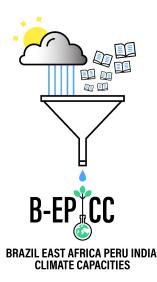
B-EPICC kick-off workshop Brazil Aug 16-18, 2022 @ INPE Session: 'Climate Services and Forests&Biodiversity'

9:45am	Climate Services and Forest & Biodiversity
	Ms Sarah Bereswill (Potsdam Institute for Climate Impact Research (PIK), GER)
	Modeling forest dynamics and biodiversity under climate change
	• Dr. Celso von Bandow (Center for Earth System Science, Instituto Nacional de Pesquisas
	Espaciais (INPE), BRA))
	Modeling land use change and impacts in carbon and water fluxes in Brazilian biomes
10:45am	Morning Tea
11:15am	Climate Services and Forest & Biodiversity - continued
	 Dr. Luiz Aragão (Instituto Nacional de Pesquisas Espaciais (INPE), Head of Earth Observation and Geoinformatics Division, TREES lab) Dynamics of Forest Carbon from environmental change in Amazônia Prof. Pedro H.S. Brancalion (Dept. of Forest Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo (USP)) Restoration of tropical forest multifunctionality (via Zoom)
	 Ms Sarah Bereswill (Potsdam Institute for Climate Impact Research (PIK), GER) wrap up and discussion

CAPACITY Building &

KNOWLEDGE TRANSFER

INCL. Visualization


CLIMATE

& WATER RESOURCES

& BIODIVERSITY

Modelling tropical forests and biodiversity under climate change

Sarah Bereswill, Kirsten Thonicke, Boris Sakschewski, Maik Billing, Markus Drüke, Werner von Bloh

1. Introduction

Ecosystems in Transition (EST)

Key research objectives

Tapajós National Forest, Brazil (c) Kirsten Tr

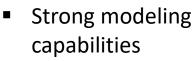
Our research focuses on the following three aspects

- Functional diversity, elasticity of ecosystems and ecological tipping points
- Impacts of extreme events and (fire) disturbances on ecosystems
- Shifts in ecosystem services, role of natural vegetation and climate regulation services

As each of these research topics shows strong implications on the others, we are aiming for a high level of integration.

Ana Cano-Crespo Scientist Doctoral Researcher Earth System Analysis

<u>Werner von Bloh</u> Senior Scientist Earth System Analysis


<u>Sarah Bereswill</u> Postdoctoral Researcher Earth System Analysis

<u>Markus Drüke</u> Postdoctoral Researcher Earth System Analysis

<u>Boris Sakschewski</u> Postdoctoral Researcher Earth System Analysis

- Fire
- Biodiversity

Kirsten Thonicke Deputy Head of Research Department Earth System Analysis

Maik Billing Doctoral Researcher Earth System Analysis

B-EPICC's workpackage on Forests & Biodiversity in Brazil

Important contribution of forest recovery for climate change mitigation

Goals

- Identify contribution of forest recovery to ecosystem services carbon storage, local climate regulation
- Investigate recovery of functional biodiversity
- Simulate forest recovery trajectories under the impact of climate change

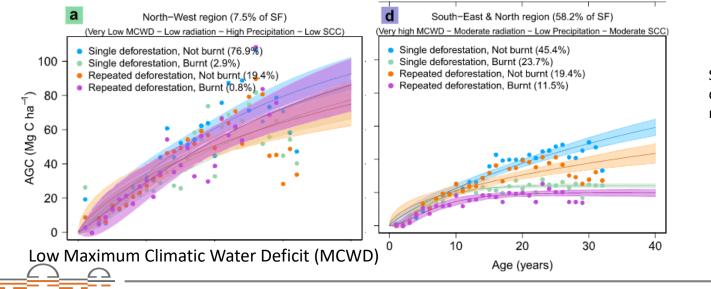
Tools LPJmL FIT model

Communication and application Stakeholders, communication

Background - Potential of secondary forests: C sink potential

ARTICLE

Check for updates

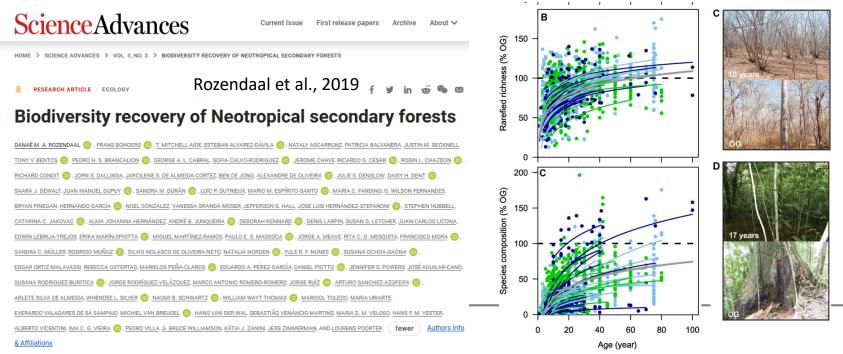

https://doi.org/10.1038/s41467-021-22050-1 OPE

Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

Viola H. A. Heinrich₀ ¹⁸³, Ricardo Dalagnol², Henrique L. G. Cassol₀ ², Thais M. Rosan³, Catherine Torres de Almeida², Celso H. L. Silva Junior₀ ², Wesley A. Campanharo₀ ², Joanna I. House₀ ^{1,4}, Stephen Sitch₀ ³, Tristram C. Hales⁵, Marcos Adami₀ ⁶, Liana O. Anderson₀ ⁷ & Luiz E. O. C. Aragão^{2,3}

Climatic conditions and repeated disturbance may lower C sink potential of secondary forests

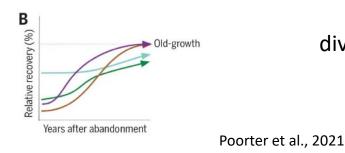
Heinrich et al., 2021



Single vs. Repeated deforestation, burnt or not burnt

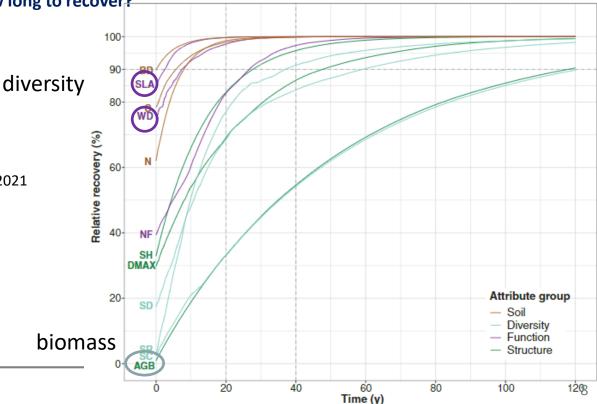
High Maximum Climatic Water Deficit (MCWD)

