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Abstract
Soil moisture is one of the essential climate variables with a potential impact on local climate variability. Despite the 
importance of soil moisture, studies on soil moisture characteristics in Ethiopia are less documented. In this study, the spa-
tiotemporal variability of Ethiopian soil moisture (SM) has been characterized, and its local and remote influential driving 
factors are investigated. An empirical orthogonal function (EOF) and  KMeans clustering algorithm have been employed to 
classify the large domain into homogeneous zones. Complex maximum covariance analysis (CMCA) is applied to evaluate 
the covariability between SM and selected local and remote variables such as rainfall (RF), evapotranspiration (ET), and 
sea surface temperature (SST). Inter-comparison among SM datasets highlight that the FLDAS dataset better depicts the 
country’s SM spatial and temporal distribution (i.e., a correlation coefficient r = 0.95 , rmsd = 0.04m3

m
−3 with observa-

tions). Results also indicate that regions located in northeastern Ethiopia are drier irrespective of the season (JJAS, MAM, 
and OND) considered. In contrast, the western part of the country consistently depicted a wetter condition in all seasons. 
During summer (JJAS), the soil moisture variability is characterized by a strong east–west spatial contrast. The highest and 
lowest soil moisture values were observed across the country’s central western and eastern parts, respectively. Furthermore, 
analyses indicate that interannual variability of SM is dictated substantially by RF, though the impact on some regions is 
weaker. It is also found that ET likely drives the SM in the eastern part of Ethiopia due to a higher atmospheric moisture 
demand that ultimately invokes changes in surface humidity and rainfall. A composite analysis based on the extreme five 
wettest and driest SM years revealed a similar spatial distribution of wet SM with positive anomalies of RF across the country 
and ET over the southern regions. Remote SSTs are also found to have a significant influence on SM distribution. In par-
ticular, equatorial central Pacific and western Indian oceans SST anomalies are predominant factors for spatiotemporal SM 
variations over the country. Major global oceanic indices: Oceanic Nino Index (ONI), Indian Ocean Dipole (IOD), Pacific 
warm pool (PACWARMPOOL), and Pacific Decadal Oscillations (PDO) are found to be closely associated with the SM 
anomalies in various parts of the country. The associationship between these remote SST anomalies and local soil moisture 
is via large-scale atmospheric circulations that are linked to regional factors such as precipitation and temperature anomalies.
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1 Introduction

Soil moisture is among the Essential Climate Variables 
(ECV) (Dorigo et  al. 2017; Seneviratne et  al. 2010; 
Wagner et al. 2012; Wang et al. 2016) and it determines 
the water and energy exchange between the land surface 
and the atmosphere (An et al. 2016; Li et al. 2011; Liu 
et al. 2011; Qiu et al. 2016). This is due to its impact on 
the variability of evapotranspiration, runoff, latent, and 
sensible heat fluxes (Dorigo et al. 2017; Seneviratne et al. 
2010). Besides, soil moisture is an important variable 
in modulating the spatiotemporal weather variability 
and precipitation distributions as significant mesoscale 
atmospheric circulation patterns can be stimulated by 
anomalous regional soil moisture (Dorigo et  al. 2017; 
Taylor et al. 2012). This is because SM has a slowly varying 
memory like the ocean that can stay for weeks to months 
and influence the weather system through surface energy 
fluxes and evaporation (Koster et al. 2004; Seneviratne et al. 
2006). Soil moisture attribute of longer memory, together 
with a strong influence on surface climate variables, 
makes soil moisture an attractive source of subseasonal 
to seasonal predictability. As a result, numerous studies 
(Drewitt et al. 2012; Hirsch et al. 2014; Koster et al. 2010; 
Koster et al. 2011; Thomas et al. 2016) highlighted that 
accurate initialization of SM enhances forecast skills (e.g., 
precipitation and temperature) significantly for certain 
regions of the world.

Several studies (Koster et al. 2004; Schär et al. 1999; 
Zheng and Eltahir 1998) indicated that there is a rela-
tionship between soil moisture and rainfall. For instance, 
Koster et al. (2004) pointed out that the impact of SM on 
climate is more dominant than the ocean in mid-latitude 
regions during summer season. Moreover, Schär et al. 
(1999) also demonstrated that European summertime pre-
cipitation mostly depends on the soil moisture state. Soil 
moisture is also shown to affect precipitation in a range 
of scales (Taylor et al. 2012). Soil moisture effects on the 
rainfall could be distinguished as a two-stage process, i.e., 
SM’s influence on ET and ET’s influence on RF (Guo et al. 
2006; Seneviratne et al. 2010; Wei and Dirmeyer 2012; 
Diro et al.  2014). However, RF’s effect on SM and SM’s 
effects on ET are understandable, but the impact of SM on 
RF is not straightforward. Therefore, understanding the 
temporal trends, variability, and spatial distributions of 
soil moisture is a critical requirement for demystifying the 
role of land on the overlaying atmosphere (An et al. 2016).

Despite the aforementioned importance of soil moisture, 
in situ measurements of soil moisture are generally very 
scarce. This is particularly apparent over most parts of 
Africa. Consequently, researchers and practitioners try 
to infer the amount of soil moisture indirectly from other 

sources such as  satellite estimates or atmospheric reanalysis 
driven offline land surface model (LSM) simulation outputs 
(Dorigo et al. 2017). It must be noted that these indirect 
estimates have their own strengths and limitations. For 
instance, the accuracy of soil moisture estimated from 
land surface models is affected by both the quality of 
meteorological forcing fields (Dorigo et  al. 2017; An 
et al. 2016) as well as by the quality of the model itself 
(Koster et al. 2009). On the other hand, the accuracy of 
satellite estimates is unreliable over vegetated areas (Peng 
et al. 2017; Srivastava et al. 2015; Feng and Liu 2015), 
and satellite estimates can also retrieve soil moisture only 
for the top few centimeters, whereas both reanalysis and 
satellite methods could provide a wider spatial coverage 
and continuous-time span with less missing data. However, 
one important aspect that is not well addressed is the degree 
of agreement or contradictions among station, reanalysis, 
and satellite estimates in representing various aspects of 
SM characteristics over East Africa. While there are few 
literatures (e.g., Mekonnen 2009) conducted on soil moisture 
estimation and validation at catchment level, studies that 
cover wider spatial and longer temporal scales soil moisture 
validation study across Ethiopia are still lacking. Therefore, 
the first objective of this study is to inter-compare satellite, 
reanalysis, and in situ soil moisture datasets to determine the 
level of agreement.

