Towards a better representation of inequality and sustainable development in IAMs

Björn Sörgel, Elmar Kriegler,

+ the REMIND & MAgPIE teams

ENGAGE Final Workshop 2019
Global distribution of income

Absolute poverty line: $1.25 / day (2005 PPP)

Approx. 10% of the global population in absolute poverty.

Both inequality between and within countries matters.

Inequality in IAMs

Layers of inequality & current modelling status:
• between generations (discounting)
• within generations, between countries (country groups)
• within generations, within countries (income distribution)

Steps towards representing inequality:

1) Ex-post analysis (today):
 - distributional effects of mitigation costs / damages
 - connection to SDGs

2) Represent income distribution in IAMs (“work in progress”)

3) Energy + food demand scenarios by income group
Climate change, inequality & sustainable development

IPCC 1.5°C Special Report

Four illustrative model pathways

In pathways limiting global warming to 1.5°C with no or limited overshoot as well as in pathways with a high overshoot, CO₂ emissions are reduced to net zero globally around 2050.

Global total net CO₂ emissions

Billions of CO₂/yr

IPCC 1.5°C Special Report

Global inequality in different scenarios

Year

Gini index

SSP1 - SSP2 - SSP3 - SSP4 - SSP5

2020 2030 2040 2050

Carbon price vs. energy access

Climate impacts & bioenergy vs. food prices

mitigation costs & climate impacts as poverty trap

Sustainable Development Pathways?

7. Affordable and clean energy

2. No hunger

1. No poverty

+ many more
Mitigation pathways & sustainable development

Mitigation pathways

- Economic growth
- Energy and food prices → regressive
- Carbon price revenue → progressive

Income distribution

Change in distribution of real income, i.e. after increased energy/food expenditures and revenue recycling

SDG indicators

Income/cap & Gini are key drivers for:
- poverty rates
- energy access
- food security
- ...

Global total net CO₂ emissions

In pathways limiting global warming to 1.5°C with no or limited overshoot as well as in pathways with a high overshoot, CO₂ emissions are reduced to net zero globally around 2050.

Four illustrative model pathways

Income distribution

SDG indicators

Income/cap & Gini
REMIND/MAgPIE modelling framework

REMIND

- Welfare
 - Macro-economic Module
 - Energy System Module
 - Energy System Costs
 - Fuel Costs
 - Investments
 - O&M Costs
 - Energy Transformation Technologies
 - Resource and Potential Constraints
 - Emissions
 - GHG and aerosol concentrations; Temperature
 - agriculture and forestry bioenergy supply
 - Output
 - Trade
 - Capital
 - Labor
 - Final Energy
 - Exogenous Data
 - Labor Efficiency
 - Energy Efficiency

(MAGPIE) Bioenergy price, CO₂ price, bioenergy demand

(MAGPIE) Bioenergy price

(REMIND) Bioenergy price, CO₂ price, bioenergy demand

(Dietrich et al. 2018)

(e.g. Luderer et al. 2015)
Example scenario: SSP2 1.5°C

NB: Here for a globally uniform carbon price. Results will depend on burden sharing regime.
Distributional effects – “real income” approach

Increased energy/food expenditures reduce real income; effect stronger for low-income groups.

- Food / energy expenditures:
 \[\text{exp.} \propto y^\alpha \]
 - income elasticity \(\alpha \) here: \(\alpha = 0.8 \) for energy,
 \(\alpha = 0.5 \) for food

- Recycling of carbon price revenue

- Compute “real income” Gini from distribution of \((y - \text{exp.} + \text{rev.rec.})\)
Linking income and Gini to SDG objectives

Logistic regression model for SDG objectives ($x = \text{GDP/cap.}, \ G = \text{Gini}$):

$$\log \frac{p_{it}}{1 - p_{it}} = \beta_0 + \beta_1 \log x_{it} + \beta_2 G_{it} + \beta_3 \log x_{it} \times G_{it} + \mu_i + \epsilon_{it}$$

Example: poverty threshold of $1.90/day

$\rightarrow p_{it} =$ fraction above poverty line

$R^2 = 0.93$
Projections for SDG 1 (SSP Baselines)

SDG 1 not even reached in SSP1 & SSP5 baselines.

Baseline SSP Gini scenarios: Rao et al. 2018
Projections for SDG 1: Mitigation scenario (SSP2 – 1.5°C)

Number of people in absolute poverty (global):

Without progressive use of carbon price revenue

Reduced rate of poverty reduction (+ 95 million people in 2030)
Effect mostly compensated from domestic revenues.
Projections for SDG 1: different SSPs – 1.5°C

SSP1: low baseline poverty, low mitigation pressure

SSP2: middle of the road scenario

SSP5: lowest baseline poverty, high mitigation pressure

SDG “side-effect” of mitigation depends on socioeconomic baseline
More research questions for this framework

- other SDG dimensions: energy access, food security, ...

- Co-benefits & trade-offs of different mitigation options (e.g. BECCS limit, demand-side, …)

- How to design burden sharing schemes (differentiated carbon prices + transfers) to minimize negative side-effects?

- Which other policies are required to go from a mitigation pathway to a sustainable development pathway?

- SDG side-effects of impacts vs. mitigation
Outlook: integrating inequality into IAMs

So far most IAMs include temporal and regional inequality, but not inequality within countries/regions.

