

Deriving empirically based damage functions for integrated assessment models

Tobias Geiger and Katja Frieler

Potsdam Institute for Climate Impacts Research

20 June 2016

Extreme events are rising

Natural disasters 2015

- Geophysical events
 (Earthquake, tsunami, volcanic activity)
- Meteorological events
 (Tropical storm, extratropical storm, convective storm, local storm)

- Hydrological events
 (Flood, mass movement)
- Climatological events
 (Extreme temperature, drought, wildfire)

Average annual weather losses 100 billion \$US

Extreme events in a 2°C-world?

ed fraction

Global river flood modeling

- Daily Run-off simulation by 10 models from ISI-MIP
 - 1970-2012 driven by observed weather
 - present-2100 driven by 5 GCMs, all RCPs
- Floodplain flow scheme -> CaMaFlood [1]
 - Gridded flood protection FLOPROS [2]
 - Inundation areas & depth @ 0.01° resolutio
- Validation in progress!

Global river flood impacts

Exposed people (e.g. Pakistan)

- Stock losses
 - Damage functions by Juan Carlos [1]

Global tropical cyclone impacts

- Global best track archive IBTrACS
- 540k cyclone tracks from dynamical downscaling [1]
 - 6 GCMs: 1950-2005 & 2006-2100 (RCP 8.5)
- TC extension via wind field model [2]

Tropical cyclone impacts for USA

Different socio-economic scaling of losses

Loss
$$\propto GDP^{\beta_{GDP}} \times f_1(v_{wind})$$

	8 model-mean	8 model-median	8 model-range	_
$oldsymbol{eta_{GDP}}$	0.50	0.57	0.20 - 0.67	< 1
β_{GDPpc}	2.29	2.26	1.48 - 3.13	> 1
$oldsymbol{eta_{Pop}}$	0.41	0.47	0.12 - 0.59	< 1

Loss
$$\propto GDPpc \beta_{GDPpc} \times Pop \beta_{Pop} \times f_1(v_{wind})$$

Skill of damage function ensemble

Projecting future losses for USA

- Simulated TC tracks (Emanuel, 2013)
- Socio-economic vulnerability becomes strongest loss driver!

From impacts to economic models

We have climate change impacts:

- Exposed population
- Stock damage

We have economic growth models:

How will the output then change?

Extreme impacts have long-term effects

Growth impact of TCs

Effect depends on disaster type, resolution, and methodology

See also Felbermayer et al (2013), Strobl (2008), and others

Long term growth effects across impacts

Unified predictor across impacts: Exposed population

Will economic models be able to reproduce the observed long-term growth reduction?

Thank you!