Studies (Feng and Liu 2015; Gaur and Mohanty 2013; 
Liu et al. 2022) argue that rainfall and evapotranspiration are 
the major driving factors that restrain SM dynamics besides 
wind, temperature, solar radiation, soil physical properties, 
topography, and vegetation. On the other hand, Nicolai-
Shaw et al. (2016) and Zhu et al. (2020) highlighted that 
oceanic surface temperature is one of the reasons for global 
soil moisture persistence and predictability. However, these 
studies are rather global and some focus on specific regions of 
the globe, and less emphasis has been given to the East Africa 
region. Apart from a few attempts to understand SM residue 
monitoring (e.g., Ayehu et al. 2019) and SM-RF variability 
(e.g., Ayehu et al. 2020) across a river basin in Ethiopia, 
obtaining a study that covers detailed spatiotemporal 
characteristics of a soil moisture and its driving factors 
spanning across the country is limited. Therefore, evaluating 
such local and remote factors influencing the East African 
SM spatiotemporal variability is important. Thus, the 
second objective of this work is to assess the characteristics 
of spatiotemporal variability of SM and infer its local and 
remote drivers. Overall, this work provides a validated SM 
dataset, a delineation of homogeneous climate zones based 
on soil wetness in Ethiopia, and a better understanding of the 
local and remote influential SM drivers. Therefore, this study 
would benefit weather forecasting, agricultural planning, 
hydrological, and climatological modeling.
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This paper is organized as follows: Sect. 2 describes 
the data employed, the statistical analysis methodologies 
applied in this study. Section  3 discusses results and 
findings. Finally, Sect. 4 presents a summary and draws 
some conclusions.

2  Materials and methods

2.1  Location and study area

Ethiopia is located in East Africa, 33◦E − 48
◦

E and 
3◦N − 15

◦

N . Figure  1 shows the station’s distribution, 
geographic location, and country’s topography. The country 
has a complex topography ranging from lowland areas of 
116-m below sea level to 4600-m-high mountains (Diro et al. 
2008; Zeleke et al. 2013; Diro et al. 2009; Fekadu 2015). 
Most of the country’s north, central, partial eastern, and 
western parts are characterized by a highland plateau. The 
majority of eastern, northeastern, south, and southwestern 
parts of the country are lowland areas.

Climatologically, Ethiopia has three main seasons 
that have classified as February to May (Belg), June to 
September (Kiremt), and October to January (Bega) (Degefu 
1987; Diro et al. 2008; Fekadu 2015; Gissila et al. 2004). 
Among these seasons, Kiremt is the main rainy season for 
northern and western parts while Belg is the major rainy 
season for southern and southeastern parts of Ethiopia. Most 

crop growth and productivity are carried out during these 
seasons.

2.2  Data

Satellite, reanalysis and station soil moisture data have been 
used. Below is the description of each of the dataset.

2.2.1  FLDAS

A monthly land surface model simulated soil moisture product 
from Famine Early Warning Systems Network (FEWS NET) 
Land Data Assimilation System (FLDAS) (FEWS NET 
FLDAS, McNally et  al. (2017) and McNally (2018)) is 
employed. FLDAS is forced by a combination of Modern-
Era Retrospective analysis for Research and Application v2 
(MERRA2, Gelaro et al. 2017) reanalysis and Climate Hazard 
Group InfraRed Precipitation with Station (CHIRPS, Funk 
et al. 2015) precipitation. This implies that FLDAS differs 
from its predecessor by using observation-based precipitation 
data as a forcing for the land surface model. The model has 
four layers for soil water content at 10-cm, 40-cm, 100-cm, 
and 200-cm depths at a spatial resolution of 0.1◦ × 0.1

◦ . The 
first 10-cm depth soil water content is used for this study. This 
dataset is available from 1982 to present.

2.2.2  ERA5Land

ERA5Land soil moisture data (Muñoz Sabater 2019) is 
obtained from Climate Data Store (CDS) of Copernicus 

Fig. 1  Stations distribution, 
geographic location, and topog-
raphy (in meters) of Ethiopia
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Climate Change Services (C3S) at 0.1◦ × 0.1
◦ spatial and 

hourly temporal resolutions starting from 1981 to present. 
The ERA5Land model outputs are generated from the 
European Center for Medium-Range Weather Forecast 
(ECMWF) ERA5 climate reanalysis (Hersbach et al. 2019) 
by re-integrating its land surface model at a higher resolution 
than ERA5. Though ERA5Land has four soil levels: i.e., 
layer 1: 0–7 cm, layer 2: 7–28 cm, layer 3: 28–100 cm, layer 
4: 100–289 cm, only the model top surface layer is used for 
this study.

2.2.3  GLDAS2

Two sets of Global Land Data Assimilation System 2 
(GLDAS v2.0 and GLDAS v2.1, (Rodell et al. 2004) have 
been employed. Similar to FLDAS and ERA5, GLDAS 
is a global offline land surface modeling system (in 
this case Noah model) driven with observed/reanalysis 
meteorological fields to produce a series of surface and 
subsurface variables. In GLDAS v2.0, the Noah land 
surface model is simulated by forcing using Princeton 
meteorological input data and integrated from 1948 till 
2014. GLDAS V2.1, on the other hand, uses a combination 
of both model and observation data and has been integrated 
from 2000 up to present. Both GLDAS v2.0 and GLDAS 
v2.1 have 0.25◦ × 0.25

◦ spatial and monthly temporal 
resolution (Rodell et al. 2004).

2.2.4  Multi‑satellite product

A multi-satellite soil moisture product based on the 
European Space Agency (ESA) Climate Change Initiative 
(CCI) satellite observations soil moisture data (Dorigo et al. 
2017) are downloaded from Climate Data Store (CDS) of 
Copernicus Climate Change Services (C3S). It is version 
03.3 gridded and combined (i.e., active and passive sensors) 
multi-satellite observation product (Gruber et  al. 2017; 
Wagner et al. 2012). The merged active and passive products 
are produced by mixing scatterometer and radiometer soil 
moisture data, respectively.

