

Comparative analysis of climate change impact channels in an economic growth model

Franziska Piontek

Elmar Kriegler, Anselm Schultes, Marian Leimbach, Ottmar Edenhofer, Nico Bauer

Channel-specific & aggregate damage information – how to model?

Growth damages are significant

Standard damage functions on output

Empirically based damages testingTFP/capital depreciation

Growth effects in IAMs via alternative damage Dietz & Stern 2015: TFP/δ damage in

Open questions

- How can we capture long-term growth damages of climate change and how significant are they?
- How should specific damages enter the economic model to correctly capture their short-term and long-term effects?
- What are the necessary "ingredients" in the economic model to capture the effects?
- How do the channels compare in their long-term dynamics?

Comprehensive, comparative analysis of different impact channels – what are the weak spots of the growth engine?

- Builds on economic core of DICE2013
- No mitigation
- Endogenous savings rate
- CES production function with elasticity of substitution = 0.5: $Y_t^G = a_0 [\alpha K_t^{\sigma} + (1 - \alpha)(\chi_t^L L_t)^{\sigma}]^{1/\sigma}$
- Different macro-economic dynamics: elasticity of substitution, capital adjustment costs, endogenous growth, savings rate

Damage channels

- Net GDP: $Y_t^N = \Omega_t^Y a_0 \left[\alpha K_t^{*\sigma} + (1 \alpha) \left(\chi_t^{L^*} L_t^* \right)^{\sigma} \right]^{1/\sigma}$
- Stock vs flow damages:
 - $Y_t^N = \Omega_t^Y Y_t^G = \Omega_t^Y a_0 [\alpha K_t^\sigma + (1-\alpha)(\chi_t^L L_t)^\sigma]^{1/\sigma}$
 - $K_{t+1}^* = \Omega_{t+1}^K K_{t+1} = \Omega_{t+1}^K [(1 \delta^K)^{\Delta t} K_t^* + \Delta t I_t]$
 - Similar for labor and labor productivity
- Comparability same GDP effect at a given time step:

$$\Omega_{t} = \frac{Y_{t}^{N,Y}}{Y_{t}^{G,Y}} = \frac{Y_{t}^{N,\chi^{L}}}{Y_{t}^{G,\chi^{L}}} = \frac{Y_{t}^{N,K}}{Y_{t}^{G,K}} = \frac{Y_{t}^{N,L}}{Y_{t}^{G,L}}$$

Single shock experiments (-15% GDP in 2050): different channels lead to different long-term effects

Continuous, cumulative damage

- Exogenous DICE damage function: $\Omega_t = 0.00267T_t^2$ (6.7°C above preindustrial by 2200)
- Comparable damages at any given time step but different accumulation

Income shares – complementary redistribution

Adaptive effect through investment dynamics

NPV of GDP loss compared to baseline [trl US\$]	Y channel	K channel	L channel	Productivity channel	Productivity channel (EG)
Standard run	1354	2167	4540	8113	6073
Exogenous saving	1550	2726	6090	9476	6576
Factor	1.14	1.26	1.34	1.17	1.08

PI

Endogenous growth

- Follows Dietz & Stern (2015): $\chi_{t+1}^{L} = (1 \delta)\chi_{t}^{L} + \gamma_{1}I_{t}^{\gamma_{2}}$
- Two-fold role: additional channel for indirect damages & for adaptation via incrased investment (though not part of the optimization)

Factor substitutability: larger damages with better substitutability

Enhanced by opposite investment dynamics

Endogenous temperature feedback

- No comparability anymore → different GDP effect results in different temperature pathway
- Immediate investment reduction reduces GDP → "damage", but long term climate-related damage smaller because of lower emissions, i.e. lower temperature (NPV effect over whole simulation period about equal)

Franziska Piontek – Comparative analysis of impact channels

Effects on GDP growth

Next steps I – improvements of analysis

- Additional production factors like land
- Multisectoral effects
- Improved endogenous growth model (human capital)
- Interregional effects
- Welfare damages

Next steps II – quantification of channels

- Hurricanes & floods
 Challenge: How to represent damages from stochastic extreme events?
 - Land-related impacts
 - \rightarrow Integrated assessment framework at PIK
 - → challenge: economic vs. welfare vs. distributional impacts

Next steps III – quantification of channels

Labor/labor productivity

- Wet bulb global temperature → labor capacity loss (Dunne et al. 2013)
- Challenge: Aggregate labor force? Lost work hours? Lost productivity? Compounding or not? Related welfare impacts?

Thank you!

Franziska Piontek – Comparative analysis of impact channels