Integrating growth damages in IAMs: Persistencies and channels

Franziska Piontek, Christian Otto

Based on work with Anselm Schultes, Gunnar Luderer, Elmar Kriegler, Ottmar Edenhofer, Tobias Geiger, Hazem Krichene, Inga Sauer
Increasing empirical evidence for persistency and for differentiated effects

Short-term / aggregate level (high confidence)
- Nonlinear response of economic production to (annual) temperature fluctuations
 - Provides no understanding of the underlying processes / impact channels
 - What is the role of climate extremes?

Long-term impacts of climate extremes (low confidence)
- Tropical cyclones and droughts may have adverse impacts on economic development in the long run

Among others: Burke et al. 2015, Kalkuhl & Wenz 2018, Pretis et al. 2018, 2018

[Berlemann & Wenzel 2016/18,. Hsiang & Lina, 2014]
Basis: Cross sectoral consistent bio-physical impact simulations – The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)

Climate data
- (daily, 0.5° x 0.5°)
- Historical observations + Projections CMIP 5/6

Socio-economic input
- (population, land-use, GDP, agricultural + water management)
- Historical observations + Future Projections (SSP)

Impact Models (global + regional)
- Water
- Agriculture
- Coastal infrastructure
- Biomes
- Health
- Permafrost
- Energy
- Biodiversity
- Marine Ecosystems

Main objectives
- Temporally and spatially explicit impact simulations
- Impact attribution
- Future projections of climate risks

- Permits separation of climate and socio-economic drivers
Global area affected by climate extremes

Colors = Climate models
Shading = Impact model uncertainty

Work in progress

[Lange et al., submitted]
People affected globally by climate extremes

Colors = Climate models
Shading = Impact model uncertainty

Historical warming has almost tripled global population annually exposed to extreme events

Work in progress

[Lange et al., submitted]
Direct losses: Past economic losses of river floods – East Asia

Short-term loss variability captured well by river flood simulations driven by observed weather

[Geiger, Reese et al. in prep.]
Direct losses: Past economic losses of river floods – East Asia

Short-term loss variability captured well by river flood simulations driven by observed weather

[Geiger, Reese et al. in prep.]
Direct losses: Past economic losses of river floods – East Asia

Socioeconomic vulnerability:

$$\log\left(\frac{D^{obs}}{D^{mod}}\right) = \alpha_j + \beta_j \log(GDP_{cap})$$

[Geiger, Reese et al. in prep.]
Direct losses: Past economic losses of river floods – East Asia

Recent loss reductions in East Asia could be explained by substantial investments in flood protection in China
Reproducing past economic losses of river floods – Global

[Geiger, Reese et al. in prep.]
Persistencies of damages

- For each disaster category:
 Correlate historical economic growth rates with **people affected** by climate extremes

\[g_{j,t} = g_{j,t}^0 + \sum_{l=0}^{L} \beta_l P_{j,t-l} \]

- unperturbed growth path (country fixed effects)
- climate losses

\[\beta_0 \quad \beta_1 \quad \beta_2 \]

[Hsiang, 2014]
[Berlemann & Wenzel (2016 & 2018)]
Long-term impacts of tropical cyclones & fluvial floods (global)

• Cumulative growth-effect k years after exposure:

\[\Omega_k = \sum_{l=0}^{k} \beta_l \]

Tropical cyclones and fluvial floods reduce GDP growth in the long-term

[Krichene et al., in prep]
From event-based to temperature-dependent damage functions

• Ensemble of timeseries of growth losses from ISIMIP
 • 2 RCP x 4 GCM x N impact models x SSP2
 • Hope
 • For each SSP scenario, share of affected people can be expressed as function of global mean temperature change

\[
\delta_{j,t}(\{P_{j,t-l}\}_{l=0}^L) = \sum_{l=0}^L \beta_l P_{j,t-l}
\]

\[
\delta_j(t, \Delta T) = \delta_j(P_j(\Delta T))
\]

[Geiger et al., in prep]
Integration in IAMs
Integrated assessment with soft-coupled damage and climate module

→ Impacts internalized through social cost of carbon as a price on emissions

→ Advantage: higher process detail and flexibility on climate and damage modeling side