The scatterometer is derived from Active Microwave 
Instrument-Windscat (AMI-WS) and Advanced 
Scatterometer (ASCAT) (Wagner et  al. 2013) sensors 
while radiometer is derived from Scanning Multichannel 
Microwave Radiometer (SMMR) (Njoku et al. 1980), Special 
Sensor Microwave Imager (SSM/I) (Basist et al. 1998), the 
Tropical Rainfall Measuring Mission (TRMM), Microwave 
Imager (TMI) (Cashion et al. 2003), Advanced Microwave 
Scanning Radiometer-Earth Observing System (AMSR-E) 
(Njoku et  al. 2003), WindSat Spaceborne Polarimetric 
Microwave Radiometer (WindSat) (Li et  al. 2010), 
Advanced Microwave Scanning Radiometer 2 (AMSR2) 

(Imaoka et al. 2012), and Soil Moisture and Ocean Salinity 
(SMOS) (Kerr et al. 2010) sensors. Moreover, the combined 
soil moisture data is produced by blending these two merged 
products. These data are available in daily, dekadal, and 
monthly temporal resolutions and at 0.25◦ × 0.25

◦ spatial 
resolution with soil water content measurement accuracy 
of 0.04 m3

m
−3 unbiased root-mean-square-error (Dorigo 

et al. 2017). Thus, a daily soil moisture product is produced 
from multiple satellite instruments and microwave sensors. 
Dekadal and monthly means are calculated from these daily 
data. These products span from 1978 onwards with global 
coverage (Wagner et al. 2012).

It must be noted that satellite products have limitations 
over regions with high vegetation cover, rainfall, water 
bodies, and organic soils as these surfaces affect the 
microwave emission (Wang et al. 2016; Dorigo et al. 2017) 
and result in large uncertainties. Hence, for regions under 
a dense vegetation canopy, the soil moisture dataset has 
been masked (C3S SM Product User Guide 2018). This is 
more apparent over central western part of the Ethiopian 
rainforest.

2.2.5  Station dataset

Observed station data spanning from 2018 to 2021, obtained 
from the Ethiopian Meteorological Institute (EMI) Ethiopia, 
is used to validate offline land surface model data and 
satellite products discussed in the previous subsections. 
Due to its high temporal coverage, only 2019 data has been 
used. Figure 1 shows a map of soil moisture recording 
stations distribution over the country. These stations are 
recording SM degrees of saturation (%). Since the satellite 
and reanalysis soil moisture products are using volumetric 
units and observation are using SM degree of saturation 
(%) unit, conversion to the same volumetric ( m3

m
−3 ) unit is 

important. Therefore, a conversion from degree of saturation 
to volumetric soil moisture has been carried out following 
the methods adopted from (An et al. 2016; Dorigo et al. 
2011) and is given as follows:

where SMvol is soil moisture in volumetric, SM(%) is soil 
moisture degree of saturation, and Porosityvol is soil porosity. 
The soil porosity data from the ESA CCI version v04.7 
applied for soil moisture unit conversions. A thorough 
quality control has been performed on the station dataset 
as the raw data contains a large number of missing data and 
unrealistic SM values. The final number of stations selected 
for further analysis are limited to 30 stations (shown in 
Fig. 1) and for the year 2019.

SMvol

(

m3m−3
)

=

SM(%)

100
× Porosityvol

(

m3m−3
)
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2.2.6  Other surface datasets

To assess the local and remote factors that affect soil moisture 
variability, blended satellite and station precipitation dataset 
from CHIRPS (Funk et al. 2015), surface latent heat flux 
from ERA5Land (Hersbach et al. 2019; Muñoz Sabater 
2019), and ERA5 Sea-Surface Temperature (SST) from 
Copernicus climate data center  (Merchant et al. 2019) are 
employed. A global sea surface temperature indices: Oceaic 
Nino Index (ONI) ( 5◦N − 5◦S , 120◦W− 170

◦

W ), Dipole 
Mode Index (DMI), i.e., an area average of ( 10◦S − 10

◦

N , 
50

◦

E − 70
◦

E minus 10◦S − 0◦N , 90◦E − 110
◦

E ), Pacific 
Warmpool ( 60◦E − 170

◦

E , 15◦S − 15
◦

N ) area averaged, 
and Pacific Decadal Oscillation (PDO) are downloaded from 
NOAA Physical Sciences  Laboratory (PSL) https:// psl. noaa. 
gov/ data/ clima teind ices/ list/.

2.3  Methods

To make consistent comparisons, all datasets were mapped 
to the lowest spatial resolution of (i.e., 0.25° × 0.25°) using 
a first-order conservative remapping (Hanke et al. 2016; 
Jones 1999) and aggregated to a monthly temporal scale. 
All analyses were carried out based on the seasonal and 
annual time scales. The focus seasons are March–April-
May (MAM), June-July–August-September (JJAS), and 
October–November-December (OND).

2.3.1  Validation procedures

After applying data quality control on the station’s 
SM datasets, a 15-min observation was resampled to a 
monthly temporal scale. Monthly data from each LSM and 
satellite gridded dataset was extracted by averaging each 
corresponding grid box nearby the station location. The 
Spearman correlation skill, root-mean-square difference 
(RMSD), and standard deviation of model and satellite 
datasets were evaluated against the observations.

2.3.2  EOF and CMCA analysis

EOF analysis is employed to outline SM homogeneous 
zones in the study area that could help us analyze other 
meteorological variables in the respective zones to identify 
SM characteristics. Furthermore, to gain insights into the 
local (i.e., RF and ET) and remote (i.e., global SST) drivers 
of SM variability, a complex rotated maximum covariance 
analysis (CMCA) has been applied. Following methods dis-
cussed by Rieger et al. (2021); Dawson (2016); Hannachi 
et al. (2009); and Baldwin et al. (2009) original input data 
is prepared as follows: Firstly, to account for the effect of 
meridians convergence at a higher latitude that affects the 

grid size and results in high sampling variation, the square-
root of the cosine of latitude area weight applied on the 
input data (North et al. 1982).

where wi is weights of data at each grid point and � is the 
latitude of a grid point in radian. Then to remove seasonal 
trends and minimize the effect of extreme values, a time 
mean of every grid point, xj , is calculated, and its anomaly 
is computed.

where xj is the jth observation point and x is the time mean 
for that observation. zj is the standardized anomaly of obser-
vation xj and � is its standard deviation.

The EOF and CMCA methods are applied to the spatial 
data ( xj ) anomalies and standardized anomalies, respectively, 
over a sampling time ( ti ), where ( j = 1, ..., r and i = 1, ..., s ). 
Where r and s are the extent of spatial and temporal 
dimensions, respectively. This spatiotemporal data arranged 
in matrix form as s × r is called S-mode, and applying 
principal component analysis on it could help us to identify 
statistically significant temporal soil moisture anomalies 
(Dommenget and Latif 2002; Hannachi et al. 2009, 2007; 
Jollife and Cadima 2016).

