

Towards a better representation of inequality and sustainable development in IAMs

Björn Sörgel, Elmar Kriegler,

+ the REMIND & MAgPIE teams

ENGAGE Final Workshop 2019

Member o

Global distribution of income

source: Lakner and Milanovic (2015) – Global Income Distribution: From the Fall of the Berlin Wall to the Great Recession, World Bank Economic Review.

Inequality in IAMs

Layers of inequality & current modelling status:

- between generations (discounting)
- within generations, between countries (country groups)
- within generations, within countries (income distribution)

Steps towards representing inequality:

- 1) **Ex-post analysis (today)**:
 - distributional effects of mitigation costs / damages
 - connection to SDGs
- 2) Represent income distribution in IAMs ("work in progress")
- 3) Energy + food demand scenarios by income group

Climate change, inequality & sustainable development

Sustainable Development Pathways?

Mitigation pathways & sustainable development

Mitigation pathways

Income distribution

SDG indicators

- Economic growth
- Energy and food prices
 → regressive
- Carbon price revenue
 → progressive

Change in distribution of *real* income, i.e. after increased energy/food expenditures and revenue recycling Income/cap & Gini are key drivers for:

- poverty rates
- energy access
- food security

- ...

REMIND/MAgPIE modelling framework

REMIND

MAgPIE

Policies

.

Water

Urban

Climate Action

(Dietrich et

al. 2018)

Example scenario: SSP2 1.5°C

NB: Here for a globally uniform carbon price. Results will depend on burden sharing regime.

Distributional effects – "real income" approach

Increased energy/food expenditures reduce real income; effect stronger for low-income groups.

• Food / energy expenditures:

 $exp. \propto y^{\alpha}$

- income elasticity α here: α = 0.8 for energy, α = 0.5 for food
- Recycling of carbon price revenue
- Compute "real income"
 Gini from distribution of (y – exp. + rev.rec.)

Linking income and Gini to SDG objectives

Logistic regression model for SDG objectives (*x* = GDP/cap., *G* = Gini): $\log \frac{p_{it}}{1 - p_{it}} = \beta_0 + \beta_1 \log x_{it} + \beta_2 G_{it} + \beta_3 \log x_{it} \times G_{it} + \mu_i + \epsilon_{it}$

Projections for SDG 1 (SSP Baselines)

Number of people in absolute poverty (global)

Projections for SDG 1: Mitigation scenario (SSP2 - 1.5°C)

Number of people in absolute poverty (global):

Projections for SDG 1: Mitigation scenario (SSP2 - 1.5°C)

Number of people in absolute poverty (global):

Projections for SDG 1: different SSPs - 1.5°C

SSP1: low baseline poverty, low mitigation pressure SSP2: middle of the road scenario

SSP5: lowest baseline poverty, high mitigation pressure

SDG "side-effect" of mitigation depends on socioeconomic baseline

More research questions for this framework

- other SDG dimensions: energy access, food security, ...
- Co-benefits & trade-offs of different mitigation options (e.g. BECCS limit, demand-side, ...)
- How to design burden sharing schemes (differentiated carbon prices + transfers) to minimize negative side-effects?
- Which other policies are required to go from a mitigation pathway to a sustainable development pathway?
- SDG side-effects of impacts vs. mitigation

Outlook: integrating inequality into IAMs

So far most IAMs include temporal and regional inequality, but not inequality within countries/regions.

Representing inequality:

→ assume lognormal income distribution ($\sigma \leftrightarrow Gini$)

 \rightarrow standard isoelastic utility function (inequality aversion η)

→ analytically calculate social welfare function with inequality

→ effects of impacts/mitigation through moments of distribution (instead of quantiles)

Summary

- A better modelling of inequality is required both on the impacts and mitigation side
- Distributional questions are at the core of many SDG objectives
- First step: Ex-post analysis of mitigation pathways
 → effects on income distribution
 - \rightarrow connection to other SDG objectives
 - \rightarrow Example: SDG 1 zero poverty
 - \rightarrow mitigation pathway vs. sustainable development pathway
- Next levels: impacts and inequality, endogenously model income distribution within IAMs

Scenarios for socio-economic drivers

Cannot predict socio-economic drivers (population, GDP,...) reliably until 2100 \rightarrow work with scenarios (narratives, not predictions!)

Shared socio-economic pathways (SSPs):

O'Neill, Kriegler et al., 2017

Shared Socioeconomic Pathways

Inequality under the SSPs: global Gini coefficient

Linking income and Gini to SDG objectives

Linking income and Gini to SDG objectives

Logistic regression for fraction of population above the poverty line:

Coefficients:

	Estimate	Std Error	t value	Pr(> t)
(Intercept)	-27.543020	1.916208	-14.374	< 2e-16 ***
log(gdppcap)	3.946146	0.229753	17.176	< 2e-16 ***
Gini	20.095888	4.509789	4.456	9.37e-06 ***
log(gdppcap):Gini	-3.510272	0.562928	-6.236	6.83e-10 ***
Signif. codes: 0 '**	*' 0.001 '**' 0.	01 '*' 0.05 '.' (0.1 ' ' 1	

Residual standard error: 0.5583 on 924 degrees of freedom Multiple R-squared: 0.94, Adjusted R-squared: 0.9312 F-statistic: 107.2 on 135 and 924 DF, p-value: < 2.2e-16

Example: SDG2 – zero hunger

REMIND energy sector

ΡI

(Graphic: Jessica Strefler, PIK)

30

Example scenario: SSP2 - 1.5°C

PIK

Example scenario: SSP2 - 1.5°C

Ρ

Distributional effects – "real income" Gini

At country-level (assuming equal GDP/capita loss within region):

Distributional effects – "real income" Gini

At country-level (assuming equal GDP/capita loss within region):

Projections with mitigation effect included (SSP2 - 1.5°C)

Projections with mitigation effect included (SSP2 - 1.5°C)

Distributional effects - "real income" approach

Increased energy/food expenditures reduce real income; effect stronger for low-income groups.

- Start with lognormal income distribution
- Distribute costs as food / energy expenditures: $exp. \propto y^{lpha}$

uncertain parameter:

Compute "real income"

Gini from distribution of

here: $\alpha = 0.8$ for energy,

income elasticity α

 $\alpha = 0.5$ for food

(income - costs)

Distributional effects – "real income" approach

Increased energy/food expenditures reduce real income; effect stronger for low-income groups.

- Start with lognormal income distribution
- Distribute costs as food / energy expenditures: $exp. \propto y^{\alpha}$