Background – Potential of secondary forests: Biodiversity recovery


- Secondary forests recover remarkably fast in species richness but slowly in species composition
- Secondary forests take a median time of five decades to recover the species richness of oldgrowth forest (80% recovery after 20 years)
- Full recovery of species composition takes centuries (only 34% recovery after 20 years)

Background – Potential of secondary forests: C sink and biodiversity recovery

Key questions:


- Which forest attributes take how long to recover?
- **Under which conditions?**

FOREST ECOLOGY

Multidimensional tropical forest recovery

Lourens Poorter¹x, Dylan Craven², Catarina C. Jakovac^{1,3}, Masha T. van der Sande¹, Lucy Amissah⁴, Frans Bongers¹, Robin L, Chazdon^{5,6}, Caroline E, Farrior⁷, Stephan Kambach⁸, Jorge A, Meave⁹, Rodrigo Muñoz¹⁹, Natalia Norden¹⁰, Nadja Rüger^{8,11,12}, Michiel van Breugel^{13,14,15}, Angélica María Almeyda Zambrano¹⁶, Bienvenu Aman¹⁷, José Luis Andrade¹³, Pedro H. S. Brancalion¹⁹, Eben N. Broadbent²⁰, Hubert de Foresta²¹, Daisy H. Dent^{12,22}, Géraldine Derroire²³, Saara J. DeWalt²⁴, Juan M. Dupuy¹⁸, Sandra M. Durán^{25,26}, Alfredo C. Fantini²⁷, Bryan Finegan²⁸, Alma Hernández-Jaramillo² José Luis Hernández-Stefanoni¹⁸, Peter Hietz³⁰, André B, Jungueira³¹, Justin Kassi N'dia³², 0 1 -1 -L - 33 H - 1 - 1 - L - - 1 134 B - - (1 / - - 0 - - - - L - 35 H - - - 1 H - - 1 / - - B

SSPs for Brazil

Work at INPE:

- regional adaptation of SSPs for Brazil (Bezerra et al., 2022)
- Land-use emissions NDCs (Wiltshire et al., 2022)

RESEARCH ARTICLE

New land-use change scenarios for Brazil: Refining global SSPs with a regional spatiallyexplicit allocation model

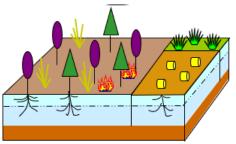
Francisco Gilney Silva Bezerra^{1e}, Celso Von Randow^{1e}, Talita Oliveira Assis^{1e}, Karine Rocha Aguiar Bezerra^{1e}, Graciela Tejada^{1e}, Aline Anderson Castro^{1e}, Diego Melo de Paula Gomes^{1e}, Rodrigo Avancini⁰, Ana Paula Aguiar^{1,2e}

1 General Cordination of Earth Sciences, National Institute for Space Research (INPE), São José dos Campos, SP, Brazil, 2 Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

Understanding the role of land-use emissions in achieving the Brazilian Nationally Determined Contribution to mitigate climate change

```
Andrew J. Wiltshire<sup>1,2</sup> I Celso von Randow<sup>3</sup> I Thais M. Rosan<sup>2</sup> I Graciela Tejada<sup>3</sup> I Aline A. Castro<sup>3</sup>
```

- How can secondary forests (focus on natural regrowth) contribute to Brazils NDCs
- Given the future projections


2. Tools – Modeling Capabilities at PIK Potsdam Institute for Climate Impact Research

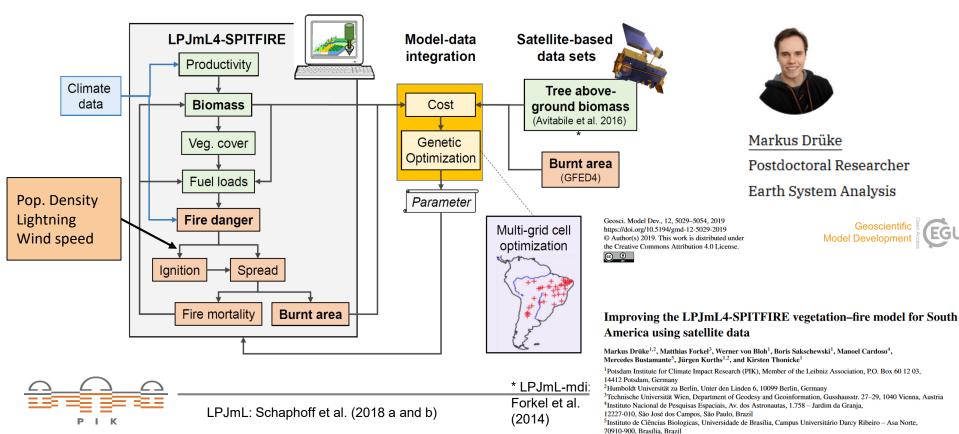
Modeling capabilities at PIK / Dynamic Global Vegetation Models

Carbon Water Energy PAR - photosynthetic active radiation GPP - gross primary production EI - interception Ra - autotrophic respiration ET - transpiration Rn - net radiation NPP - net primary production ES - evaporation Rh - heterotrophic respiration perc - percolation LPJmL Hc - harvest infil - infiltration Fc - fire carbon fluxes R - runoff Csom - soil organic matter Wreturn - return flow from irrigation Wirrig - irrigation water Lund-Q - discharge Potsdam nosphere -Jena PAR manage d Land Model energy managed grassland (LPJmL) cropland infil 50cm soil 100cm soil 100cm sof t al. 2003 GCB; et al. 2007 GCB; Rost et al. 1000cm bedrock 2010 WRR 8 © Sakschewski