The CMCA method, based on the Hilbert transforma-
tion of the input dataset to its real and imaginary parts and 
decomposing the resulting covariance matrix in complex 
space, has been applied to identify the covariability of SM 
and other meteorological variables. The CMCA method 
also enables us to evaluate the phase shift and time lags 
between signals. However, due to the limitations of the 
CMCA method, the time lags can be identified if certain 
conditions are fulfilled between the two geophysical vari-
ables (Boashash 1992). Mathematically, the Hilbert trans-
formation could be written as follows:

where H is the Hilbert transform applied on the real signal 
X and X̂ is the resulting analytical signal. A Promax oblique 
rotation method ( p = 2 ) is applied on the first 100 modes to 
alleviate the orthogonality constraint imposed by MCA as 
mentioned in (Richman 1986; Rieger et al. 2021). A theta 
extended model (Fiorucci et al. 2016) with the dominant 
period of signal 12 (i.e., seasonal cycle) has also been 
applied to minimize the extent of spectral leakage at the 
boundary. Similar to (Rieger et  al. 2021), all monthly 
datasets are smoothed by 6 months moving average for 

wi =

√

cos(�)

xj = xj − x

zj =
xj − x

�

X̂ = X + iH(X)

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
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remote variable (i.e., SST); however, local variables (i.e., 
RF, ET) are smoothed by 12 months to coordinate their 
temporal variability and circumvent high frequency noise. 
A comprehensive description of the CMCA method has been 
discussed in (Rieger et al. 2021).

2.3.3  Data clustering

Data clustering into homogeneous non-overlapping sub-
groups of similar data points within-cluster is carried out 
using KMeans iterative clustering algorithm.  KMeans cluster-
ing targets to group data points that have smaller variances 
within-cluster, i.e., minimize sum of squares in the group. 
Mathematically:

where x and xj ’s are the mean and data points within the 
group gi . The  KMeans algorithm is employed on nondegener-
ate leading EOFs with application of the Elbow method, Sil-
houette criterion, and expert opinion to perform regionaliza-
tion analysis and divide Ethiopia into five homogeneous soil 
moisture zones. The KMeans initial centroids seeded by the 
robust, fast and simple  KMeans ++ algorithm that outperform 
KMeans in terms of achieving accurate and optimum solu-
tion (Arthur and Vassilvitskii 2006; Bahmani et al. 2012) 
has been applied. We have also employed a wet minus dry 
composite analysis on SM, RF, and ET based on the extreme 
five wetter and dryer SM years to evaluate the nonlinear 
relationship among these variables.

3  Results and discussion

3.1  Spatiotemporal variability of soil moisture 
datasets (validation)

In this subsection, satellite and reanalysis estimates are vali-
dated for 2019, where there is station data over Ethiopia. 
Figure 2 shows the annual cycles of soil moisture from rea-
nalysis, satellite, and station data for the year 2019 averaged 
over stations in Ethiopia. Observation data indicates that 
soil moisture is drier during the winter period and starts 
to increase slowly till the end of summer and then declines 
during the autumn months.

This pattern is reproduced well by both reanalysis and 
satellite estimates. While the rainfall or soil moisture dis-
tribution over Ethiopia could be mono-modal or bimodal 
(as it will be discussed later) depending on the region con-
sidered, the mono-modal pattern of soil moisture presented 
here is due to the fact that majority of the stations are taken 
from predominantly summer rain receiving regions. All 

min

(

n
∑

i=1

∑

xjgi

(

xj − x
)2

)

the datasets, except the Combined ESA CCI, showed the 
peak soil moisture content in August. The Combined satel-
lite data, however, indicated July is the maximum. Com-
pared to the station data both reanalysis and Combined ESA 
satellite datasets generally overestimate the annual cycle 
with ERA5Land showing the highest value for most of the 
months. The difference between station dataset and indirect 
satellite and reanalysis estimates can be partly related to the 
difference in the depth of the top soil layer and hence the 
difference in porosity at a different depth, even if the soil 
moisture amount presented is a normalized value. The top 
layer soil depth is much deeper in station data (20 cm) com-
pared to reanalysis (7–10 cm) and satellite  (5–10 cm) data.

Figure 3 presents the spatial distribution of the 2019 
annual mean soil moisture with an overlay of stations value, 
to compare observations, reanalysis, and satellite estimates 
spatial consistencies. Both reanalysis and satellite estimates 
distinguish the drier lowlands of eastern part of the country 
from the wetter western region. Reanalysis in particular 
identified the southwest as the wettest region. It is noticeable 
that the observations grid box average is proportionately 
different from respective satellite and reanalysis datasets. It 
is likely that the top soil layer depth representation difference 
for absolute soil moisture measurement at each dataset is 
the reason. This discrepancy could be also attributed 
to the difference in reanalysis models soil parameters 
representations and satellite data analysis algorithms. 
Although ERA5Land values are comparable with that of 
the station measurements for the mid-central highlands, the 
FLDAS dataset is the one that consistently captures the soil 
moisture spatial distributions across the country. This is also 
proven by Taylor diagram analysis (not shown here, (Taylor 
2001)) that FLDAS shown a higher correlation ( r = 0.95 , 

Fig. 2  Annual cycle of area-averaged soil moisture from observa-
tions, FLDAS, ERA5Land, combined ESA CCI, and GLDAS2 for 
2019
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Table 1) and low root-mean-square difference (0.04 m3
m

−3 ) 
skills. Besides, the spatial resemblance of FLDAS and 
GLDAS2 datasets are also significant, whereas the GLDAS2 
is slightly underestimating the soil wetness distributions 
over the country. Consequently, FLDAS has been chosen for 
further analysis, including to identify homogeneous zones.

