# A methodology to estimate the average annual cost of internal displacement

Cross-border climate change impacts and systemic risks in Europe and beyond 17 October 2023

Mario A. Salgado-Gálvez Reinhard Mechler Jacob Schewe Benedikt Mester

climatestorylines.eu







- Between 2008 and 2028, over 32M internal displacements triggered by disasters have been registered by IDMC
- Over 29M have been triggered either by floods or storms
- For internal displacement risk to be managed, it first needs to be measured and a prospective approach is needed
- We propose a methodology to estimate, in a prospective manner, the average annual cost of internal displacement with a scalable and peril-agnostic approach
- Two main components: a) estimation of average annual IDPs, and b) estimation of the average annual displacement duration

## **Previous studies**

 IDMC first developed a global internal displacement risk model considering multiple hazards



- Those results provide an estimate of the average annual number of IDPs per hazard, but it is only a part of the picture
- For historical events in Mexico and the Caribbean (EQ and TC), the estimates of the internal displacement costs have been made



## Available (and missing) data

- IDMC first developed a global internal displacement risk model, considering multiple hazards and over 200 countries
- Those results provide an estimate of the average annual number of IDPs per hazard, but it is only a part of the picture
- Historical data on IDPs were systematically recorded since 2008. However, human mobility patterns and the duration of the displacement are rarely captured in the databases
- IDMC has carried out extensive research to estimate the average annual cost of attending an IDP. For disaster-triggered events, that value has been set in \$290
- Ongoing research to establish relationships between physical damage levels and recovery/reconstruction times

climatestorylines.eu

🔰 RECEIPT eu



Receipt

4

Assumptions and limitations:

- Only sudden-onset events are to be modelled
- All displacements are assumed to be internal
- IDPs will all return home once the recovery/reconstruction activities are finished
- The model cannot describe where IDPs will go to
- Evacuation measures are not included (of relevance for some hazards, such as TC)
- Protracted displacement (i.e., 5+ years) is not accounted for



Step 1: estimate the average annual IDPs (by hazard)

- Risk as a function of hazard (synthetic catalog of events), exposure (for residential buildings and population), and physical vulnerability (relationship between the hazard intensity measures and the expected losses)
- The methodology allows for a probabilistic representation of all components, analogous to what is used in the catastrophe risk modelling field
- For each event, the expected damage level and IDP are calculated.
- The average annual values are the sum of the product of these expected values times the occurrence frequency of each simulated event



#### **Proposed methodology**

Step 2: estimate the average displacement duration, using the damages on the residential buildings as a proxy









RECEIPT has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant agreement No. 820712





Step 3: multiply the average annual IDPs by the annual cost.

Additional remarks:

- The proposed methodology is fully scalable and peril-agnostic
- Average Annual Displacements are a quantity that can be arithmetically added, facilitating the comparison and integration of the results into a MH context
- The effects of CC can be included in the analysis (e.g., baseline vs. future scenario comparisons) through simulations or counterfactual analyses



# **Application for TC Idai (2019)**

- Massive damage to housing and infrastructure as well as 478,000 IDPs (IDMC)
- Modelled flood depths by PIK



Mester et al. (under rev.)



\*\*\*\* \* \* \*\*\* **Re**Ceipt



# **Application for TC Idai (2019)**

- Physical damage estimates for different building typologies
- Weighted average displacement duration based on the characteristics of the buildings
- The coastal global exposure database (UNDRR) and its attributes, with a 1x1km resolution level, were used for this case-study



| Turne       | Chara | Deceyary time (yrs) |  |
|-------------|-------|---------------------|--|
| Туре        | Snare | Recovery time (yrs) |  |
| 1 story     | 40%   | 2                   |  |
| 2 stories   | 45%   | 0.33                |  |
| 3-4 stories | 10%   | 2                   |  |
| 5+ stories  | 5%    | 2                   |  |



- For TC Idai, the internal displacement cost, with an average 1.9yr duration, was established in \$265M
- These values are to be added to those related to direct losses and emergency costs
- Estimates for future climate scenarios were carried out for year 2050

| Year 2050 |                     |                    |                                          |                                         |  |  |
|-----------|---------------------|--------------------|------------------------------------------|-----------------------------------------|--|--|
| SSP       | IDPs lower estimate | IDPs high estimate | Displacement cost lower estimate (USD M) | Displacement cost high estimate (USD M) |  |  |
| 1         | 478,000             | 489,950            | \$ 265                                   | \$ 271                                  |  |  |
| 5         | 478,000             | 573,600            | \$ 265                                   | \$ 318                                  |  |  |

#### Possible uses of the method and results

- Quantify the different facets of internal displacement risk and enhance its prospective management, reducing its burden on individuals and communities
- Prepare for disaster-triggered internal displacement (i.e., prevent future displacement)
- Respond to disaster-triggered internal displacment, in combination with forecast-based initiatives (i.e. support life-saving activities, including evacuations)