LPJmL (Lund-Potsdam-Jena managed Land)

Gridzelle: 0.5° x 0.5°

- Fire, landuse, natural vegetation
- PFT plant functional types
- Big leaf approach


- Dynamics of both natural and managed vegetation (agriculture, bioenergy plantations, irrigation)
- different plant functional types (PFTs)
- productivity
- mortality
- competition
- process-based fire model (SPITFIRE)
- advanced land use

HOME > INSTITUTE > RESEARCH DEPARTMENTS > EARTH SYSTEM ANALYSIS > MODELS > ARCHIV MODELS RD1

SPITFIRE Model fully coupled to LPJmL

https://gmd.copernicus.org/articles/12/5029/2019/

SPITFIRE - SPread and InTensity of FIRE in LPJmL

Geosci, Model Dev., 14, 4117-4141, 2021 https://doi.org/10.5194/gmd-14-4117-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License

0

Assets Peer review Metrics Related articl Article

https://gmd.copernicus.org/articles/14/4117/2021/

Model description paper

Markus Drüke

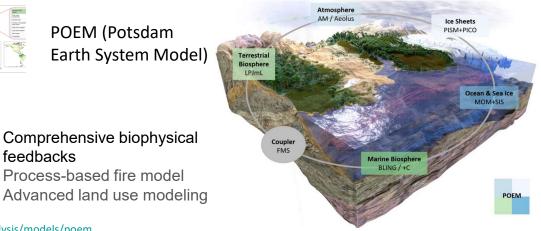
01 Jul 2

feedbacks

CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model

Markus Drüke^{1,2}, Werner von Bloh¹, Stefan Petri¹, Boris Sakschewski¹, Sibyll Schaphoff¹, Matthias Forkel³, Willem Huiskamp¹, Georg Feulner¹, and Kirsten Thonicke¹

¹Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, 14412 Potsdam, Germany ²Humboldt University of Berlin, Department of Physics, 12489 Berlin, Germany


³Institute of Photogrammetry and Remote Sensing, Dresden University of Technology, 01069 Dresden, Germany

Correspondence: Markus Drüke (drueke@pik-potsdam.de)

Vegetation feedback to atmosphere

https://www.pik-potsdam.de/en/institute/departments/earth-system-analysis/models/poem

Studying the Earth system with the ESM CM2Mc-I PJml

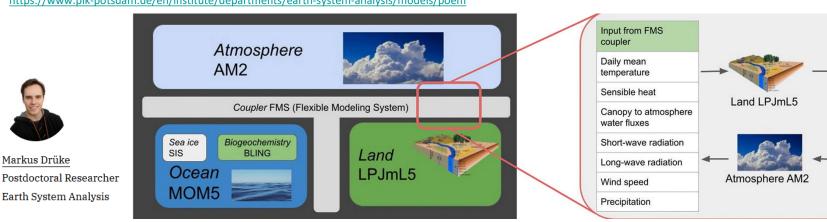
Output to FMS

Roughness length

Canopy height

Surface/canopy

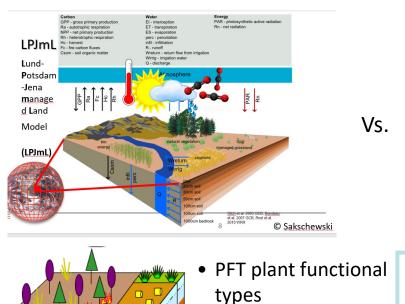
Runoff into ocean


Land-use output

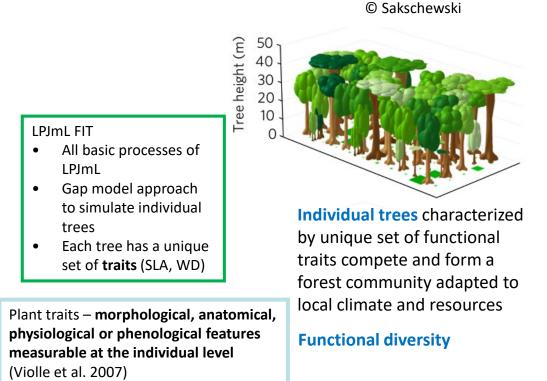
temperature

coupler

Albedo


humidity

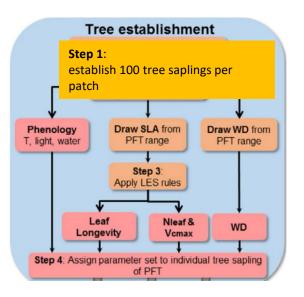
Modeling capabilities at PIK


Tools @ PIK: Dynamic Global Vegetation Models

LPJmL (Lund-Potsdam-Jena managed Land)
 PFT based model

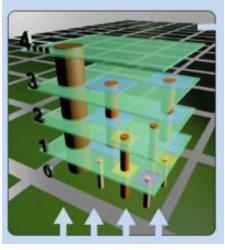
• Big leaf approach

LPJmL-FIT: LPJmL with **F**lexible Individual **T**raits


Gridzelle: 0.5° x 0.5° Schaphoff et al., 2018

LPJmL Model

Sakschewski et al., 2015 https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12870

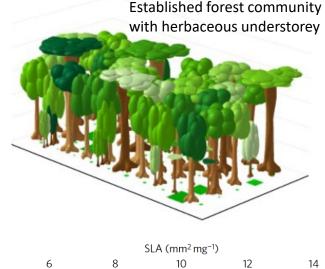

The LPJmL-FIT model (flexible individual traits)

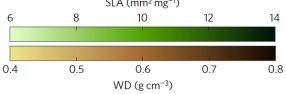
Functional Unit: Individual tree

Saplings grow and compete for light and water resources

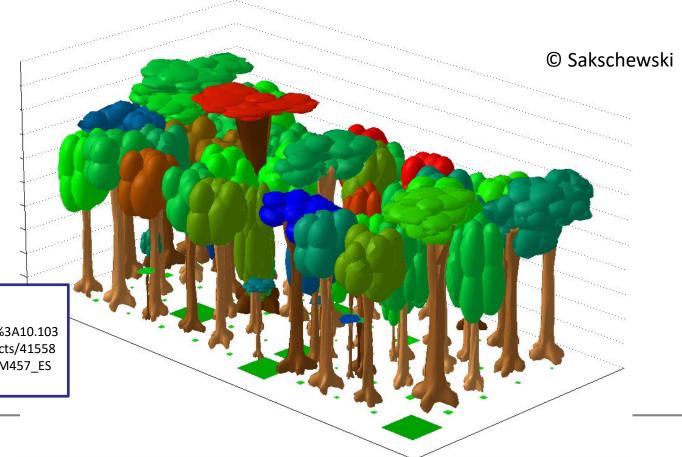
Vegetation dynamics

Light competition: reaching canopy layers


- LPJmL-FIT establishes individual trees with a number of variable traits
- These traits range within their globally observed boundaries in natural ecosystems because their range are constrained by empirically derived trade-offs following the theory of LES and SES.



