil preparation, Thinning, Final harvest	Use of forest machinery for soil preparation, thinning, final harvest		
Soil cultivation	Soil preparation, Drainage	Mechanical, physical, and chemical site preparation, drainage		
Fertilization / Liming	Fertilization, Liming	Fertilization to increase yield (amelioration), compensation for nutrient		
		extraction and re-establishment of natural biogeochemical cycles		
Application of chemical	Pest control	Application of pesticides, herbicides		
agents	1 CSt CONTROL			
Integration of nature	Tree retention, special habitats	Tolerance of biotope/habitat trees, tolerance of deadwood, biotope		
protection	Tree retention, special habitats	protection within stands		
Final harvest system	Final harvest	No management, continuous cover, even-aged forest with shelterwood,		
		even-aged forest with clearcutting, coppice, coppice with standards, short		
		rotation		
Maturity	Final harvest	Felling age in relation to the potential life span of a given tree species		
Weed very state	Thinning (stem), Final harvest (stem),	Tree components (stem, residues, stumps) extracted in thinning or		
Wood removals	residue removal, stump removal	harvesting operations		

Naturalness of tree species composition



- The naturalness of the tree species composition in relation to the potential natural vegetation of a site.
- Good information availability from multiple sources on species composition, limited information on changes in tree species composition
- Decrease in forest area dominated by a single tree species and increased preference for broadleaved species (mainly central Europe)
- The area covered by non-native species has increased steadily in most parts of Europe between 1990 and 2015

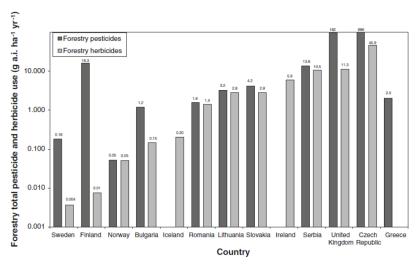
Source: San-Miguel et al. 2016


Forest reproductive material

Annual plant transfer (in million) by country and species based on the period 2004 until 2014. Size of pie charts corresponds to the quantity of introduced seedlings

- Decision by a forest manager on the material to be used during the regeneration stage
- Rather good information on the availability and types of forest reproductive material, limited information on what is used
- Bare root seedlings are most commonly used for planting

Machine operation



Degree of mechanization in harvesting activities

Source: Prinz and Anttila (unpublished)

- Vehicle movements on the forest soil and the degree a forests needs to be opened up to ensure access of the machinery
- Poor information availability
- Site preparation: mainly tractor with plough
- Regeneration: mainly manual (approx. 5% mechanically planted in Finland)
- Harvesting: large differences between countries

Application of chemical agents

Forestry pesticide and herbicide use in 2009 in 13 European countries

Source: McCarthy et al. 2011

- Use of chemical substances to reduce or prevent competition or pests that may negatively affect the establishment and development of a stand
- Poor information availability
- The amount of pesticides used in European forestry is significantly less than the use in agriculture. When applied the amounts per application range between 0.1 and 2.2 kg active ingredient ha⁻¹ yr⁻¹
- Mechanical control of unwanted plants more common than use of herbicides

Cutting regimes

Management system	Species group	North	Central -West	Central -East	South- West	South- East
Even-aged forest: Uniform clear-cut system	Light demanding conifers					
	Shade tolerant conifers					
	Mediterranean conifers					
	Fast growing deciduous					
	Slow growing light demanding deciduous					
	Slow growing shade tolerant deciduous					
Even-aged forest with shelterwood	Light demanding conifers					
	Shade tolerant conifers					
	Mediterranean conifers					
	Fast growing deciduous					
	Slow growing light demanding deciduous					
	Slow growing shade tolerant deciduous					
	Mediterranean evergreens					
Continuous	Shade tolerant conifers					
cover forest management	Slow growing shade tolerant deciduous					
Coppice	Fast growing deciduous					
	Slow growing light demanding deciduous					
	Mediterranean evergreens					
Coppice with standards	Slow growing light demanding deciduous					
	Slow growing shade tolerant deciduous					
Short	Light demanding conifers					
rotation	Fast growing deciduous					

Common harvest systems in Europe (darker shading indicates a system is more common)

Source: Cardellini et al. 2018 & Härkönen et al. 2019

- The extent that a forest area is cleared or to which the forest canopy is opened up - by a (final) harvest operation
- Limited information availability
- Clear-cutting is the dominant harvest system in Europe, but there is a trend in adopting other systems to develop more structurally rich forests (central Europe and the British Isles). Clear-cutting has been forbidden in Slovenia since 1947
- 8.8-20 million ha of coppice forests; most coppice forests are to large extent abandoned

Country narratives

AUSTRIA

Rupert Seid

Technical University of Munich, Germany

Naturalness of tree species composition

As the result of past management, the current tree species composition differs from the potential natural vegetation in many parts of Austria. In particular, Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and European larch (Larix decidua L.) are overrepresented, while Silver fir (Abies alba Mill.) and broadleaved species (particularly European beech, Fagus sylvatica L.) are currently underrepresented (Figures 1 and 2). However, Austria's forests are characterized by great heterogeneity in climate and site conditions, ranging from broadleaved-dominated natural forest types in the low elevation areas to conifer-dominated natural forest types in high elevation areas. Generally, the naturalness of the current vegetation composition increases and the human influence on forests decreases with elevation.

