Understanding the dynamics under recurrent floods in the Philippines

Inga Sauer, Brian Walsh, Katja Frieler, David Bresch, and Christian Otto

Introduction

Introduction

How do impacts change if disasters occur in a sequence causing incomplete recoveries?

Introduction

How do impacts change if disasters occur in a sequence causing incomplete recoveries?

What are the effects of incomplete recovery experienced by households from different income groups?

Results – Case study Philippines

Walsh & Hallegatte 2018

Walsh & Hallegatte 2018

Walsh & Hallegatte 2018

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t-t_{shock})}$$

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t - t_{shock})}$$

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t - t_{shock})}$$

• •

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t - t_{shock})}$$

••

$$\Delta c_h(t) = \Delta i_h(t) + \Delta c_h^{reco}(t) - s_h(t)$$

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t - t_{shock})}$$

Income loss

Reconstruction

$$\Delta c_h(t) = \Delta i_h(t) + \Delta c_h^{reco}(t) - s_h(t)$$
 Savings

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t - t_{shock})}$$

Income loss

Reconstruction

$$\Delta c_h(t) = \underbrace{\Delta i_h(t)} + \underbrace{\Delta c_h^{reco}(t)} - \underbrace{s_h(t)}_{\text{Savings}}$$

$$\Delta W_h(t_{sim}) = \frac{1}{1-\eta} \int_0^{tsim} \left[(c_h^*)^{1-\eta} - c_h(t)^{1-\eta} \right] dt$$

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t - t_{shock})}$$

Income loss

Reconstruction

$$\Delta c_h(t) = \underbrace{\Delta i_h(t)} + \underbrace{\Delta c_h^{reco}(t)} - \underbrace{s_h(t)}_{\text{Savings}}$$

$$\Delta W_h(t_{sim}) = \frac{1}{1-\eta} \int_0^{tsim} \left[\mathbf{c}_h^* \right]^{1-\eta} - \mathbf{c}_h(t)^{1-\eta} \right] dt$$

Unperturbed consumption

Consumption under recovery

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t - t_{shock})}$$

Income loss

Reconstruction

$$\Delta c_h(t) = \underbrace{\Delta i_h(t)} + \underbrace{\Delta c_h^{reco}(t)} - \underbrace{s_h(t)}_{\text{Savings}}$$

$$\Delta W_h(t_{sim}) = \frac{1}{1 - \eta} \int_0^{tsim} \left[c_h^* \right]^{1 - \eta} - c_h(t)^{1 - \eta} dt$$

Unperturbed consumption

Consumption under recovery

Initial damage

$$\Delta k_h(t) = \Delta k_h(t_{shock}) e^{-\lambda_h(t) t_{shock}}$$

Income loss

Reconstruction

$$\Delta c_h(t) = \underbrace{\Delta i_h(t)} + \underbrace{\Delta c_h^{reco}(t)} - \underbrace{s_h(t)}_{\text{Savings}}$$

$$\Delta W_h(t_{sim}) = \frac{1}{1-\eta} \int_0^{tsim} \left[c_h^* \right]^{1-\eta} - c_h(t)^{1-\eta} dt$$

Unperturbed consumption

Consumption under recovery

Recovery after crossing subsistence line

Sauer et al 2023 under review

Model extension

First shock:

$$\Delta k_h(t_{shock}) = v k_h^*$$

Further shocks:

$$\Delta k_h(t_{shock}) = v_k(k_h^* - \Delta k_h(t_{shock} - 1))$$

Sauer et al 2023 under review

Model extension

First shock:

$$\triangle k_h(t_{shock}) = v k_h^*$$
 Remaining assets

Further shocks:

$$\Delta k_h(t_{shock}) = v_k(k_h^* - \Delta k_h(t_{shock} - 1))$$

Recovery after crossing subsistence line

Sauer et al 2023 under review

Exposure

Household survey (FIES)

Population distribution

Exposure

Household survey (FIES)

Population distribution

Hazard

Time stamps & Flood maps

HH-VUL

Exposure

Household survey (FIES)

Population

distribution

region

HH - income

Selection of affected households

 p_{nat}

 $p_{nat} = \frac{affected \ people \ (EM-DAT)}{exposed \ population}$

Hazard

Time stamps & Flood maps

Affected households

Inga Sauer Cascades-Receipt 2023

HH-VUL

Exposure

Household survey (FIES)

Population

distribution

region

HH - income

Selection of affected households

exposed population

p_{nat} exposed

Affected households

Hazard

Time stamps & Flood maps

Household resilience model

Asset damage

Income loss

Consumption loss

Accumulated well-being loss

Results - Effect of incomplete recoveries in-between events

Results - Effect of incomplete recoveries in-between events

Results - Effect of incomplete recoveries in-between events

Results - Case study Philippines

Results - Case study Philippines

Damage to productive assets

Results - Case study Philippines

Accumulated well-being loss

Conclusions

- Impacts of consecutive disasters are not additive
- ➤ The effects change depending on the impact metric
- Incomplete recoveries cause an increase long-term impact
- > direct impacts are likely to be reduced
- ➤ The relative increase in long-term losses caused by incomplete recoveries is largest for middle-income households

