Distribución de los componentes del balance hídrico actual y futuro en el Perú considerando las proyecciones climáticas del CMIP6 (Coupled Model Intercomparison Project)

**Carlos Antonio Fernandez Palomino**<sup>\*1,2</sup>, Fred F. Hattermann<sup>1</sup>, Valentina Krysanova<sup>1</sup>, Fiorella Vega-Jacome<sup>2</sup> \* Corresponding author: <u>palomino@pik-potsdam.de</u>, <u>cafpxl@gmail.com</u>, <sup>1</sup> Potsdam Institute for Climate Impact Research, <sup>2</sup> University of Potsdam





Lima 2022

# Perú y la distribución de sus recursos hídricos





Disponibilidad de recursos hídricos 1'768,172 hm<sup>3</sup>

Disponibilidad desigual de agua en las tres vertientes hidrográficas

# Evidencias de la extrema variabilidad climática y el cambio climático

#### **Cambios en la temperatura**

*<b>@AGU PUBLICATIONS* 

RESEARCH ARTICLE 10.1002/2015JD023126





En los Andes tropicales (2°N–18°S), se ha observado una tendencia de calentamiento significativa de 0.13°C/década entre 1950 – 2010.

# Evidencias de la extrema variabilidad climática y el cambio climático

#### **Cambios en la superficie glaciar**



Global and Planetary Change

Glacier loss and hydro-social risks in the Peruvian Andes



#### Glaciar Cuchillacocha







La superficie de los glaciares peruanos ha disminuido en más del 40% desde la década de 1970

(Autoridad Nacional del Agua, 2014)

# Evidencias de la extrema variabilidad climática y el cambio climático

#### Inundaciones



Inundaciones en Iquitos durante la histórica crecida del río Amazonas, 2012



Inundaciones en Lima durante "El Niño Costero", 2017

![](_page_4_Figure_6.jpeg)

#### **Sequías**

![](_page_4_Figure_8.jpeg)

![](_page_5_Picture_0.jpeg)

Las evidencias del cambio climático antes mencionadas deberían ser una "llamada de atención" para:

- Científicos, para investigar las condiciones hidroclimáticas actuales y futuras
- Gobiernos, líderes locales y personas para mejorar su preparación para eventos climáticos extremos

Para apoyar estas "llamadas de atención", nuestro presente estudio analiza el impacto del cambio climático en los recursos hídricos de PERÚ.

## Objetivos

- Configurar, calibrar y validar el modelo SWAT
- Analizar la distribución de los componentes del balance hídrico
- Analizar los cambios en los componentes del balance hídrico bajo escenarios de cambio climático

# Área de estudio

![](_page_7_Figure_1.jpeg)

### Datos

| Data type               | Resolution              | Description/source                                                                  |
|-------------------------|-------------------------|-------------------------------------------------------------------------------------|
| Spatial data            |                         |                                                                                     |
| Elevation               | 90 m                    | Surface elevation (m a.s.l.) from Multi-Error-Removed Improved Terrain (MERIT;      |
|                         |                         | Yamazaki et al. 2017)                                                               |
| Land use                | 100 m                   | Land use classification representative for the year 2015 obtained from Copernicus   |
|                         |                         | Global Land Service (Buchhorn et al. 2019)                                          |
| Soil                    | 1000 m                  | Soil parameters for SWAT based on the Harmonized World Soil Database version        |
|                         |                         | 1.21 soil data (Abbaspour and Ashraf Vaghefi 2019)                                  |
| Soil thickness          | 1000 m                  | Soil thickness data (Pelletier et al. 2016) were used to implement variable soil    |
|                         |                         | thicknesses at hydrological response units (HRUs)                                   |
| Groundwater table depth | 1000 m                  | Groundwater table depth data (Fan et al. 2013) were used to constrain soil          |
|                         |                         | thickness in shallow water tables across the rainforest region                      |
| Hydro-meteorological o  | data                    |                                                                                     |
| Precipitation           | Daily/0.1°              | Rain for Peru and Ecuador (RAIN4PE; Fernandez-Palomino et al. 2021a,b)              |
|                         | (1981 – 2015)           |                                                                                     |
| Temperature             | Daily/0.1°              | Gridded temperature (maximum and minimum) dataset for Peru (Huerta et al.           |
|                         | (1981-2016)             | 2018) as provided by SENAMHI ( <u>ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/</u> ) |
| Solar radiation         | 3-hourly/0.1°           | Long-term monthly averages of solar radiation based on the global surface solar     |
|                         | (1983-2018)             | radiation data (Tang et al. 2019; Tang 2019) were used                              |
| Streamflow              | Daily/0.1°              | Streamflow data were obtained from Peruvian ANA, SENAMHI, and HYBAM                 |
|                         | (1981 – 2015)           | project                                                                             |
| Projected climate data  |                         |                                                                                     |
| Precipitation and       | Daily/0.7-2.8°          | Precipitation and temperature (mean, maximum and minimum) from 10 CMIP6-            |
| temperature             | Historic (2015 – 2100)  | GCMs for two scenarios (SSP1-2.6 and SSP5-8.5) were obtained from                   |
|                         | Projected (2015 – 2100) | https://esgf-node.llnl.gov/search/cmip6/.                                           |

# Proyección del clima en base a los caminos socioeconómicos compartidos (Shared Socioeconomic Pathways SSPs)

![](_page_9_Figure_1.jpeg)

# Proyección del clima en base a los caminos socioeconómicos compartidos (Shared Socioeconomic Pathways SSPs)

![](_page_10_Figure_1.jpeg)

# Simulaciones de los modelos de clima con sesgo corregido y reducido en escala estadísticamente

![](_page_11_Figure_1.jpeg)

All bias-adjusted and downscaled climate models match well with observed precipitation. Similar results were obtained in the bias correction of temperatures.

