
www.helsinki.fi/yliopisto 

 

Forest stand modelling:  

Achievements and future challenges 

 
 

Annikki Mäkelä 

Potsdam 27 February 2019 



2 



www.helsinki.fi/yliopisto 

• Rapid model development phase 1970s – 1990s 

 

• Resulted in families of models on the basis of  

• purpose 

• drivers  

• scale 

 

 

 

 

 

 

Forest stand models – the beginnings 
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Major model families 
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Major model families 
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Major model families 
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Combining carbon balance and population 

structure 
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• Fine tuning and application phase 2000 –  

 

• Basic structures established 

 

• Model development towards applications in sustainable forest 
management  

• Climate change impacts and adaptation 

• Biodiversity 

• Ecosystem services in general 

 

• More efficient data assimilation 

• Model testing 

• Bayesian calibration 

 

 

 

 

 

 

Forest stand models – fine tuning 
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Models for sustainability assessment 

Management- 

sensitive 
Climate-sensitive 

Runs with  

accessible  

input data 

Predicts physical  

sustainability  

indicators 

Stand-level policy  

Indicators from  

multiobjective analysis 

Mäkelä et al. 2012 Review in FORECO 
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More efficient data assimilation 
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Reyer et al. 2015 

Minunno et al. 2019 
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• New basic research challenges underlying 

ecological paradigms 

 

• Requirements of wide spatial and temporal 

application challenge modelling paradigms 
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Forest stand models – challenges 
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• The production ecology paradigm 

• Source limitation Growth 

• The decomposition paradigm 

• First order dynamics Soil processes 

• The species and functional groups 
paradigm 

• Constant group-specific parameters  
Parameterisation 

Some key paradigms under change 
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NPP =  

Photosynthesis – Respiration 

Stem Growth =  

(Stem allocation) x NPP 

 

 

Explains well large geographical 

variation at monthly to annual scale 

 

The production ecology paradigm 

Pinus radiata growth as a function 

 of intercepted PAR 

Grace et al. 1987 
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NPP =  

Photosynthesis – Respiration 

Stem Growth =  

(Stem allocation) x NPP 

 

 

Explains well large geographical 

variation 

 

Does not do so well for year-to-year 

nor day-to-day variability 

 

 

The production ecology paradigm 
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Schiestl-Aalto et al. 2019 
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• Better explanation for inter-annual 

growth variations from 

• Temp, Precip, Soil W 

• Timing of influence 

 

• Christian Körner 2003 J Ecol Appl 

 

C is always abundant 

Growth is limited by direct drivers 

 

 

SINK LIMITATION 

 

The production ecology paradigm  

vs Sink limitation 
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Henttonen et al. 2014.  AFM198–199: 294 - 308 
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• PBMs of intra-annual growth 
combine environment driven 
phenology with C balance 

 

Grote 1998 

Drew et al. 2010 JTB 

Schiestl-Aalto et al. 2015 NP 

Guillemot et al. 2017 NP 

Review: Sala et al.  2012 Tree Phys.  

 

• Long term: Supply limitation  
Short term: Sink limitation 

• Interactions & acclimation => 
consequences for CC impacts 

 

 

The production ecology paradigm: 

How to reconcile sink-source interactions? 

Schiestl-Aalto et al. 2015 NP 
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The decomposition paradigm 

 

19 

C 
allocation 

Fine 
roots 

Fine root 
litter 

C in 
SOM 

Microbes 

Microbial 
litter 

C in 
SOM 

Decom-
position 

RH RH 

RPE 

priming 

exudates 



www.helsinki.fi/yliopisto 

The decomposition paradigm 

Evidence on priming and exudates 

 

• RPE observations 

La Fontaine et al. 2004 Ecology Letters 

Heinonsalo et al. 2017 

 

• Plants gain N with exudation 

Näsholm 1998 Science, Schimel and 
Weintraub 2003 

 

• N fertilisation enhances C 
accumulation in soil 

Högberg et al. 2014 Plant and Soil 

 

• Implications on stand growth and 
C sequestration under climate 
change? 

Näsholm et al. 2013 NP 

 

Heinonsalo et al. 2017 EGU 

Soil respiration 
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• N availability matters for 

growth 

• Soil N-C interactions matter for 

N release and soil C 

sequestration 

 

• How would these change if 

exudates and priming are 

accounted for? 

 

 

The decomposition paradigm 

Possible implications on stand growth under 

climate change 

Unlimited N 

High N  

  

Low N  

Time under climate change 
Mäkelä et al. 2017 IUFRO 
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• Some traits quantified as species-specific 
parameters actually vary with environment 

• SLA 

• Specific respiration rates 

• Turnover rates 

• etc… 

 

• Evolutionary acclimation => no ”space-for-time” 
substitution 

 

• ”SPECIES” => ”COLLECTION OF TRAITS” 

• Derive all traits and their combinations on a 
physiological basis 

• Modified by environment  

New generation DVMs https://ar17.iiasa.ac.at/dynamic-
vegetation/ ; Kunstler et al. 2016 Nature 

The species and functional groups paradigm: 

Replace with traits 
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Tupek et al. 2014 BER 

Mäkelä et al. 2016 FORECO 

https://ar17.iiasa.ac.at/dynamic-vegetation/
https://ar17.iiasa.ac.at/dynamic-vegetation/
https://ar17.iiasa.ac.at/dynamic-vegetation/
https://ar17.iiasa.ac.at/dynamic-vegetation/


www.helsinki.fi/yliopisto 

• Modellers tend to find lack of realism in models and predictions 

 

• Solving this by adding more processes and inputs leads to  

• Increased data requirements  

• Decreased trasparercy  

• Increased uncertainty 

 

• Especially in DGVMs! 
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Large-scale spatial and temporal 

applications challenge reductionist 

modelling paradigm 
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• Process-based models with evolutionary 

optimisation 

• Optimise processes with trade-offs in new 

environments  

Reviews: Mäkelä et al. 2000 SF, Dewar et al. 2009 

BioScience, Franklin et al. 2012 Tree Phys 

 

• Stomatal control (Prentice et al. 2015) 

• Carbon – nitrogen coallocation (Valentine & Mäkelä 

2012 NP) 

• Plant-microbe relationships and priming (Franklin et 

al. 2014) 

 

• Trait-based models?  

• Sink-source balance? 

 

 

Spatial and temporal applications 

challenge modelling paradigms 

Eco-evolutionary models 

Optimal co-allocation of N and C  

at different sites under  

climate change 

Mäkelä et al. 2014 AGU 
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• Rapid model development 1970s – 1990s resulted in a number of stand 
growth models with established & convergent theoretical basis 

 

• 2000s have seen an increasing number of model testing, fine-tuning  
and use for applications in sustainable forest management 

 

• The 4C model is exeptional among stand models in its wide scope and 
applicability as well as the wide efforts in model parameterisation and 
validation 

 

• New challenges of model development are emerging from both new 
basic research in trees and soils, as well as modelling methods 

 

• The rigorous modelling work up to now provides a sound basis for 
further development responding to the challenges 

Summary 



Petra and Felicitas 

Thank you for your  

collaboration and insights 

 

All the best for the future! 


