

BUR

Journal of Forest Economics, 2019, 34: 99–128

Uncertainty of Carbon Economy Using the Faustmann Model

Rasoul Yousefpour and Andrey L. D. Augustynczik*

Chair of Forestry Economics and Forest Planning, University of Freiburg, Tennenbacherstr. 4, 79106 Freiburg, Germany; rasoul.yousefpour@ife.uni-freiburg.de

FORMASAM Final Meeting, PIK, Potsdam

4th March 2020

Fate of anthropogenic CO2 emissions

SCIENTIFIC **REPORTS**

Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry

Rasoul Yousefpour¹, Andrey Lessa Derci Augustynczik¹, Christopher P. O. Reyer², Petra Lasch-Born², Felicitas Suckow² & Marc Hanewinkel¹

Chair of Forestry Economics and Planning

Immediacy of mitigation

IPCC Chart shows observed monthly temperatures (black line), estimated human-caused warming (red), and idealized potential pathways to meeting 1.5C limit in 2100 (grey, blue and purple). All relative to 1850-1900.

Discounting

The tradeoff between now and later is called time discounting.

We trade money/sensation/experience today for money/sensation/experience later.

Question: Which is worth more? \$10,000 to be received with certainty one year from today, or: \$10,000 received right now?

\$9,500 received now?, \$8,000 received now?

8,000 = 10,000 / (1+0,25)^1

or

Fh Th1-Th3 = Thinning

Chair of Forestry Economics and Planning

FH= Final harvest

t = Rotation period

÷

Cash Flow Incl. Thinning

Forest Carbon Cycle Uncertainty

7

Forest Carbon Uncertainty & Decisions

Protocol

Climate Scenarios:

Realisation of no, low, and extreme scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5 by global climate models HadGEM2-ES, IPSL-CM5A-LR and NorESM1-M, downscaled by the regional climate model ISIMIP

Deterministic versus Stochastic Modelling:

Model run with(out)uncertainty propagation

Weighting Carbon versus LEV:

Equal, Favoring, Discouraging

Management Options:

Increase/Decrease BAU Harvest Rate for Fagus Sylvatica

Discount LEV (Land Expectation Value): Fixed 2%

Discount Carbon (Present Tonne Equivalant carbon): Fixed 2%, No time preference

3PG

Figure 1: Components of 3-PG (Physiological Principles Predicting Growth). Source: http://3pg.sites.olt.ubc.ca/files/2014/04/What-is-3PG.pdf.

Modelling and Optimization Approach

Chair of Forestry Economics and Planning

Management Options:

- 1- Forest Conservation (No management)
- 2- Business as usual (BAU)
- 3- Intensified forest wood utilization
- 4- Reduced forest wood utilization

5 options of N/ha x 5 options of % of biomass removal => 25 regimes

Weighting so	cheme for	LEV and	Carbon:
--------------	-----------	---------	---------

Scheme	Carbon weight	LEV weight
1	1	0.1
2	0.9	0.2
3	0.8	0.3
4	0.7	0.4
5	0.6	0.5
6	0.5	0.6
7	0.4	0.7
8	0.3	0.8
9	0.2	0.9
10	0.1	1

Compromise Programming

w1: normalized weight for LEV
w2: normalized weight for Carbon
CC: set of climate change scenarios *i*: management regime

1) Deterministic Optimum Case Eucliden norm

$$\operatorname{Min} Z = \sum_{j \in CC} \sqrt{w_1 L E V_{j-}^2 + w_2 C A R_{j-}^2}$$

2) Deterministic Robust Case (L1 norm)

3) Uncertain Robust Case Euclidean norm

$$Min Z = \sqrt{w_1 VaRlev_-^2 + w_2 VaRcar_-^2}$$

 $Min Z = \sqrt{w_1 0.5 (RLEV_{\min} + RLEV_{\max})^2 + w_2 0.5 (RCAR_{\min} + RCAR_{\max})^2}$

UNI FREIBURG

Sources of Model Uncertainty (random forest technique)

٠

٠

•

٠

٠

Chair of Forestry Economics and Planning

Deterministic (robust) case

Figure 6: Carbon sequestration for the deterministic and robust towards climate optimal solutions. The solid lines represent the deterministic solution and the dashed lines show the robust solution. The dotted horizontal line shows the result for the BAU management and current climate.

15

UNI FREIBURG

Carbon (PTE)

Carbon Cost (EUR/PTE)

17

- Process-based models are favored to integrate carbon cycle analysis and economy but s. t. uncertaity
- (No)Discounting (0 vs. 2%) has been found to be decisive regarding carbon sequestration level and cost
- Current carbon trade price is NOT sufficient to encourage commercial mitigation in forestry
- Quantification of forest carbon budget is uncertain and needs transparent guidelines to realize an effective carbon policy.

Thank you for attention!

Rasoul Yousefpour & Andrey L. D. Augustynczik @ Chair of Forestry Economics and Forest Planning Tennenbacher Straße 4, D-79106 Freiburg, Germany

Phone:+49-(0)761-203-3688E-Mail:rasoul.yousefpour@ife.uni-freiburg.de

Novel Research Concept (I) Insurance Value of Forest Ecosystems

Project "DiVeS" 2018-2020

1- Risk premium for natural insurance is LOWER than risk premium for financial insurance?

2- Find the best combination of natural and financial insurance to deal with risks

Abstracts submission deadline: March 31, 2020

AgroParisTech -14 rue Girardet - Nancy, France https://workshop.inrae.fr/iufro-risk-analysis-nancy/