In the current all/cultural planning and tree species selection, potential natural vegetation is widely used as a guideline in Austrian forestry. Consequently, the share of Norway spruce has decreased and the share of broadleaved species has increased since the 1990s (Figure 3). Climate change adaptation is increasingly discussed in the context of tree species selection, and subsidy programs often promote establishing mixed and/or broadleaved-dominated forest types in anticipation of future warming.

The share of non-native tree species remains very low, approximately 0.5% of the growing stock, and is restricted to specific sites, e.g. floodplain forests along the Danube, dry low elevation

Figure 1. Map of natural forest types in Austria.

Larche: European Larch, Zirbes- Swiss stone pine,
Fiche = Nonway spruce, Tames- Silver fix,
Buche: European beech, Eiche= Oak, Andere= others.

Source: Federal Research and Transing Centre for Forests,
Natural Hazards and Landscape (EFV).

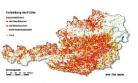


Figure 2. Current distribution of Norway spruce in Austria. Red: main tree species, brown: co-dominant tree species, yellow, present but not a main canopy species. Source: Federal Research and Training Centure for Forests, Natural Hazards and Landscape (BFVV).

BELGIUM

Ilié Storms and Bart Muys

VIII among

Introduction

Belgium has a fairly stable forest area of about 700 000 has of which 550 000 has in Wallonia, 150 000 ha in Flanders and a small share (aaqo ha) is located in Brussels (Figure 1) ir 3.]. In the southern, less populated updand region of Wallonia, forestry is a major economic activity, while in the northern densely populated lowland region of Flanders, forests offer mainly amenity and conservation services. Forest policies in both areas are different, with separate legislation and separate forest administration. About half of the

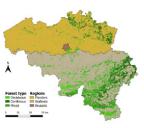


Figure 1. Forest distribution in the three major regions of Belgium – Flanders, Wallonia and Brussels – showing deciduous, coniferous and mixes stands [4].

forests in Belgium are PEFC (43%) or FSC (4%) certified. PEFC certification is most prominent in the Walloon region, while FSC certification is dominant in Flanders [1].

A distinctive feature of Belgian forests is the high degree of fragmentation, both geographically and in ownership. Forest management is therefore difficult to organize, as owners all have their own preferences, managing forest with productive, recreational or environmental goals in mind, or not managing at all. Public forests and private forests in group management are often managed in a multifunctional manner, which leads to increasing mixtures and more diverse vertical structures.

Naturalness of tree species

The current species composition is Belgium is largely different from the potential natural vegetation. More than half of the forest area consists of forests established in the last 150 years on degraded grazing land or marginal agricultural land, mainly with fast-growing species like pines and spruces Another important part are ancient forests, often traditionally and sometimes still, managed as coppice or coppice with standards, with dominance of oak. The potential natural vegetation, which is often beech forest, oak-hornbeam or oak-birch forest depending on climate and soil, is only present in less than 25% of the forest area, but is increasing, due to natural succession or less intensive management. While conifers were the dominating species after World War II, the broadleaved cover

CROATIA

Krunoslav Indir^a, Goran Kovač ^a and Hrvoje Marjanović^a

Naturalness of tree species composition

The total forest and other wooded land area in Croatia is 2 336 650 ha (2016), which is 45% of the total land area. Forests are found in three biogeographical regions: Continental (about 44% of forest and other wooded land area), Mediterran can (33%) and Alpine (23%).

Domestic tree species dominate with 96.7%, site-adapted allochthone species (Robinia pseudoacacia) form 2,9% of the forest area, and other introduced species 1.0% (Table 1). Since 1990, plantation areas have been decreasing and replaced with stands composed of tree species that would

	Forest	Plantations			
	area (FRA definition)	All tree species		Introduced tree species	
Year	1000 ha	1000 ha	%	1000 ha	%
2020*	1939	69	3.5	19	1.0
2015	1922	75	3.9	22	1.1
2010	1920	75	3.9	25	1.3
2005	1903	76	4.0	27	1.4
2000	1885	82	4.3	27	1.4
1990	1850	92	5.0	28	1.5

Table 1. Share of plantations. Sources: Hrvatske Sume Ltd.
[1, 2; 3, 4] and data provided by authors.

occur naturally in close-to-nature managed areas. Also, the share of stands with dominant introduced tree species is decreasing.