3.2  Identification of homogeneous soil moisture 
zones

EOF analysis and  KMeans clustering methods have been 
employed to identify homogeneous soil moisture zones at a 
regional scale. Application of EOF analysis on the FLDAS 
dataset has resulted in the eigenvalue spectrum shown in the 
supplementary materials Figure S1. It indicates that the first 
three EOFs are nondegenerate as they are significant according 
to North’s rule of thumb (North et al. 1982) and do not overlap 
in 95% confidence interval (Korres et al. 2010). Therefore, 
the first three EOFs are considered for further analysis to get 
insight into the total variances in the spatial patterns. EOF-1 
possesses a significant spatial pattern that explains variance 

of 62.7%, while EOF-2 explained 22% of the total variance, 
and the least nondegenerate dominant mode EOF-3 accounted 
for 6.9% variances. These three EOFs’ explained 91.6% of 
the total variances in the data; therefore, the rest of the EOFs 
can be discarded as noise. Since EOF-1 only comprised more 
than 50% of the total variances, we mostly used the first rank 
explained variances for homogeneous zones classification. 
Thus, five distinct homogeneous regions are classified based 
on these EOF results and the KMeans clustering algorithm. 
The supplementary materials Figure S2 (or the middle panel 
of Fig. 4) presents Ethiopia’s five non-overlap homogeneous 
soil moisture zones.

The homogeneity within the regions and dissimilarity 
among classified regions evaluated using Pearson’s product 
moment correlation. Table  2 presents the inter- and 
intra- correlations among the five homogeneous climate 
regions and it clearly shows that the inter-correlation values 
within the region is always higher than the intra-correlation 
values among the regions. This table shows Reg-I has the 
highest correlation value within the region ( r = 0.80 ), while 
Reg-III has the lowest intra-correlation ( r = 0.58).

Fig. 3  Stations annually aver-
aged grid box data overlayed 
on each soil moisture dataset 
climatologies over Ethiopia. a 
FLDAS, b ERA5Land, c com-
bined, and d GLDAS2 for 2019

Table 1  Correlation coefficients 
among the soil moisture 
datasets and their RMSD from 
observation

Obs FLDAS ERA5Land Combined GLDAS2 RMSD

Obs 1.00 0.95 0.90 0.91 0.93 -
FLDAS 0.95 1.00 0.96 0.93 0.99 0.04
ERA5Land 0.90 0.96 1.00 0.97 0.98 0.05
Combined 0.91 0.93 0.97 1.00 0.94 0.03
GLDAS2 0.93 0.99 0.98 0.94 1.00 0.03
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Based on this regionalization, Fig. 4 shows annual cycles 
for individual homogeneous regions to FLDAS, ERA5Land, 
combined, and GLDAS2 datasets for the 1982–2020 period. 
Contrary to the country wide annual cycles shown in Fig. 2, 
homogeneous regions exhibited mono-modal and bimodal 
patterns of SM depending on the region considered. The 
bimodal nature of the SM pattern is clearly shown in Reg-
III and Reg-V, whereas Reg-I, Reg-II, and Reg-IV are uni-
modal. On top of this, SM over Reg-IV is wet almost for the 
entire year. Besides, Fig. 4 shows the ERA5Land dataset 
is the wettest of all datasets for Reg-I, Reg-II, and Reg-IV, 
while FLDAS is the wettest for Reg-III and Reg-V. A closer 
inspection of Reg-I and Reg-II shows the Combined data-
set picked maximum SM in July while other datasets lag 
one month behind to peak in August. As shown in Fig. 4, 
the annual soil wetness in Reg-I, Reg-II, and Reg-IV is 
significantly higher, whereas the lowest is in Reg-III. It is 

interesting to note that these spatial patterns align with the 
country’s topographic features.

Figure 5 demonstrates the spatial pattern of annual and 
seasonal climatologies of SM from FLDAS data. Overlayed 
are the homogeneous soil moisture regions. It is apparent 
that the Dallol depression, located in northeastern Ethiopia 
(Reg-III), is drier irrespective of the season considered. Con-
versely, the western part of Reg-IV is consistently depicted 
as wetter in all seasons (JJAS(b), MAM(c), and OND(d)) or 
in the Annual mean (a).

The SM during Summer (JJAS) is characterized by a 
strong east–west spatial contrast. The highest SM value is 
noted over Reg-I(b) and Reg-IV(b). Whereas the lowest wet-
ness is shown at Reg-V and the northeastern edge of Reg-
III. During the Belg season (Fig. 5c), the contrast between 
wet and dry regions is lower and most parts of the country 
receive values greater than 0.2 m3

m
−3 . Despite the Bega sea-

son (Fig. 5d) being a dry season, most parts of the country 
with the exception of lowland areas of the north eastern part 
of the country possess SM values greater than 0.2 m3

m
−3 , 

highlighting the longer memory of SM.

3.3  Interannual variability of soil moisture datasets 
in the homogeneous climate zones

Figure 6 presents the interannual variability of annual mean 
soil moisture from FLDAS, ERA5Land, and GLDAS2 

Fig. 4  Homogeneous regions 
annual cycles for FLDAS, 
ERA5Land, Combined, and 
GLDAS2 soil moisture datasets 
(1982–2020)

Table 2  Correlation coefficients among homogeneous zones

Reg-I Reg-II Reg-III Reg-IV Reg-V

Reg-I 0.80 0.30 0.31 0.30 0.30
Reg-II 0.30 0.71 0.27 0.27 0.27
Reg-III 0.31 0.27 0.58 0.21 0.21
Reg-IV 0.30 0.27 0.21 0.59 0.31
Reg-V 0.30 0.27 0.21 0.31 0.59
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datasets for each homogeneous region. While different 
homogeneous regions depict slightly different wet and dry 
years at various levels, some years show the same sign of 
soil moisture anomalies across all homogeneous zones. For 

instance, in 1984 and 2009, negative soil moisture anomalies 
were noted over all homogeneous zones, whereas, in 1997, 
wetter soil moisture was observed for all zones, even if the 
impact is substantially higher for Reg-V. The time series 

Fig. 5  Annual and seasonal 
climatologies of soil moisture 
from FLDAS overlayed on 
homogeneous zones: a annual, 
b JJAS, c MAM, and d OND 
(1982–2020)

Fig. 6  Time series of stand-
ardized anomalies of annual 
mean soil moisture datasets 
from FLDAS, ERA5Land, and 
GLDAS2 for each homogene-
ous zone (i.e., Reg-I, Reg-II, 
Reg-III, Reg-IV, and Reg-V)
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is also characterized by low-frequency variability with a 
period of consecutive dry years and a consecutive period 
of wet years. This is apparent in the mid-1990s and late 
2000s, where there are consecutive wet and dry episodes, 
respectively, for most of the homogeneous zones. It is 
interesting to note that not all El Nino years are linked to 
SM anomalies in a similar fashion. For instance, the 1997 
and to some extent the 1982 El Ninos are linked to positive 
SM anomalies for all zones. In contrast, the 2015 El Nino 
year left Reg-II and Reg-III severely dry while Reg-I and 
Reg-V were barely wet.

