To what extent can silviculture drive adaptability to changes in disturbance regimes? Formalizing a disturbance impact regime for integration into a demo-genetic model Victor Fririon, Under the direction of François Lefèvre, Sylvie Muratorio and Hendrik Davi, URFM – INRAE PACA ### A changing world: Risks linked to disturbances regimes changes 6,0 4,0 Noyenne sur 2081-2100 A,0 RCP2,6 RCP8,5 39 32 9,7400 - Changes in disturbances regimes will have major but partially unpredictable impacts. - Assuming the limits of our knowledge, we have to apply an evolution-oriented forest management. - There is a risk of demographic and genetic collapse for stands. # The risk: A multifaceted concept ### **Objectives** ### The management × disturbance × genetic interactions Better understand the effects of the management × disturbances × genetic interactions on the adaptability and performance of stands: - How to define and quantify each of the risk components? - How to implement the risk as a demographic impact regime into a demogenetic model? Daniel Miller, USDA Forest Service # A Douglas fir study Datas from Renecofor / ICP Forests - Chéne sessile (19) - Chêne pédonculé (9) - Epicéa (11) - Pin sylvestre (14) - O Chêne pédonculé/sessile (2) - Sapin (11) - Pin maritime (7) - Douglas (6) - O Pin laricio (7) - Mélèze (1) The National Network for longterm monitoring of forests ecosystems: - Created by the French National Forestry Office (ONF) - 102 permanent sites where monitoring is planned over at least 30 years. # A Douglas fir study Datas from Renecofor / ICP Forests - Chéne sessile (19) - Chêne pédonculé (9) - Epicéa (11) - Pin sylvestre (14) - O Chêne pédonculé/sessile (2) - Sapin (11) - Pin maritime (7) - Douglas (6) - O Pin Iaricio (7) - Mélèze (1) The National Network for longterm monitoring of forests ecosystems: - Created by the French National Forestry Office (ONF) - 102 permanent sites where monitoring is planned over at least 30 years. - a Douglas fir study ### **Impact regime** ### Quantify disturbance regimes and stand-scale sensitivity How to quantify disturbance regimes? The case of a drought ### **Impact regime** ### Quantify disturbance regimes and stand-scale sensitivity ## How to quantify disturbance regimes? The case of a drought • Castanea: a process-based model used to estimate an annual time scale index relative to soil drought: StressLvl (Palmer index) # Impact regime Quantify disturbance regimes and stand-scale sensitivity How to quantify disturbance regimes? The case of a drought - Castanea: a process-based model used to estimate an annual time scale index relative to soil drought: StressLvl (Palmer index) - A probability density function which can generate disturbance regimes # Impact regime Quantify disturbance regimes and stand-scale sensitivity ## How to quantify disturbance regimes? The case of a drought - Castanea: a process-based model used to estimate an annual time scale index relative to soil drought: StressLvl (Palmer index) - A probability density function which can generate disturbance regimes - An index that integrate standlevel sensitivity which evolve with stand dynamic # Impact regime Conceptualize traits under genetic control #### Constraints for traits under genetic control - Conceptualizing a low number of parameters under genetic control - Parameters fixed and independent of trees size and stand dynamic - Parameters adapted for an additive implementation of genetic # Impact regime Conceptualize traits under genetic control #### Constraints for traits under genetic control - Conceptualizing a low number of parameters under genetic control - Parameters fixed and independent of trees size and stand dynamic - Parameters adapted for an additive implementation of genetic An individual growth reaction norm model Tree core data detrending to study the *Growth ~ Climate* relationship Tree core data detrending to study the *Growth ~ Climate* relationship #### Tree core data detrending to study the *Growth ~ Climate* relationship #### Tree core data detrending to study the *Growth ~ Climate* relationship All individual annual growth variations (30) related to climate #### Estimation of the individual sensitivity • The individual sensitivity: the regression coefficients of the *Growth index* ~ *StressLvl* relationship #### Estimation of the individual sensitivity - The individual sensitivity: the regression coefficients of the *Growth index* ~ *StressLvl* relationship - A DBH effect on the individual sensitivity: exposure or sensitivity cofactor? #### Estimation of the individual sensitivity - The individual sensitivity: the regression coefficients of the *Growth index* ~ *StressLvl* relationship - A DBH effect on the individual sensitivity: exposure or sensitivity cofactor? - This effect has been removed as we want parameters independent of the size. #### Estimation of the vigor • The vigor concept: the individual growth efficiency in undisturbed years #### Estimation of the vigor - The vigor concept: the individual growth efficiency in undisturbed years - A threshold to minimize the StressLvl while maximizing the number of years taken into account #### Estimation of the vigor - The vigor concept: the individual growth efficiency in undisturbed years - A threshold to minimize the StressLvl while maximizing the number of years taken into account - For each selected year (6), the residuals of the RW ~ *DBH* relationship are extracted and averaged over the selected years. #### Estimation of the vigor - The vigor concept: the individual growth efficiency in undisturbed years - A threshold to minimize the StressLvl while maximizing the number of years taken into account - For each selected year (6), the residuals of the RW ~ *DBH* relationship are extracted and averaged over the selected years. ### **Impact regime** ### Trees profiling and vigor ~ sensitivity relationship ## Trees profiling: Individual reaction norms of growth - Reminder: each tree is described with its sensitivity and its vigor. - There is a trade-off between sensitivity and vigor. ### **Impact regime** ### Trees profiling and vigor ~ sensitivity relationship ## Trees profiling: Individual reaction norms of growth - Reminder: each tree is described with its sensitivity and its vigor. - There is a trade-off between sensitivity and vigor. - Each individual can be represented by a growth reaction norm. An individual growth reaction norm model ### Prospect: a demo-genetic modelling approach #### Forestry practices: - systematic thinning - selective thinning • ... #### Forest dynamic: - Individual sensitivity cofactors (age, size, social status) - Stand-scale sensitivity (LAI) ### Prospect: a demo-genetic modelling approach #### Forestry practices: - systematic thinning - selective thinning • ... #### Coupled Demo-genetic model #### Forest dynamic: - Individual sensitivity cofactors (age, size, social status) - Stand-scale sensitivity (LAI) #### Quantitative genetic: - Individual genetic: sensitivity and vigor - Genetic characteristics ### Prospect: a demo-genetic modelling approach #### Forestry practices: - systematic thinning - selective thinning • ... #### Disturbance regimes: - intensity - occurrence #### Coupled Demo-genetic model #### Forest dynamic: - Individual sensitivity cofactors (age, size, social status) - Stand-scale sensitivity (LAI) #### Quantitative genetic: - Individual genetic: sensitivity and vigor - Genetic characteristics ### Prospect: a demo-genetic modelling approach Formalizing a disturbance impact regime for integration into a demo-genetic model ## Thank you Victor Fririon, Under the direction of François Lefèvre, Sylvie Muratorio and Hendrik Davi, URFM - INRAF PACA # **Evolution-oriented forest management:**Management by and for evolutionary process ### management by and for evolutionary processes Lefèvre et al. 2014