The ten most common tree species are common beech (37% of total growing stock), pedunculate oak (12%), sessile oak (9%), common hornbeam (8%), European silver fir (8%), narrow-leafed ash (3%), Norway spruce (2%), black alder (2%), Turkey oak (2%) and black locust (2%). Except for black locust, which is an introduced and site-adapted species, all of the above are native species. The shares of tree species have been affected by management, for example, forest management in the mountain region of Croatia during the late 1800s promoted naturally occurring silver fir at the expense of common beech at sites where both species were present. The closeto-nature management system, in particular since 1990, has promoted species composition which reflects the natural species composition, except in forest plantations.

Type of regeneration

Natural regeneration is the most common form of regeneration and it is carried out mainly in high forests with native species of trees (pedunculate oak, natrow-leafed ash, sessile oak, European beech). In even-aged forest this means two to three curs (shelterwood cutting). Regeneration can take place through natural seed dispersial or by sowing of seeds of the same tree species in years of weaker seed yield. In the high stands of black alder, poplars and willows, clearcutting and

CYPRUS

Georgios Georgiou

Department of Forests, Cyprus

Naturalness of tree species composition

The forests in Cyprus are mostly natural confecous forests, mainly covered by Põuus britat and to a lesser extent by Põuus sigra and Codrus brevifelia. Põuus brutate is the main forest species, appearing in purve or mised stands, and it covers more than 50% of the total forest area of the island. Broadleaved forests cover only 1190 hocturas (<10% of total forest area) and include riparian high wegestation of Pattans orientitis and Abus orientitis. Extensive areas are covered with natural woody shrub vegestation (other wooded land)

Exotic species, including Acacia spp and Eucalyptus spp., were introduced from the late 18th century until 1950. Eucalyptus spp. cover an area of 400 hectares while Acacia spp. grows mixed with other species.

Table 1 shows that 18.67% of the total area of Cyprus is covered by high forests.

Type of regeneration

Natural regeneration as a natural process is the main method of resetablishing a forest. Approximately 8:2% of the forests are naturally regenerated while the rest are artificially reforested with native or alson species. Natural responsing is used when shruks or broadleswed tree species are regenerated naturally after a fine. Artificial regeneration takes place mainly after forest fires, most preferably by sowing and in a lesser percentage by planting. Planting

Class	Area (ha)	% of the total are a of Cyprus
Forests	172 604	18.66
Other Wooded land	213 530	23.08
Total	925 150	100

Table 1. Forest areas in Cyprus according to the total land (100

ing and seeding programmes have also been used to treat understocked sites across the island.

Forest reproductive materials

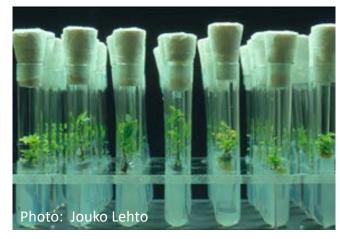
In Cyprus, the method applied for exsists conservation of indigenous species includes the collection and storage of seeds of the main tree species (i.e. Pinus braita, Pinus nigra, Codrus bravijofus) and other priority species. The seeds are stored in seed banks and are used for planting in forest nurseries and for sowing in areas where artificial regeneration is applied.

Machine operation

Machinery is not extensively used in soil preparation, only mini diggers, hand tools and light buildozer are used, where necessary. Also light machinery (mini diggers and light buildozers) is used in final harvestring. Thinning is done motor-manually using chainsawa.

BE

Soon available from www.efi.int


CYP

(Climate-) Smart Forestry

 Atlas provides valuable information on how management could be improved to address multiple societal demands, while considering regional conditions in an uncertain future

 Conserve high carbon stocks in old forests that are not at a high risk of disturbance;

 Optimize forest genetic resources and silviculte (breeding material, planting, tending and harvesting) in forests that are grown primarily for timber

Activate and improve
 the management and
 protection of fire-prone
 forests to safeguard
 their carbon stocks;

 Increase share of broadleaves and mixed forests to enhance resilience

Concluding remarks

• Information basis on state of Europe's forests is improving, but solid information is needed on forest management:

• Limited information available for numerous management decisions (e.g. machine operation, fertilization, application of chemical agents, cutting regimes);

• Atlas reveals substantial differences in management between European regions and countries.

- Atlas provides value information for developing:
 - Climate-smart forestry strategies
 - Forest Reference Levels
 - Forest genetic resource conservation and use
 - Outlook and scenario studies

PublicDomainPicture.

17.3.2020 WWW.EFI.IN

Thank you!