phenology


$phen_{PFT} = f_{cold} \cdot f_{light} \cdot f_{water} \cdot f_{heat}$

where $phen_{PFT}$ is the daily phenological status (ranging between 0 and 1) representing the fraction of full leaf coverage currently attained by the PFT, reduced by the green-leaf

The LPJmL-FIT model (flexible individual traits)

Watch animation at: https://staticcontent.springer.com/esm/art%3A10.103 8%2Fnclimate3109/MediaObjects/41558 _2016_BFnclimate3109_MOESM457_ES M.mov

16

The LPJmL-FIT model (flexible individual traits)

Global Change Biology

Global Change Biology (2015) 21, 2711-2725, doi: 10.1111/gcb.12870

Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model

BORIS SAKSCHEWSKI^{1,2}, WERNER VON BLOH^{1,2}, ALICE BOIT^{1,2}, ANJA RAMMIG^{1,2}, JENS KATTGE³, LOURENS POORTER⁴, JOSEP PEÑUELAS^{5,6} and KIRSTEN THONICKE^{1,2} ¹Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A31, Potsdam, 14473, Germany, ²Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany, ³Max-Planck-Institute for Biogeochemistry, Jena, 07745, Germany, ⁴Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, Wageningen, 6700AA, The Netherlands, ⁵Global Ecology Unit CREAF-CSIC-UAB, CSIC, Cerdanyola del Vallés, 08193 Catalonia, Spain, ⁶CREAF, Cerdanyola del Vallès, 08193 Catalonia, Spain Dynamic Global Vegetation Models: PFTs (plant functional types) with **fixed** set of functional traits

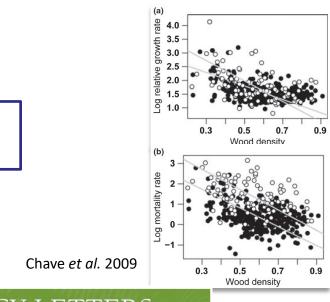
- LPJmL-FIT incorporates empirical ranges of **five traits** of tropical trees extracted from the TRY global plant trait database
- specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N_{area}), maximum carboxylation rate of Rubisco per leaf area (v_{cmax,area}), and wood density (WD).

2.1 The LPJmL-FIT model (flexible individual traits)

Incorporation of two ecological concepts to diversify functional traits

Wright et al. 2004

Published: 22 April 2004


The worldwide leaf economics spectrum

Ian J. Wright [⊡], Peter B. Reich, ... Rafael Villar + Show authors

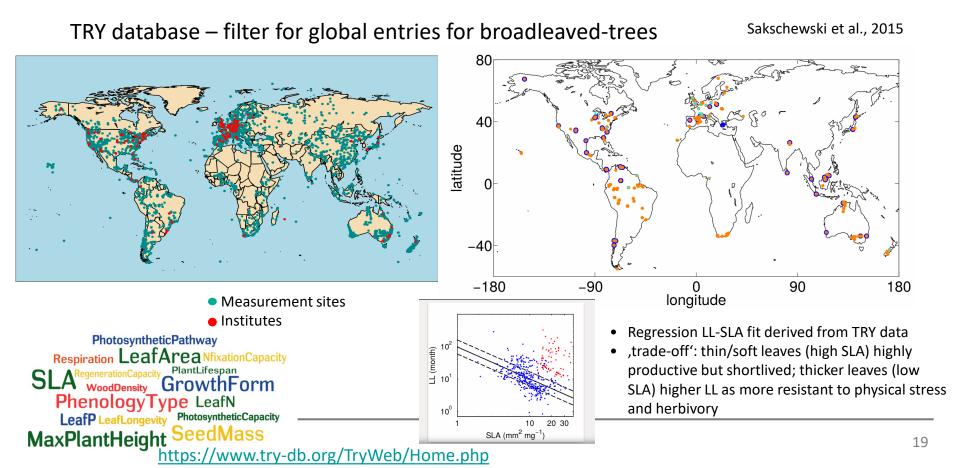
<u>Nature</u> **428**, 821–827 (2004) Cite this article

42k Accesses | 5147 Citations | 61 Altmetric | Metrics

The leaf traits are linked by empirically established tradeoffs based on the **leaf economics spectrum (LES)** (Reich *et al.*, <u>1997</u>, <u>1999</u>; Wright *et al.*, <u>2004</u>; Shipley *et al.*, <u>2006</u>) which describes a set of leaf trade-offs explaining worldwide leaf investment strategies

ECOLOGY LETTERS

🔂 Full Access


Towards a worldwide wood economics spectrum

Jerome Chave 🔀 David Coomes, Steven Jansen, Simon L. Lewis, Nathan G. Swenson, Amy E. Zanne

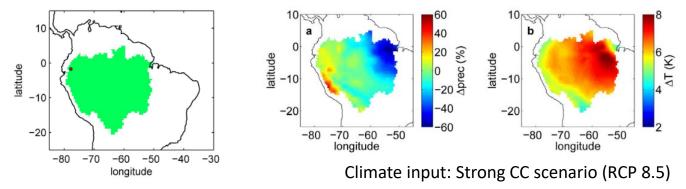
First published: 10 March 2009 | https://doi.org/10.1111/j.1461-0248.2009.01285.x | Citations: 1,737

WD is linked to tree mortality following the idea of **the stem economics spectrum (SES**, Baraloto *et al.*, <u>2010</u>).