Representing inequality:

→ assume lognormal income distribution ($\sigma \leftrightarrow \text{Gini}$)

→ standard isoelastic utility function (inequality aversion η)

→ analytically calculate social welfare function with inequality

→ effects of impacts/mitigation through moments of distribution (instead of quantiles)
Summary

- A better modelling of inequality is required both on the impacts and mitigation side.

- Distributional questions are at the core of many SDG objectives.

- First step: Ex-post analysis of mitigation pathways → effects on income distribution → connection to other SDG objectives → Example: SDG 1 – zero poverty → mitigation pathway vs. sustainable development pathway.

- Next levels: impacts and inequality, endogenously model income distribution within IAMs.
Scenarios for socio-economic drivers

Cannot predict socio-economic drivers (population, GDP,...) reliably until 2100 → work with **scenarios** (narratives, not predictions!)

Shared socio-economic pathways (SSPs):

- **SSP 1**: (Low Challenges) Sustainability
 - Taking the Green Road

- **SSP 4**: (Adapt. Challenges Dominate) Inequality
 - A Road Divided

- **SSP 2**: (Intermediate Challenges) Middle of the Road

- **SSP 3**: (High Challenges) Regional Rivalry
 - A Rocky Road

- **SSP 5**: (Mil. Challenges Dominate)
 - Fossil-fueled Development
 - Taking the Highway

O’Neill, Kriegler et al., 2017
Shared Socioeconomic Pathways

NB: SSPs are a valuable data set for global change studies beyond climate change.
Inequality under the SSPs: global Gini coefficient

Based on country-level Gini scenarios by Rao et al., 2018
Linking income and Gini to SDG objectives

Fraction of population above the poverty line

absolute poverty threshold: $ 1.90/day

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGD</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>BGD</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>BGD</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>CHN</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>CHN</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>CHN</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>ETH</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>ETH</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>ETH</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>IDN</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>IDN</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>IDN</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>IND</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>IND</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>IND</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>MEX</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>MEX</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>MEX</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>NGA</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>NGA</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>NGA</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>UGA</td>
<td>1990</td>
<td>0.25</td>
</tr>
<tr>
<td>UGA</td>
<td>2000</td>
<td>0.50</td>
</tr>
<tr>
<td>UGA</td>
<td>2010</td>
<td>0.75</td>
</tr>
<tr>
<td>USA</td>
<td>1990</td>
<td>1.00</td>
</tr>
<tr>
<td>USA</td>
<td>2000</td>
<td>1.00</td>
</tr>
<tr>
<td>USA</td>
<td>2010</td>
<td>1.00</td>
</tr>
</tbody>
</table>

year
Linking income and Gini to SDG objectives

Logistic regression for fraction of population above the poverty line:

Coefficients:

| | Estimate | Std Error | t value | Pr(>|t|) |
|----------------------|-----------|-----------|----------|-------------|
| (Intercept) | -27.543020 | 1.916208 | -14.374 | < 2e-16 *** |
| log(gdppcap) | 3.946146 | 0.229753 | 17.176 | < 2e-16 *** |
| Gini | 20.095888 | 4.509789 | 4.456 | 9.37e-06 *** |
| log(gdppcap):Gini | -3.510272 | 0.562928 | -6.236 | 6.83e-10 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5583 on 924 degrees of freedom
Multiple R-squared: 0.94, Adjusted R-squared: 0.9312
F-statistic: 107.2 on 135 and 924 DF, p-value: < 2.2e-16
Example: SDG2 – zero hunger

![Graph showing the malnourished (BMI < 18.5) population over years for different scenarios and regions.]
REMIND energy sector

(Graphic: Jessica Strefler, PIK)
Example scenario: SSP2 – 1.5°C

CO₂ emissions

Primary Energy

BECCS
Example scenario: SSP2 – 1.5°C
Distributional effects – “real income” Gini

At country-level (assuming equal GDP/capita loss within region):

Without lump-sum transfer of tax revenues

Baseline: SSP
Gini scenarios
(Rao et al. 2018)
Distributional effects – “real income” Gini

At country-level (assuming equal GDP/capita loss within region):

With lump-sum transfer of full tax revenues

Baseline: SSP Gini scenarios (Rao et al. 2018)
Projections with mitigation effect included (SSP2 – 1.5°C)
Projections with mitigation effect included (SSP2 – 1.5°C)
Distributional effects – “real income” approach

Increased energy/food expenditures reduce real income; effect stronger for low-income groups.

- Start with lognormal income distribution
- Distribute costs as food / energy expenditures:
 \[\exp \propto y^\alpha \]
 - uncertain parameter: income elasticity \(\alpha \)
 - here: \(\alpha = 0.8 \) for energy, \(\alpha = 0.5 \) for food
- Compute “real income” Gini from distribution of (income - costs)
Distributional effects – “real income” approach

Increased energy/food expenditures reduce real income; effect stronger for low-income groups.

- Start with lognormal income distribution
- Distribute costs as food / energy expenditures:
 \[\exp \propto y^\alpha \]
- Uncertain parameter: income elasticity \(\alpha \) here: \(\alpha = 0.8 \) for energy, \(\alpha = 0.5 \) for food
- Compute “real income” Gini from distribution of (income - costs)
Toy model for distributional effects

Total damage = 10% of GDP, damage ~ income$^\alpha$
Toy model for distributional effects

Total damage = 10% of GDP, damage ∼ income$^\alpha$
Toy model for distributional effects

Total damage = 10% of GDP, damage ~ income^α
Toy model for distributional effects

Total damage = 10% of GDP, damage ~ income$^\alpha$