Estimating Indirect Costs of Natural Disasters: effects of the rebuilding demand

S. Juhel^{1,2}, A. Delahais², V. Viguie² October 3, 2023

¹LMD, ²CIRED

Introduction

Indirect economic impacts definition

Indirect economic impacts generally arise due to the <u>disruption</u> of the flows of goods and services (and therefore <u>economic activity</u>) because of a disaster. (IPCC - SREX 2012)

Diverse modeling methods¹

Computable General Equilibrium (CGE) Better adapted for long term analysis (substitution of factors and inputs)

e.g. Rose, Liao, and Bonneau, 2011

IO-Model Better adapted for short term analysis (no substitution)

e.g. Hallegatte, 2013

Agent based models More versatile, but require to calibrate many parameters

e.g. Otto et al., 2017

¹A review of these: Botzen, Deschenes, and Sanders, 2019.

ARIO

What is the robustness of the modelling of indirect economic impacts of natural disasters ?

- Modeling demand surge is key
- In this case:
 - Rebuilding process pace has the most implications
 - High sensitivity to economic data (MRIOT)
 - Higher sensitivity to model parameters (than without demand)

Methodology

ARIO model

Widely used model, basis for other indirect costs models.

BoARIO: Open -source -access Python implementation (generic, modular, efficient, documented)

Economic data Three different Multi Regional Input Output Tables (MRIOTs) (year 2000 and 2010):

- EXIOBASE3 (163 sectors, 44 countries and 5 RoW regions)
- EORA26 (26 sectors, 189 countries)
- EUREGIO (14 sectors, 247 UE NUTS2 regions, 16 countries)

Case study : July 2021 floods in Germany

Flash floods in Insul, Germany - July 2021 - AP Photo/Michael Probst

Case study : July 2021 floods in Germany

- Direct impacts well evaluated (BMI, 2022; Trenczek et al., 2022; Munich RE, 2005)
- Large scale event: €33.4 billion direct damages
- In UE (matches EUREGIO MRIOT)

- Economy modeled as a set of *industries* (region, sector) and *final clients*, based on a MRIOT
- Shocks are a temporary <u>reduction in production</u> capacity and (possibly) a <u>rebuilding demand</u>
- Model outputs are time-series of the economy after the shock

- Economy modeled as a set of *industries* (region, sector) and *final clients*, based on a MRIOT
- Shocks are a temporary <u>reduction in production</u> capacity and (possibly) a <u>rebuilding demand</u>
- Model outputs are time-series of the economy after the shock

- Economy modeled as a set of *industries* (region, sector) and *final clients*, based on a MRIOT
- Shocks are a temporary <u>reduction in production</u> capacity and (possibly) a <u>rebuilding demand</u>
- Model outputs are time-series of the economy after the shock

We consider two cases:

- No rebuilding demand, but a gradual recovery of production capacity
- A rebuilding demand corresponding to the direct damages, production capacity restored as demand is answered
- And different rebuilding/recovery duration:
 - 3 months 12 months 24 months
 - 6 months 18 months
- (We also run simulations for a wide range of values for other parameters of the model)

Results

Indirect production change two years after the shock

Recovery length (days)

EORA26 EUREGIO EXIOBASE 3 EORA26 EUREGIO EXIOBASE 3

EORA26 EUREGIO EXIOBASE 3 EORA26 EUREGIO EXIOBASE 3

Effects of considering rebuilding demand : in France

Effects of considering rebuilding demand : in France

Effects of considering rebuilding demand : in France

Conclusions

- The rebuilding process (considering the demand surge) and its pace (i.e. allocation of effort) are key
- Parameters and MRIOT choices can also influence the results, but mostly when demand surge is considered
- Negative outcomes are mainly local, and foreign production tends to benefit from local losses

- The rebuilding process (considering the demand surge) and its pace (i.e. allocation of effort) are key
- Parameters and MRIOT choices can also influence the results, but mostly when demand surge is considered
- Negative outcomes are mainly local, and foreign production tends to benefit from local losses

- The rebuilding process (considering the demand surge) and its pace (i.e. allocation of effort) are key
- Parameters and MRIOT choices can also influence the results, but mostly when demand surge is considered
- Negative outcomes are mainly local, and foreign production tends to benefit from local losses

- \cdot Prices are considered constant \implies real impact on welfare is uncertain
- Demand surged is entirely insured
 ⇒ losses and recovery are underestimated
- Critical chains are unlikely accounted for \implies finer economic data is required

- Prices are considered constant
 - \implies real impact on welfare is uncertain
- Demand surged is entirely insured
 - \implies losses and recovery are underestimated
- Critical chains are unlikely accounted for \implies finer economic data is required

- Prices are considered constant
 - \implies real impact on welfare is uncertain
- Demand surged is entirely insured \implies losses and recovery are underestimated
- Critical chains are unlikely accounted for \implies finer economic data is required

Thank you for your attention !