2.1 The LPJmL-FIT model (flexible individual traits)

3. Case studies

Case study I: Resilience of forests to climate change



Case study I: Resilience of forests to climate change

nature climate change

Resilience of Amazon forests emerges from plant trait diversity

Boris Sakschewski^{1,2*}, Werner von Bloh^{1,2}, Alice Boit^{1,2}, Lourens Poorter³, Marielos Peña-Claros³, Jens Heinke^{1,2}, Jasmin Joshi⁴ and Kirsten Thonicke^{1,2}

Biodiversity as an ,insurance' for the resistance of forests under climate change?

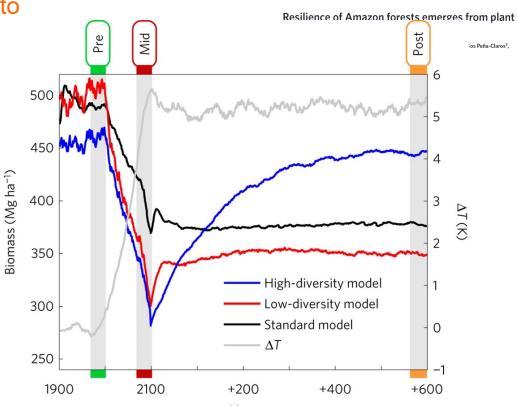
400ha of forest simulated in Ecuador

PUBLISHED ONLINE: 29 AUGUST 2016 | DOI: 10.1038/NCLIMATE3109

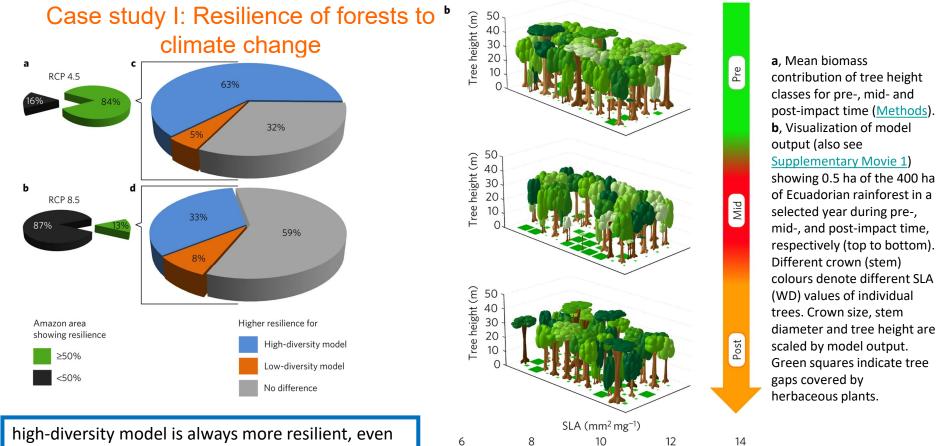
LETTERS

Sakschewski *et al. 2016* Nature Clim. Change

Case study I: Resilience of forests to climate change


2 PFTs: 'tropical broadleaved evergreen tree' and 'tropical broadleaved rain-green tree' (fixed trait values)

Low-diversity model (individual trees)
 Standard model (average individuals)


Vs. Individual trees with randomly assigned different trait combinations \rightarrow

High-diversity model

Plant trait	min	max
SLA (mm ² mg ⁻¹)	2.28	31.85
LL (month)	1.70	91.60
N _{area} (g m ⁻²)	0.96	4.30
Vcmax _{area25°} (µmol m ⁻² s ⁻¹)	30.47	101.88
WD (g cm ⁻³)	0.14	1.30

Year Annual biomass over 800 simulation years for 400 ha of Ecuadorian rainforest (longitude: 77.75° W; latitude: 1.25° S, <u>Supplementary Fig. 10</u>) from three different versions of the vegetation model LPJmL under a severe climate change scenario (RCP 8.5 HadGEM2). ΔT : annual temperature difference to the mean temperature of pre-impact time (1971–2000) in K.

0.4

0.5

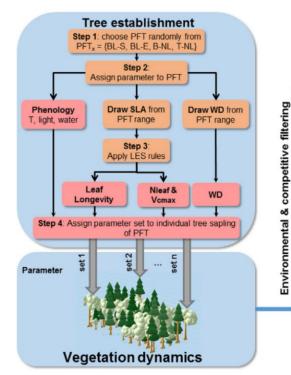
0.6

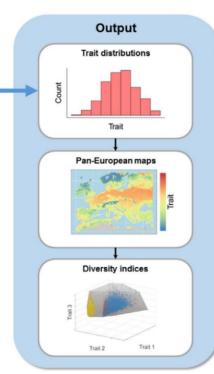
WD ($g cm^{-3}$)

0.7

0.8

though the positive contribution of plant trait diversity to biomass resilience is **limited by climate change intensity**

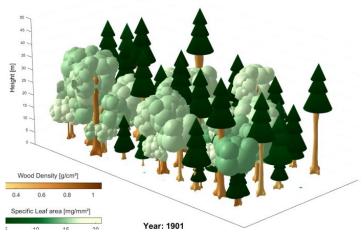

24



RESEARCH PAPER

Journal of Biogeography WILEY

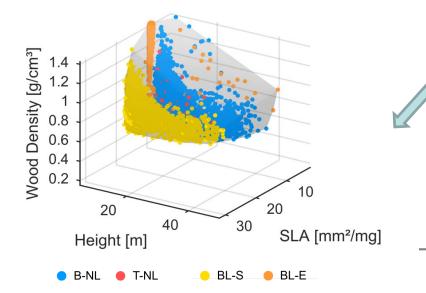
Simulating functional diversity of European natural forests along climatic gradients



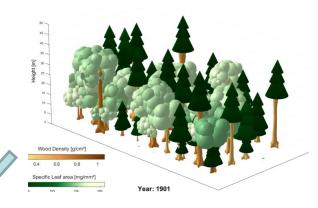
LPJmL-FIT model adapted for Europe

boreal vs. temperate broadleaved vs. needle-leaved

Thonicke, Billing et al., J Biogeogr 2020, https://doi.org/10.1111/jbi.13809


© Billing, Thonicke

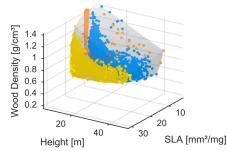
RESEARCH PAPER

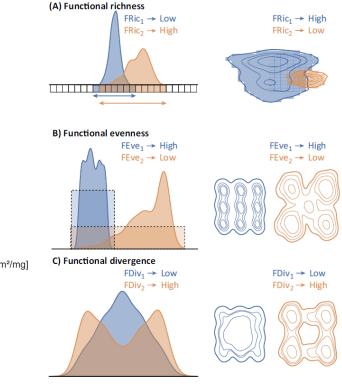

Journal of Biogeography WILEY

Simulating functional diversity of European natural forests along climatic gradients