# Modelo SWAT para cuencas andinas y amazónicas

#### • SWAT para ecosistemas tropicales

![](_page_12_Picture_2.jpeg)

Hydrol. Earth Syst. Sci., 21, 4449–4467, 2017 https://doi.org/10.5194/hess-21-4449-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

![](_page_12_Picture_4.jpeg)

25000

20000 15000 Requena

An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems

Tadesse Alemayehu<sup>1,2</sup>, Ann van Griensven<sup>1,2</sup>, Befekadu Taddesse Woldegiorgis<sup>1</sup>, and Willy Bauwens<sup>1</sup>

 Inclusión de la dinámica río-planicie de inundación, donde la llanura de inundación asociada a cada tramo del río se trató como un modelo de almacenamiento simple

![](_page_12_Picture_8.jpeg)

![](_page_12_Figure_9.jpeg)

# Calibración del modelo SWAT

Enfoque de calibración en cascada (72 est. hidrol.)

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

- Area: 1 638 793 km2
- 2675 subcuencas
- 6843 HRUs
- Tiempo de comp.: 1 min. año<sup>-1</sup>

#### Tiempo total de calibración

![](_page_13_Picture_10.jpeg)

![](_page_13_Picture_11.jpeg)

- Calibración multiobjetivo (algoritmo BORG)
- **Funciones objetivos:** .

$$\succ \operatorname{Max}(\log_N SE = 1 - \frac{\sum_{i=1}^n (\ln(S_i) - \ln(O_i))^2}{\sum_{i=1}^n (\ln(O_i) - \ln(O_p))^2})$$

![](_page_13_Figure_15.jpeg)

> Min(FDC<sub>sign</sub> =  $\frac{1}{4}(|S_{peak}| + |S_{high}| + |S_{mid}| + |S_{low}|))$ 

**INSE and FDCsign** 

50%

75%

100%

![](_page_13_Figure_17.jpeg)

# Parámetros calibrados de SWAT

• Solo se calibraron 7 parámetros

![](_page_14_Figure_2.jpeg)

# Parámetros calibrados de las llanuras de inundación en SWAT

![](_page_15_Figure_1.jpeg)

## Desempeño del modelo SWAT en la simulación de caudales

![](_page_16_Figure_1.jpeg)

Kling–Gupta efficiency-KGE

![](_page_16_Figure_2.jpeg)

0.00 0.25 0.50 0.75 1.00

Porcentaje de bias (%)

![](_page_16_Figure_4.jpeg)

Los valores de PBIAS entre -10 y 10 que se muestran en puntos verdes indican un buen desempeño del modelo para lograr el cierre del balance hídrico

# Variabilidad espacial de los componentes del balance hídrico (1985-2015)

![](_page_17_Figure_1.jpeg)

500 2000 4948

# Cambios proyectados en los componentes del balance hídrico bajo los escenarios del cambio climático

#### **Precipitación (P)**

![](_page_18_Figure_2.jpeg)

Period: 2005-2035

#### Periodo ref.: 1985-2015

![](_page_18_Figure_5.jpeg)

Los mapas muestran los cambios proyectados (%) en la precipitación en el futuro en comparación con el período histórico (1985–2015) bajo SSP1-2.6 y SSP5-8.5

↓ P sobre la amazonía baja (especialmente al sur)

 $\uparrow$  P a lo largo de los Andes

# Cambios proyectados en los componentes del balance hídrico bajo los escenarios del cambio climático

#### **Evapotranspiración (ET)**

1441

750

Periodo ref.: 1985-2015

250

7

![](_page_19_Figure_2.jpeg)

Period: 2005-2035

Sin cambios en la ET sobre cuencas andinas

Los mapas muestran los cambios proyectados (%) en la evapotranspiración en el futuro en comparación con el período histórico (1985–2015) bajo SSP1-2.6 y SSP5-8.5

↑ ET sobre la amazonía baja y las zonas costeras áridas

# Cambios proyectados en los componentes del balance hídrico bajo los escenarios del cambio climático

#### **Rendimiento hídrico (RH)**

![](_page_20_Figure_2.jpeg)

↓ RH sobre la amazonía baja (especialmente al sur)

50 25 0 -25 -50

> $\uparrow$  RH a lo largo de las cuencas andinas

Los mapas muestran los cambios proyectados (%) en el rendimiento hídrico en el futuro en comparación con el período histórico (1985-2015) bajo SSP1-2.6 y SSP5-8.5

#### Periodo ref.: 1985-2015

![](_page_20_Figure_7.jpeg)

# Conclusiones

- Por primera vez, realizamos un análisis de los componentes del balance hídrico a nivel nacional en Perú
- Las proyecciones muestran una menor disponibilidad de agua en las cuencas amazónicas bajas y una mayor disponibilidad de agua a lo largo de las cuencas andinas en el futuro
- Los resultados de nuestra investigación hidro-climática pueden ser de utilidad en la planificación de una gestión adecuada de los recursos hídricos.

# 2019-06-06 30 000 m3/s

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)