Schultes et al. (in prep.)
Analytical expression of the Social Cost of Carbon

For output damages:

$$SCC_t = \sum_r \sum_{t'=t}^T \Phi_{t',t} Y_{r,t'} D_{r,t'} \sum_{t''=t}^{t'} \Theta_{r,t',t''}(T) \kappa_{r,t''} \Delta T_{t''}$$

- $\Phi_{t',t}$: discount factor
- $Y_{r,t'}$: damage factor
- $D_{r,t'}$: unperturbed income
- $\Theta_{r,t',t''}(T)$: marginal damage from incremental temperature increase
- $\kappa_{r,t''} \Delta T_{t''}$: regional temperature response at time t'' to emissions at t

- $\Theta_{r,t',t''}$: marginal damage from incremental temperature increase

Schultes et al. (in prep.)
Persistence as key characteristic of damages

- Few empirical constraints – literature points to about 15 years

- Our channel study:
 - half-life time depends on channel & dynamics (endogenous vs. exogenous growth, savings rate)
 - accumulation of shocks with higher persistence leads to high damages

One-time shock on different production factors/productivity

Accumulating shocks
Burke-based damages with different degrees of persistence – uncertainty & adaptation

\[D_{r,t} = \prod_{t'=1}^{t}(1 + \delta_{r,t'}2^{-(t-t')/\tau_H}) \] with \(\delta_{r,t} = \beta_1(T_{r,t} - \bar{T}_r) + \beta_2(T_{r,t}^2 - \bar{T}_r^2) \)

Response to temperature shock

Cumulative effect for step change in T

Schultes et al. (in prep.)
Effect of persistence on near-term carbon prices

- CBA analysis in REMIND IAM
- Uncertainty from climate and socioeconomics (SSP1,2,5)

<table>
<thead>
<tr>
<th></th>
<th>β_1</th>
<th>β_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICE2013</td>
<td>0</td>
<td>-0.00267</td>
</tr>
<tr>
<td>Burke short run</td>
<td>0.0127</td>
<td>-0.0005</td>
</tr>
<tr>
<td>Burke long run</td>
<td>-0.0037</td>
<td>-0.0001</td>
</tr>
</tbody>
</table>
What is the welfare optimal response to global warming?

Least total cost (LTC):
- Minimizing the cost of abatement and damage under climate target
- Hedge against long-term changes & tipping points as well as account for near-term marginal damages

Cost-effectiveness (CEA):

Cost-benefit (CBA):

Schultes et al. (in prep.)
Least total cost: More ambitious near-term mitigation

Ensemble:

- **Socio-economics**: SSP1, SSP2, SSP5
- **Climate uncertainty**: 5th, 30th, 50th, 70th, 95th percentiles of 2100 temperature distribution in ensemble of RCP2.6 runs with MAGICC6
- **Impacts**: Burke short-term and long-term specifications, persistence times of 0, 5, 15, 30, ∞

Carbon price = SCC + guardrail tax
Carbon price = SCC + guardrail tax

[Graphs showing carbon tax vs. time and annual global emissions]

- **Line**: Ensemble median
- **Dark shading**: 20-80th percentile
- **Light shading**: full ensemble

Schultes et al. (in prep.)
Next step: Closing the loop with ISIMIP impacts

• Channel-specific impacts – expressed either via output effects or directly

• Damages on capital stock from floods & tropical cyclones:
 • $K_{t+1} = (1 - \delta)\delta_t^K K_t + I_t \rightarrow$ for analytical expression of SCC we need to separate perturbed and unperturbed growth path of capital:
 $$K_t = \prod_{t'=0}^{t} (1 + \tilde{\delta}_{t'}^K) K_0$$
 • Later: labor productivity damages, other channels?

→ What do different damage categories contribute to the SCC?
Conclusions

• Framework to move from biophysical to economic impacts with different steps in evaluation
 • people affected as unifying metric
 • econometric analysis of growth effects
 • use time series directly or construct temperature-dependent damage functions

• Persistence key parameter

• Soft-coupled approach internalizing damages via SCC for more complex damage and climate modules – how far can that go in taking up channel-specific damages (or distributional effects of impacts)

• Least total cost approach to ensure near-term climate action based on comprehensive cost assessment - supports more ambitious near-term mitigation