Kirsten Thonicke¹ | Maik Billing^{1,2} | Werner von Bloh¹ | Boris Sakschewski¹ | Ülo Niinemets³ | Josep Peñuelas^{4,5} | J. Hans C. Cornelissen⁶ | Yusuke Onoda⁷ | Peter van Bodegom⁸ | Michael E. Schaepman⁹ | Fabian D. Schneider¹⁰ | Ariane Walz²

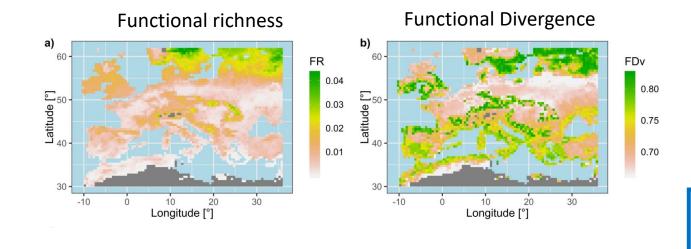
Functional Diversity




- 3D trait space each tree is one point
- High functional richness means that in the ecosystem a broad range of nices is occupied
- It can be an indicator of resilience of ecosystems to disturbance

Thonicke, Billing et al., J Biogeogr 2020, https://doi.org/10.1111/jbi.13809

Components of Functional Diversity


- Functional Richness:
 - *Span* of occupied niches
 - size of potentially available, environmental niches
- Functional Evenness:
 - Regularity of the distribution within trait space
 - High Evenness -> efficient resource use
- Functional Divergence:
 - Degree of niche differentiation
 - High Divergence -> high competitive exclusion

Carmona et al. TREE 2016

© Thonicke

In megadiverse ecosystems, functional **diversity** is an important measure

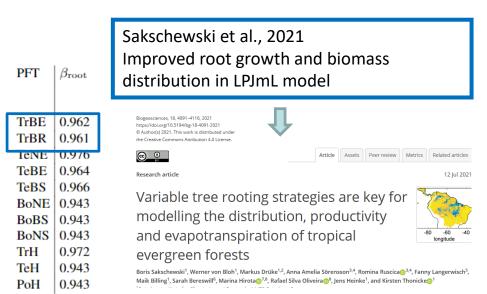
Functional Richness:

Span of occupied niches size of potentially available, environmental niches

Functional Divergence: Degree of *niche differentiation* High Divergence -> high competitive exclusion

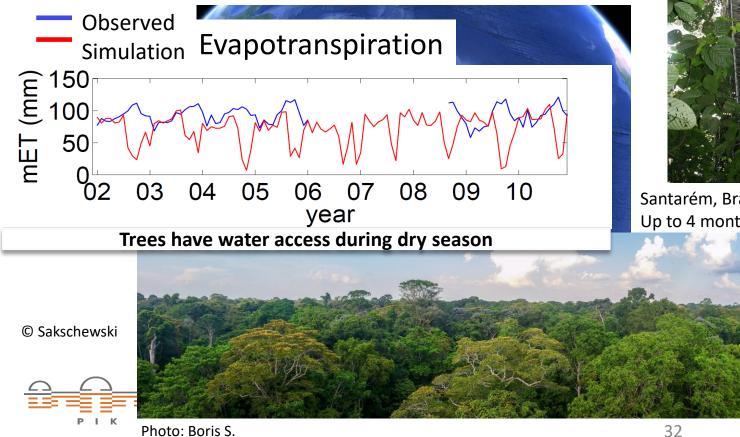
© Billing, Thonicke

Case Study III: Flexible rooting schemes improve evapotranspiration simulation



• DGVMs oversimplify representation of belowground dynamics (root growth, distribution, water uptake, nutrient dynamics)

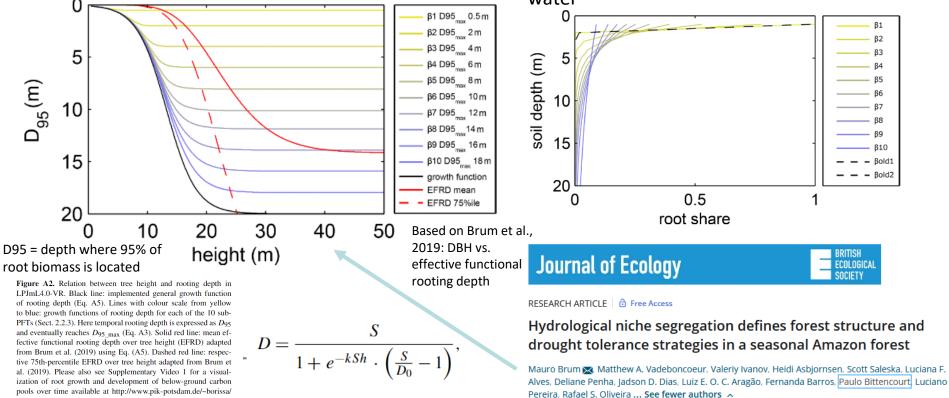
BEFORE:


- LPJmL4.0: fixed root biomass distribution with depth and fixed rooting depth for all trees and tree saplings!
- Limits the access of trees to water

Decologia (1996) 108:389-411	Cumulative root fraction (Y)
R.B. Jackson · J. Canadell · J.R. Ehleringer H.A. Mooney · O.E. Sala · E.D. Schulze A global analysis of root distributions for terrestrial biomes	0
Jackson et al 1996	50 100 - $ β=0.96$ 150 - $ β=0.98$
	200