Appendices

- Rationing scheme
- Model diagram
- Formalism
- Production
- Inventories
- Distribution scheme
- Orders
- Damages
- Recovery

16

16

Point of view of an *industry*, (i.e a sector in a region)

Constraints on actual/realized production: 1. $x_i^{act} \le d_i^{tot}$ 2. $x_i^{act} \le x_i^{cap}$ 3. $x_i^{act} \le$ production allowedby inventories constraints.

Constraints on actual/realized production: 1. $x_i^{act} \le d_i^{tot}$ 2. $x_i^{act} \le x_i^{cap}$ 3. $x_i^{act} \le$ production allowedby inventories

constraints.

Constraints on actual/realized production: 1. $x_i^{act} \le d_i^{tot}$ 2. $x_i^{act} \le x_i^{cap}$ 3. $x_i^{act} \le$ production allowedby inventories constraints.

Constraints on actual/realized production: 1. $x_i^{act} \le d_i^{tot}$ 2. $x_i^{act} \le x_i^{cap}$ x_i^{opt} 3. $x_i^{act} \le$ production allowed by inventories constraints.

Constraints on actual/realized production: 1. $x_i^{act} \le d_i^{tot}$ 2. $x_i^{act} \le x_i^{cap}$ x_i^{opt} 3. $x_i^{act} \le$ production allowedby inventories constraints.

For every input : have at least ψ % of the amount required to produce x_i^{opt} during τ steps.

If not, shift from x_i^{opt} to the maximum production satisfying this condition : x_i^{cons} .

For every input : have at least ψ % of the amount required to produce x_i^{opt} during τ steps.

If not, shift from x_i^{opt} to the maximum production satisfying this condition : x_i^{cons} .

Proportional rationing : if production of i is n% of d_i^{tot} , then each "client" (intermediate and final) receive n% of its demand. Inventory begin to deplete.

Final demand not met is not reported but recorded as a loss (menu)

1. Fixed final demand y^{final}

- 2. Intermediate demand for realized production : $Z^{act} = x^{act} A^{\mathbf{S}}$ columns-sum.
- 3. Intermediate demand for inventories *restocking* : inventory gap times a characteristic time $\frac{1}{\tau^{inv}}$.
- 4. Rebuilding demand $y^{rebuild}$.

- 1. Fixed final demand y^{final}
- 2. Intermediate demand for realized production : $Z^{act} = x^{act} A^{\mathbf{S}}$ columns-sum.
- 3. Intermediate demand for inventories *restocking* : inventory gap times a characteristic time $\frac{1}{\tau^{inv}}$.
- 4. Rebuilding demand $y^{rebuild}$.

- 1. Fixed final demand y^{final}
- 2. Intermediate demand for realized production : $Z^{act} = x^{act} A^{\mathbf{S}}$ columns-sum.
- 3. Intermediate demand for inventories restocking : inventory gap times a characteristic time $\frac{1}{\tau^{inv}}$.
- 4. Rebuilding demand $y^{rebuild}$.

- 1. Fixed final demand y^{final}
- 2. Intermediate demand for realized production : $Z^{act} = x^{act} A^{\mathbf{S}}$ columns-sum.
- 3. Intermediate demand for inventories *restocking* : inventory gap times a characteristic time $\frac{1}{\tau^{inv}}$.
- 4. Rebuilding demand $y^{rebuild}$.

On production:

- 1. Direct damages distributed along a selected set of *impacted* sectors
- 2. Distribution proportional to GDP share of sector (in IO table)
- 3. Production reduction equal to ratio of damages over sector capital stock estimate.

On demand:

- 1. Rebuilding demand equal to direct damages
- 2. Distributed towards a selected set of *rebuilding sectors*

Huge shift in production distribution in one day appears unrealistic

 \rightarrow Smooth production allocation towards rebuilding.

$$\gamma(t+1) = \gamma(t) + (\gamma^{max} - \gamma(t)) \frac{d^{rebuild} - x^{rebuild}}{d^{rebuild}} \cdot \frac{1}{\tau^{rebuild}}$$