3.4  Local and global factors affecting soil moisture 
distributions and variations

Since distinct climatic zones could be affected by various 
driving factors, the extent of these differences are further 
investigated against potential local and global SM driving 
factors in the following subsections.

3.4.1  Local factors associated with soil moisture anomalies

In this sub-section, we analyzed the effects of RF and ET on 
the variability of SM. Figure 7 shows the spatial distribution 
of composites of SM (Fig. 7a, b, c, d), RF (Fig. 7e, f, g, 
h), and ET (Fig. 7i, j, k, l) based on extreme five wettest 
minus five drier SM years. Hence, composites of country 

wide wetter minus dryer SM anomalies (Fig. 7a–d) indicate 
wetter anomalies over southwestern Ethiopia and over the 
eastern highland areas south of the rift valley. The spatial 
distribution of SM anomalies suggests that country average 
SM anomalies are dictated by regions south of the rift valley 
in all seasons. The composite analysis asserted the close 
resemblance of the spatial distribution of wet SM anomalies 
with the positive anomalies of RF (Fig. 7e) over most parts 
of the country. The results also demonstrate that drier/
wetter soil moisture is closely related to negative/positive 
ET (Fig. 7i) over the southern and southeastern parts of the 
country.

The central and western part of the country is associated 
with very low and slightly negative insignificant ET 
anomalies (Fig. 7i, j, k). During the summer season (JJAS), 
both RF and ET are closely associated with SM anomalies 
over the southwestern and eastern highlands of Ethiopia. 
However, a stronger RF-SM association is noted over the 
central southern region. These results indicated that while 
ET and RF have slightly negative relationships with SM 
over the western part of the country, there is a stronger 
positive link over southwestern, central, and eastern 
parts of Ethiopia during the summer season. The central, 
north-, and southeastern part of the country’s soil moisture 
(Fig. 7c) indicated wetter SM anomalies in MAM season 
that directly followed the corresponding RF pattern in 
that region (Fig. 7g) except in the northwest. On the other 

Fig. 7  Composites of SM (top row), RF (second row), and ET (third 
row) for annual (first column), JJAS (second column), MAM (third 
column), and OND (fourth column) based on extreme five wettest and 

drier soil moisture years. Contour lines represent regions that are sig-
nificant at 0.05 level
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hand, the ET anomaly in (Fig. 7k) highlights insignificant 
negative anomalies at the western region of the country 
though the anomalies vanish along the western tips of the 
country. These findings show that the SM, RF, and ET likely 
interrelated in the southeastern part of the country.

Similar relationship among the SM, RF, and ET is noted 
during OND season (Fig. 7d, h, i) suggesting that the spatial 
pattern of RF and SM anomalies co-located for most of part 
of the countries, whereas the co-location of SM and ET is 
concentrated over eastern part of Ethiopia.

Figure 8 shows the spatial pattern of correlation of near-
surface air temperature (Tair) with SM, RF, and ET. It is 
noted that higher Tair is associated with higher ET values 
over the eastern part of the country and lower values in the 
western region (Fig. 8i). In the west, the negative correlation 
implies that the SM plays a role in partitioning more of the net 
radiation to latent heat flux and lowers the surface temperature 
via evaporative cooling. This process entails that the land is a 
driver in the region. In the east, a positive correlation between 
Tair and ET signifies that a higher atmospheric demand drives 
an increase in evapotranspiration. The increase in ET leads to 
more surface humidity, resulting in an increase in wet-bulb 
temperature; therefore, it lowers the wet-bulb depression in 
the planetary boundary layer. Thus, this process leads to an 
increase in RF (Eltahir 1998; Findell and Eltahir 1999) and 
enhances the surface moisture. It is, therefore, likely that the 
ET drives the local SM in the eastern and southeastern region. 
These annual relationships are more dominated by the winter 
season associationships, whereas the summer (Fig. 8j) and 
spring (Fig. 8k) seasons correlations suggest that the impact 
of ET on SM is not conclusive.

The supplementary materials Figure  S3 shows the 
annual and seasonal year-to-year variability of SM, RF, 
and ET. From the data in Figure S3, it is apparent that the 
SM interannual variability goes inline with the RF. This 
finding is consistent with that of (Seneviratne et al. 2010) 
and Teuling and Troch (2005). Besides, correlations between 
SM and RF/ET show there are significant relationships in 
every homogeneous zone except insignificant SM versus ET 
correlations in Reg-I, Reg-II, and Reg-IV in the summer. 
RF has significant association with SM in all homogeneous 
zones and seasons while its magnitude is lower in Reg-I 
(JJAS), whereas ET demonstrated lower associationship 
with SM during summer in all zones except Reg-III and Reg-
V. Overall, correlation magnitudes are high in most seasons 
and zones whereas ET indicates weak relationships in some 
zones and seasons.

We have also analyzed the covariability of SM with RF 
and ET using CMCA methodology adopted from (Rieger 
et al. 2021). Hence, Fig. 9 shows the ET-SM phase functions 
(Fig. 9a–j) and amplitude functions (Fig. 9k–t) of CMCA for 
the five dominant modes of variabilities. Similarly, Fig. 10 
also presents the RF-SM phase functions (Fig. 10a–j) and 
amplitude functions (Fig. 10k–t) of the five dominant modes.

Mode-1 contributes 32.8% and 28.5% of the covariability 
between ET and SM (Fig.  9a, f, k, p) and RF and SM 
(Fig. 10a, f, k, p), respectively. The amplitude functions 
(Figs. 9 and 10k, p) show the higher amount of variations 
over the southern part of the country in both RF-SM and 
ET-SM covariability. It is also noted that these modes of 
variabilities indicated in-phase functions (Figs. 9 and 10a, 
f) of RF and ET with SM in this region; hence, it seems 

Fig. 8  Correlation between 
near-surface air temperature and 
SM (top row), RF (second row), 
and ET (third row) for annual 
(first column), JJAS (second 
column), MAM (third column), 
and OND (fourth column). Con-
tour lines represent regions that 
are significant at 0.05 level
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possible that increase in RF leads to increase in SM. The 
in-phase relationship between ET and SM involves a chain of 
atmospheric processes by which an increase in atmospheric 
demand for moisture driven by higher temperature leads to 
increases in ET and RF, and ultimately SM as discussed in 
the composite analysis.

