Impact of simulated present and historic management regimes on forest carbon cycling in Europe

C. Herschlein, M. Lindeskog, P. Anthoni, T. Hickler, S. Luyssaert, M. McGrath, T. Pugh, A. Ramming and A. Arneth

1Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, D-82467 Garmisch-Partenkirchen, Germany
2Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 22362 Lund, Sweden
3Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
4Department of Ecological Sciences, VU University Amsterdam, Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
5Laboratoire des Sciences du Climat et l'Environnement, IPSL, CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
6School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
7Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
Background & Questions

Climate change mitigation aims:

- Increase C storage in forests
- Replace fossil fuel, concrete, … by wood
Background & Questions

Climate change mitigation aims:

- Increase C storage in forest
- Replace fossil fuel, concrete, … by wood

Scenarios:
- Unmanaged
- Managed
 - Clear cut vs selective harvest
 - Actual vs natural species

Effect on
- C pools and fluxes
- Species distributions
- Yields
Methods

- Present and historic management (harvest demand, species)
- Atmospheric CO₂, soil texture, N deposition
- Climate (temperature, precipitation, radiation)

LPJ-GUESS
(Dynamic global vegetation model)

Simulation of
- C & N cycle
- H₂O
- plant and soil processes
- their interaction as well as
- exchange with the atmosphere
- competition

For each gridcell in Europe:
- C-fluxes
- C-pools
- Species distributions in mixed forests
- …
Results & Discussion

C-pools: mean for Europe's managed forests for yrs 1995-2010

- Europe forests would store 1.73 times more C if they were unmanaged
- Largest differences occur in the vegetation C pool (3.25 times more C)
- Hardly any changes in soil C as: differences in litter are less pronounced and root litter has a higher proportion
- Forests with natural species composition store 1.33 times more C than planted forests
Monocultures vs mixed

A natural species composition could increase the C stock without reducing harvested yield. Especially in N-Europe, and NE-Europe but there is potential in all countries.
Monocultures vs Mixed - Explanation

Percentage of each species on total vegetation C in Europe

- Pine is widely planted but has relative low vegetation C
- Global review: Ø 23. 7% higher productivity in polycultures than in monocultures (Zhang et al. 2012) due to niches and positive interactions (e.g. Richards et al. 2010)
Clear-cut vs Selective harvest

- Selective harvest results in higher C storage in vegetation and larger harvested yield

SH = selective harvest
CC = clear cut
Clear-cut vs Selective harvest – site scale

- France: SH => beech, stores more C than spruce mixed with others, resulting from CC
- France: SH, 50 years rotation => Pinus nigra dominates => lower C
- Sweden: CC => spruce mixed with pine and birch stores more C than spruce, resulting from SH

Location, rotation period length and (resulting) species composition matters!
Conclusions

- Growing demand on harvested products (substitution of fossil fuel, concrete, …) could further reduce the C in forest vegetation, but:

- Stored C in forest soil might be concerned to a lesser extend

- There are management options for increasing C stock without reducing harvested yield (adjusted species selection, harvest method and intensity)

Thank you for your attention!