

Integrating growth damages in IAMs: Persistencies and channels

Franziska Piontek, Christian Otto

Based on work with Anselm Schultes, Gunnar Luderer, Elmar Kriegler, Ottmar Edenhofer, Tobias Geiger, Hazem Krichene, Inga Sauer

Increasing empirical evidence for persistency and for differentiated effects

Short-term / aggregate level (high confidence)

- Nonlinear response of economic production to (annual) temperature fluctuations
 - Provides no understanding of the underlying processes / impact channels
 - What is the role of climate extremes?

Long-term impacts of climate extremes (low confidence)

• Tropical cyclones and droughts may have adverse impacts on economic development in the long run

[Berlemann & Wenzel 2016/'18,. Hsiang & Lina, 2014]

Among others: Burke et al. 2015, Kalkuhl & Wenz 2018, Pretis et al. 2018. 2018

Basis: Cross sectoral consistent bio-physical impact simulations – The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)

Climate data

(daily, 0.5° x 0.5°)
Historical observations
+
Projections
CMIP 5/6

Impact Models (global + regional)

- Water
- Agriculture
- Coastal infrastructure
- Biomes
- Health
- Permafrost
- Energy
- Biodiversity
- Marine Ecosystems

Main objectives

- Temporally and spatially explicit impact simulations
- Impact attribution
- Future projections of climate risks

(population, land-use, GDP, agricultural + water management)

Historical observations

Future Projections (SSP)

Global area affected by climate extremes

Colors = Climate models
Shading = Impact model uncertainty

Work in progress

People affected globally by climate extremes

Colors = Climate models
Shading = Impact model uncertainty

Historical warming has almost tripled global population annually exposed to extreme events

Change in global mean temp. rel. to preindustrial (°C)

Work in progress

Direct losses: Past economic losses of river floods – East Asia

Short-term loss variability captured well by river flood simulations driven by observed weather

Direct losses: Past economic losses of river floods – East Asia

Observations

Short-term loss variability captured well by river flood simulations driven by observed weather

Direct losses: Past economic losses of river floods – **East Asia**

Socioeconomic vulnerability:

Direct losses: Past economic losses of river floods – East Asia

Recent loss reductions in East Asia could be explained by substantial investments in flood protection in China

Reproducing past economic losses of river floods –

Global

Work in progress

[Geiger, Reese et al. in prep.]

Persistencies of damages

For each disaster category:
 Correlate historical economic growth rates with people affected by climate extremes

unperturbed growth path (country fixed effects)

$$g_{j,t} = g_{j,t}^0 + \sum_{l=0}^L \beta_l P_{j,t-l}$$
 climate losses

[Hsiang,2014] [Berlemann & Wenzel (2016&"18]

Long-term impacts of tropical cyclones & fluvial floods (global)

• Cumulative growth-effect k years after exposure:

$$\Omega_k = \sum_{l=0}^k \beta_l$$

Tropical cyclones

Fluvial floods

From event-based to temperature-dependent damage functions

- Ensemble of timeseries of growth losses from ISIMIP
 - 2 RCP x 4 GCM x N impact models x SSP2

• Hope
$$\delta_{j,t}(\{P_{j,t-l}\}_{l=0}^{L}) = \sum_{l=0}^{L} \beta_l P_{j,t-l}$$

 For each SSP scenario, share of affected people can be expressed as function of global mean temperature change

Integration in IAMs

Integrated assessment with soft-coupled damage and climate module

- → Impacts internalized through social cost of carbon as a price on emissions
- → Advantage: higher process detail and flexibility on climate and damage modeling side

Analytical expression of the Social Cost of Carbon

unperturbed income

For output damages:

discount factor damage factor
$$SCC_{t} = \sum_{r} \sum_{t'=t}^{T} \Phi_{t',t} Y_{r,t'} D_{r,t'} \sum_{t''=t}^{t'} \Theta_{r,t',t''} (T) \kappa_{r,t''} \Delta T_{t'',t}$$

 $\Theta_{r,t',t''}$: marginal damage from \leq incremental temperature increase

 $\kappa_{r,t''}\Delta T_{t'',t}$: regional temperature response at time t'' to emissions at t

16

Persistence as key characteristic of damages

- Few empirical constraints literature points to about 15 years
- Our channel study:
 - half-life time depends on channel & dynamics (endogenous vs. exogenous growth, savings rate)
 - accumulation of shocks with higher persistence leads to high damages

One-time shock on different production factors/productivity

Burke-based damages with different degrees of persistence – uncertainty & adaptation

$$D_{r,t} = \prod_{t'=1}^{t} \left(1 + \delta_{r,t'} 2^{-(t-t')/\tau_H}\right) \text{ with } \delta_{r,t} = \beta_1 \left(T_{r,t} - \bar{T}_r\right) + \beta_2 \left(T_{r,t}^2 - \bar{T}_r^2\right)$$

Response to temperature shock

Cumulative effect for step change in T

Effect of persistence on near-term carbon prices

- CBA analysis in REMIND
 IAM
- Uncertainty from climate and socioeconomics (SSP1,2,5)

	$oldsymbol{eta_1}$	β_2
DICE2013	0	-0.00267
Burke short run	0.0127	-0.0005
Burke long run	-0.0037	-0.0001

What is the welfare optimal response to global warming?

Least total cost (LTC):

- Minimizing the cost of abatement and damage under climate target
- Hedge against longterm changes & tipping points as well as account for nearterm marginal damages

Least total cost: More ambitious near-term mitigation

Ensemble:

- Socio-economics: SSP1, SSP2, SSP5
- Climate uncertainty: 5th, 30th, 50th, 70th, 95th percentiles of 2100 temperature distribution in ensemble of RCP2.6 runs with MAGICC6
- Impacts: Burke short-term and longterm specifications, persistence times of 0, 5, 15, 30, ∞

Line: Ensemble median

Dark shading: 20-80th percentile

Light shading: full ensemble

Next step: Closing the loop with ISIMIP impacts

- Channel-specific impacts expressed either via output effects or directly
- Damages on capital stock from floods & tropical cyclones:
 - $K_{t+1} = (1 \delta)\delta_t^K K_t + I_t \rightarrow$ for analytical expression of SCC we need to separate perturbed and unperturbed growth path of capital: $K_t = \prod_{t'=0}^t (1 + \tilde{\delta}_{t'}^K) K_t^0 = D_t^K K_t^0$?
- Later: labor productivity damages, other channels?
- → What do different damage categories contribute to the SCC?

Conclusions

- Framework to move from biophysical to economic impacts with different steps in evaluation
 - people affected as unifying metric
 - econometric analysis of growth effects
 - use time series directly or construct temperature-dependent damage functions
- Persistence key parameter
- Soft-coupled approach internalizing damages via SCC for more complex damage and climate modules – how far can that go in taking up channel-specific damages (or distributional effects of impacts)
- Least total cost approach to ensure near-term climate action based on comprehensive cost assessmeth supports more ambitious near-term mitigation