Mode-2 contributes 10.4% and 11.7% of co-variations of 
the ET and SM (Fig. 9b, g, l, q); RF and SM (Fig. 10b, g, l, 
q), respectively. This ET-SM mode of variabilities represent 
the central, central-east, and along western tips of the coun-
try. The spatial pattern of the second mode of ET-SM covari-
ability is not collocated since the pattern of SM is over the 
central highland, whereas the signal of ET is at the eastern 
and western edges of the Ethiopian highland. This result is 
interesting as the SM over the central highland is associated 
closely with the remote ET residing over the edges of the 
highland rather than the ET on the highland itself. This sug-
gests the critical role of regional atmospheric circulation in 
transporting moist air from lowland to the highland. On the 
other hand, the second mode of RF and SM (Fig. 10b, g, l, 

q) covariability explains the central southern region. This 
mode of variability shows a complicated phase relationship 
as it is shifted by +�∕2 . Nevertheless, mode-2 of variability 
also partially overlaps with mode-1, though this outcome is 
not expected from a rotated EOFs.

Mode-3, on the other hand, represents the northwest-
ern ET-SM (Fig.  9c, h, m, r) and northeastern RF-SM 
(Fig. 10c, h, m, r) covariability. This mode explains 8.8% 
(ET) and 10.4% (RF) versus SM covariability. It should 
be noted that the spatial patterns of mode-3 of ET-SM and 
mode-4 of RF-SM are interchanged but represent the same 
northwest region. It has to be noted that mode-4 (RF-SM) 
showed a positive correlation, whereas mode-3 (ET-SM) 
demonstrated a complicated relationship that phase shifted 
by +�∕2 . However, mode-4 of ET-SM (Fig. 9d, i, n, s) and 
mode-3 of RF-SM (Fig. 10c, h, m, r) represent northeast-
ern regions of the country with 7.6% and 6.9% covariabil-
ity fractions, respectively. Moreover, mode-3 (RF-SM) and 
mode-4 (ET-SM) identify a direct covariability among these 
variables that likely supports our hypothesis ET drives the 

Fig. 9  Phase functions for ET 
(a–e) and SM (f–j) relative 
phase shifts with respect to their 
corresponding principal com-
ponents (PCs) and amplitude 
functions for ET (k–o) and SM 
(p–t). The maximum normal-
ized scale has been applied and 
phase values having less than 
0.25 amplitude (i.e., insignifi-
cant noisy phase values) have 
been masked out (Rieger et al. 
2021)
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local SM in this region via a cascade of atmospheric pro-
cesses, as discussed at the beginning of this section.

Mode-5 (Figs. 9 and 10e, j, o, t) pointed out a central 
western spot that outlines the direct relationship between 
RF and SM and accounts for 5.6% of covariability. The 
corresponding mode of ET-SM explains 7.5% covariance. 
This mode highlights a direct relationship between SM with 
both RF and ET in this region.

3.4.2  Global climatic variables effects on soil moisture

This subsection analyzes the link between global SST and 
SM variability over Ethiopia using CMCA. Figures 11, 
supplementary materials Figure  S4, and 12 show the 
amplitude functions, phase functions, and principal 
components (PCs), respectively, for the first four leading 
complex rotated MCA modes of SST and SM. The 
percentage of covariabilities explained by these modes are 
59.7,%, 6.3% 2.1%, and 0.9% for mode-1, mode-2, mode-3, 
and mode-4 respectively.

The first mode (Figs. 11, S4, and 12a, e) shows the annual 
cycles of the global SST and SM. The spatial amplitude 
function (Fig. 11a) showed low equatorial SST variability, 
while the lowest variability is along the equatorial pacific 
ocean. Moreover, it is noted that the phase function (Fig. S4: 
a) identified the anti-correlation between the southern and 
northern hemisphere SST anomalies that is consistent 
with findings in (Rieger et al. 2021). On the other hand, 
the annual SM variation (Fig. 11e) is predominantly higher 
in the northwestern part of the country. Furthermore, the 
phase function (Fig. S4: e) of this mode also showed distinct 
separate SM regions in the northeast, northwestern, and 
southern parts of the country. These distributions might be 
related to the summer season (JJAS) rainfall distribution in 
the country.

The second mode (Figs. 11, S4, and 12b, f) demonstrates 
that equatorial pacific and western Indian oceans SST 
variations predominantly affect SM anomalies over the 
southern and northeastern part of the country. The anti-
correlations between the northeastern SM and equatorial 

Fig. 10  The same as Fig. 9 but 
for phase functions of RF (a–e) 
and SM (f–j); amplitude func-
tions for RF (k–o) and SM (p–t)
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pacific and western Indian oceans SST anomalies are 
well identified by the phase functions shown in Figure S4 
(b, f), whereas the southern part of the country’s SM is 
directly correlated with these oceanic regions. Moreover, 
the second mode temporal variation is highly associated 
( r = 0.72 ) with the Oceanic Nino Index (ONI) as shown in 
Fig. 12b. A positive  ENSO (El-Nino Southern Oscillation) 
phenomena that a higher than normal SST anomalies in 
the eastern and lower than normal SST anomalies in the 
western equatorial pacific ocean (El-Nino) or the vice 
versa (La-Nina) are associated with lower or higher SM 
anomalies in the northeastern part of the country, whereas 
the El-Nino condition is directly linked with the southern 
part of the country. The physical mechanism that links the 
negative association between the central Pacific Ocean 
SST anomalies and the SM in the northeastern part of 
the country involves change in atmospheric features as 
discussed (Camberlin 1997; Diro et  al. 2011; Gleixner 
et al. 2017; Korecha and Barnston 2007; Segele et al. 2009). 

According to these studies, positive ENSO conditions 
are linked to weakening of Tropical Easterly Jets (TEJ) 
and weaker upper level divergence. This weakening of 
TEJ and the upper level divergence leads to a reduction 
in rainfall and this in turn reduces soil moisture in the 
region or vice versa. It is also interesting to mention the 
second mode and the Dipole Mode Index (DMI), an area 
average of ( 10◦S − 10

◦

N , 50◦E − 70
◦

E minus 10◦S − 0◦N , 
90

◦

E − 110
◦

E ) Indian Ocean SST anomalies, significant 
level of relationship is r = 0.43 with p-value < 0.0001 . It 
is a well established phenomenon that the Indian Ocean 
Dipole (IOD) is directly associated with OND rainfall in 
the south and southeastern part of the country (Bahaga et al. 
2015; Behera et al. 2005; Black 2005; Liebmann et al. 2014; 
Lüdecke et al. 2021; Saji et al. 1999) that possibly reflected 
on the local SM.