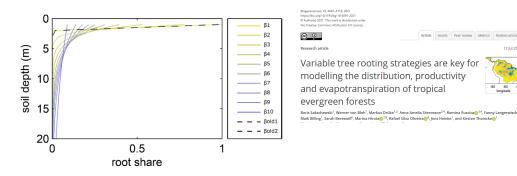
https://bg.copernicus.org/articles/18/4091/2021/bg-18-4091-2021-discussion.html

The problem with the ,fixed roots' approach

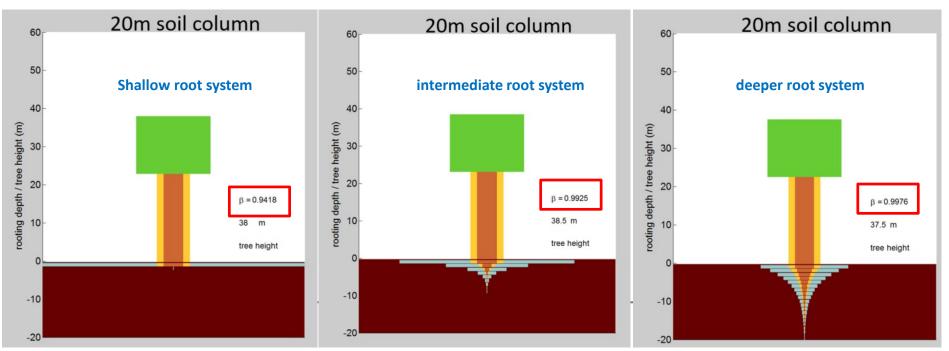


Santarém, Brazil Up to 4 months with P < 100 mm

NEW: logistic growth function: root systems grows with tree height

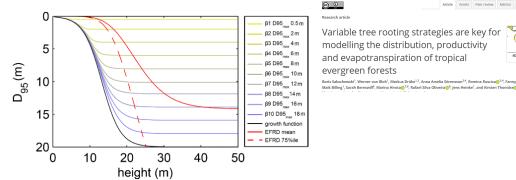

NEW: introduce various possible root biomass distributions (ß parameter) – competition for water

pools over time available at http://www.pik-potsdam.de/~borissa/ LPJmL4 VR/Supplementary Video 1.pptx.


Flexible root growth scheme I

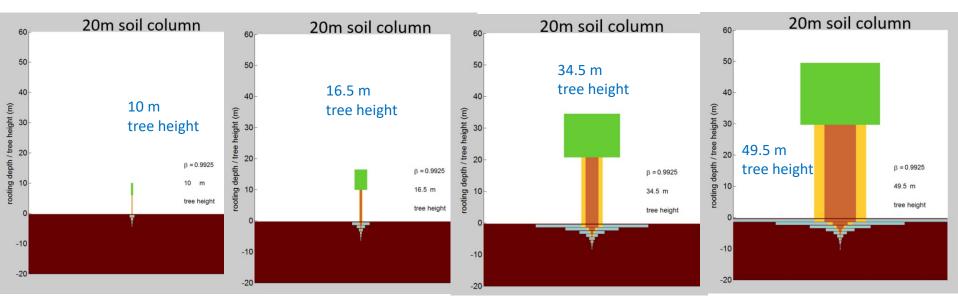
10 different ß paramters describe fine root biomass distribution with depth

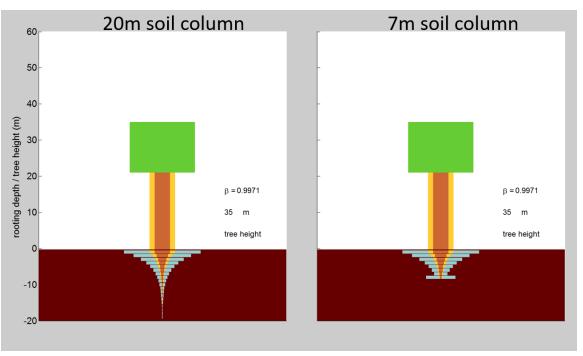
12 Jul 2021


© Sakschewski

Flexible root growth scheme II

Depth of root system grows with increasing tree height (logistic function), root biomass distribution depends on ß parameter


© Sakschewski



Article Assets Peer review Metrics Related articles

Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests er von Bloh¹, Markus Drüke^{1,2}, Anna Amelia Sörensson^{3,4}, Romina Ruscica

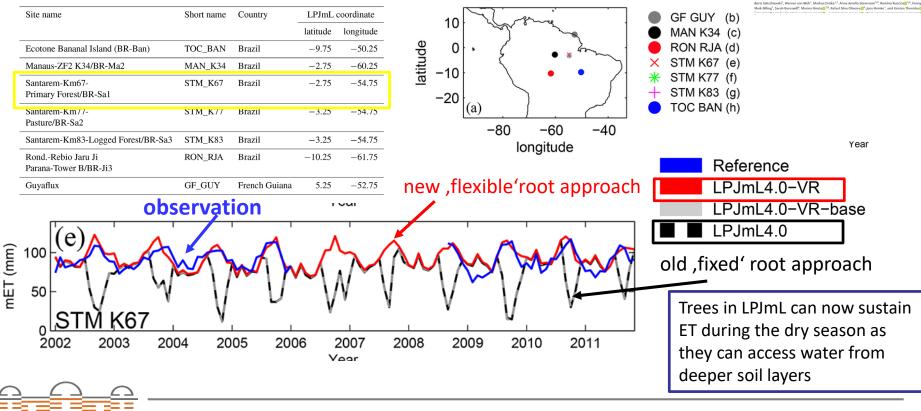
Flexible root growth scheme III

Biageosciences, 18, 4091–4116, 2021 https://doi.org/10.5194/bg-18-4091-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Article Assets Peer review Metrics Related articles

Research article

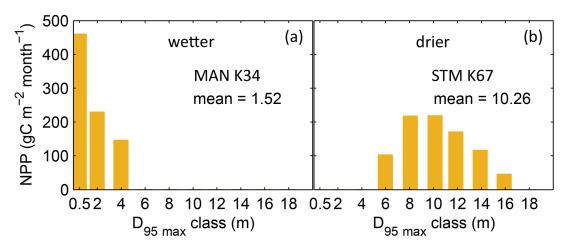
Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests


12 Jul 2021

Boris Sakschewski¹, Werner von Bloh¹, Markus Drüke^{1,2}, Anna Amelia Sörensson^{3,4}, Romina Ruscia₀^{3,4}, Fanny Langerwisch⁵, Maik Billing¹, Sarah Bereswill⁶, Marina Hirota₀^{7,8}, Rafael Silva Oliveira₀^{6,8}, Jens Heinke¹, and Kirsten Thonicke₀¹

Once bedrock layer is reached, new root biomass is allocated to last soil layer until tree reaches its final height

FLUXNET sites used for ET and NPP validation

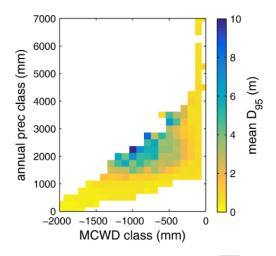


https://bg.copernicus.org/articles/18/4091/2021/bg-18-4091-2021-discussion.html37

Variable tree rooting strategies are key for modelling the distribution, productivity

and evapotranspiration of tropical

evergreen forests



Manaus:

mean annual precipitation: 2609 mm Mean MCWD: -222 mm Sub-PFT with D95_max = 0.5m contributes most to overall NPP **NPP-weighted D95_max = 1.52 m**

Santarém:

mean annual precipitation: 2144 mm Mean MCWD: -465 mm Sub-PFT with D95_max = 10m contributes most to overall NPP **NPP-weighted D95_max = 10.26 m**

Figure B5. Mean rooting depth depicted as mean $\overline{D_{95}}$ over classes of MCWD and annual precipitation sums. Class step size for precipitation was set to 250 mm, and class size for MCWD was set to 50 mm. Regions with high amounts of annual rainfall and lower seasonality exclusively favour shallow-rooted forests (low $\overline{D_{95}}$). $\overline{D_{95}}$ increases with decreasing MCWD (increasing seasonal drought stress) and decreasing sums of annual precipitation. Below 1200 mm of annual rainfall or -1100 mm of MCWD, $\overline{D_{95}}$ sharply decreases again. Note this figure does not consider soil depth. The colour-scale maximum is set to 10 m.

https://bg.copernicus.org/articles/18/4091/2021/bg-18-4091-2021-discussion.html38

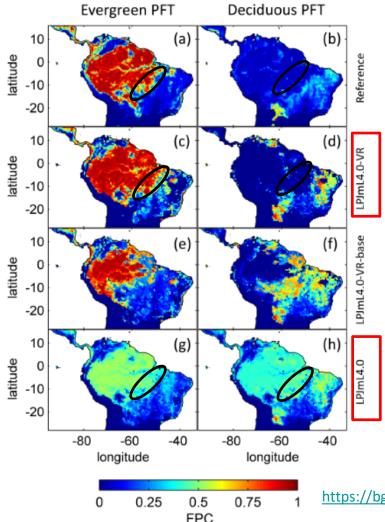
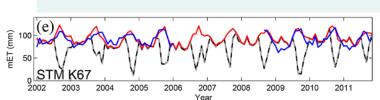
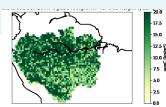


Figure 4. Foliage projective cover (FPC) of evergreen (a, c, e, g) and deciduous (b, d, f, h) PFTs over the study region. (a–b) Satellite-derived vegetation composition from ESA Land Cover CCI V2.0.7 (Li et al., 2018) reclassified to the PFTs of LPJmL as in Forkel et al. (2014). (b–c) LPJmL4.0-VR. (d–e) LPJmL4.0-VR-base. (f–g) LPJmL4.0. All LPJmL model versions were forced with CRU climate input. The FPC shown for all models refers to 2001–2010. For statistical measures of individual comparisons between model versions (c–h) and satellite-derived vegetation composition (a–b), see Table B4.

- FPC (foliage projective cover) for tropical evergreen vs deciduous trees
- Evergreen forests extend in regions with a dry season
- LPJmL fixed roots (LPJmL 4.0) underestimates extent of evergreen trees in eastern Amazon basin
- Variable root version LPJmL VR best vs. observed

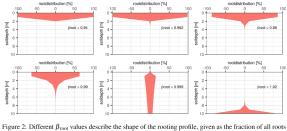

4. Outlook

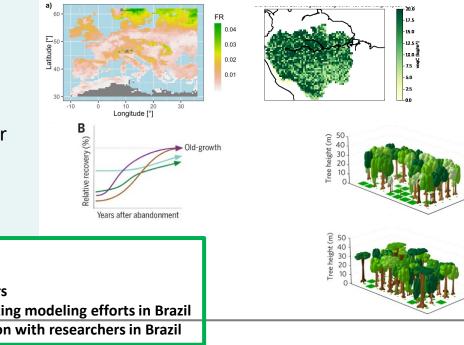


Outlook on planned activities for B-EPICC Project in Brazil

Workpackage I: Validation of LPJmL-FIT VR (variable roots) in Brazil

- Validate LPJmL-FIT with new flexible tree roots for selected forest sites in Brazil
- Selection of sites along gradient in seasonality
- Validation: Biomass, functional traits (SLA, WD, height), ET and NPP measurements, rooting depth and distribution
- Simulations with historical climate
- Amazon basin runs




Figure 2. Different proof values describe the shape of the footing proofs, given as the fraction of an lows in % relative to the respective soil depth. The first 3 soil layers (200, 300 and 500 mm) were summarized, so that each plot shows the cumulative root fraction for soil layers of 1 m thickness.

© Bereswill

Outlook on planned activities for B-EPICC Project in Brazil

Workpackage II: Modeling the potential of Brazils secondary forests for climate change mitigation and biodiversity recovery

- Apply adapted LPJmL-FIT for Amazon
- Set-up trajectories of forest recovery
- Consider land-use history and future
- Transient runs under future climate. change scenarios
- Derive maps of functional diversity for Brazil

ClimateImpactsOnline is a web portal that "illustrates the possible impacts of climate change on various countries in different regions of the world on sectors like agriculture, forestry, tourism and health care." Visualization is a key technique to ensure broad accessibility to climate data and information for different types of users.

Open questions

Needs

- **Stakeholders**
- Link to existing modeling efforts in Brazil
- Collaboration with researchers in Brazil

sarah.bereswill@pik-potsdam.de
https://www.pik-potsdam.de/members/bereswil