The third mode (Figs. 11, S4, and 12c, g) shows SST 
anomalies over Oceania that directly affect the northeastern 
and central southern part of the country. This mode is clearly 

Fig. 11  Amplitude functions 
for global SST (a–d) and soil 
moisture (e–h)
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associated with Pacific Warm Pool (PACWARMPOOL) and 
the correlation between PACWARMPOOL index and SST 
anomalies time series ( r = 0.48 ) over Oceania are presented 
in Fig. 12c. The pacific warm pool SST anomalies directly 
vary with the northeastern and central southern regions with 
slight negative and positive phase shift in these regions, 
respectively. It is also apparent that the warm pool has a 
positive link with the western tip of the country (Gambella 
region). However, unlike studies (Funk et al. 2008; Lyon 
and DeWitt 2012; Peterson et al. 2012; Williams et al. 2012) 
indicated the negative associationship between the south-
central Indian and west Pacific Ocean SST anomalies and 
East African rainfall, the southern central and northeastern 
local SM has positive links with Pacific warm pool.

The fourth mode (Figs. 11, S4, and 12d, h) illustrated a 
widespread effect of the Pacific Decadal Oscillation (PDO) 
manifestation across the countrywide SM anomalies that 
were dominated by negative correlations (Fig. S4: h) all over 
the country. Though the physical mechanisms that drive this 
relationship are complex and not well understood, Lüdecke 
et al. (2021) and Taye and Willems (2012) also found that 
PDO has negatively correlated with Ethiopian rainfall. 
However, this mode also presented a direct correlation in 
the northeastern, some patches of central and southeastern 
regions, and along the narrow band in the southern tips of 

the country. Figure 12d shows correlation between the PDO 
index and northeastern Pacific SST anomalies (SST PC4). 
The dominant influence of PDO in the southern region 
rainfall is discussed by Jury 2010, 2016, and it might also 
be the case that it reflects on the local SM via their direct 
relationship.

4  Summary and conclusions

Soil moisture plays a significant role in land–atmosphere 
interactions as it affects both energy exchange and water 
balance. Despite its importance, there is a lack of a reliant 
observational network of in situ SM stations. In the current 
study, the degree of agreement among station, reanalysis, 
and satellite estimates of soil moisture in representing 
the spatiotemporal characteristics is evaluated across 
Ethiopia. Furthermore, the spatiotemporal variability of 
soil moisture and its link with local and remote drivers is 
investigated.

Correlation and root-mean-square-error (RMSE) 
analyses have been used to select the best representative 
soil moisture dataset over the region. In addition, an 
empirical orthogonal functions (EOFs) analysis and  KMeans 
clustering algorithm are employed to classify the country 

Fig. 12  Principal components 
(PC1, PC2, PC3, PC4) of SST 
(left) and soil moisture (right) 
with global oceanic indices 
overlayed on SST PCs. The 
correlations between SST PCs 
and the global oceanic indices 
are Oceanic Nino Index (ONI) 
r = 0.72 , Pacific Warm Pool 
(PACWARMPOOL) r = 0.48 , 
and Pacific Decadal Oscil-
lation (PDO) r = −0.52 for 
p-value < 0.0001 . For read-
ability and smoothly overlay the 
PDO index over SST PC4, we 
invented PC4 of SST and the 
corresponding SM PC4
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(i.e., Ethiopia) into homogeneous soil moisture zones. 
Composite analysis and complex maximum covariance 
analysis (CMCA) are also applied to examine the link 
between soil moisture variability and the local (i.e., ET 
and RF) and remote (i.e., SST) driving factors.

Inter-comparison among the different datasets has 
shown that all soil moisture datasets have captured the 
spatiotemporal variability of soil moisture in a consist-
ent manner throughout the country. However, the level of 
agreement differs in their absolute magnitudes and time 
of the peak. It is noted that the combined satellite data-
sets, unlike the others, show an earlier peak of the soil 
moisture. Our comparative analysis demonstrates that the 
FLDAS is a highly skilled dataset to reasonably represent 
the spatiotemporal characteristics of soil moisture across 
the country.

The EOF and  KMeans analysis has resulted in five non-
overlapping climate zones that have considerably high intra- 
and low inter-correlations among homogeneous climate 
zones. Annual cycle of soil moisture revealed a mono-modal 
soil moisture pattern in the western part (Reg-I) and bimodal 
pattern for the eastern and southern part (Reg-III and Reg-
V) of the country. It is also noted that the northeastern tip 
of Ethiopia (i.e., the Dallol depression) is drier, whereas the 
central southwestern is wetter throughout the year. These 
soil moisture patterns are consistent with seasonal evolution 
of rainfall in the country (REF, (Degefu 1987; Diro et al. 
2008; Fekadu 2015; Gissila et al. 2004)).

Our study showed that rainfall and evapotranspiration 
have strong relationships with soil moisture variation over 
the southern region as demonstrated in the leading modes 
of CMCA and composite analysis. Over these regions, 
higher soil moisture values are associated with higher 
values of rainfall and evapotranspiration. The significant 
positive correlation between rainfall and soil moisture 
imply that rainfall and soil moisture are strongly coupled 
for most of the southern part of Ethiopia. Correlation 
between evapotranspiration and temperature also revealed 
that atmosphere is the leading factor (rather than the 
soil moisture) in land–atmosphere interaction for the 
southeastern part of the country. This suggests that the 
positive correlation between ET and SM is triggered by 
intense moisture demand as a result of higher temperature 
and invokes a chain of atmospheric processes, whereby 
a higher temperature leads to higher evaporation and 
enhanced convection to increase soil moisture. Furthermore, 
analysis of the effects of global SST anomalies on local 
SM demonstrated that oceanic indices: ONI (r = 0.72), 
IOD (r = 0.43), PACWARMPOOL (r = 0.48), and PDO 
(r =  − 0.52) found to have significant relationships with 
local SM by modulating  large-scale circulations and 
other local  climatic variables (i.e., rainfall and surface 
temperature). However, individual oceanic regions vary at 

various time scales; therefore, we recommend further study 
to evaluate their respective role in the local SM.

This work is one of the few studies which, among other 
things, has characterized soil moisture variability in the horn 
of Africa and identified the most representative reanalysis 
dataset for the region. One caveat of the validation study is 
the short length of records in the station soil moisture dataset 
employed in the analysis. Therefore, further research using 
longer observational soil moisture data records would be 
beneficial.
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