Climate Change and Inequality - the role of mitigation and adaptation

Johannes Emmerling¹ and several (different) coauthors

¹RFF-CMCC European Institute on Economics and the Environment

Engage Workshop, Potsdam, Oct 8th, 2019

1 / 15

Johannes Emmerling | EIEE | Engage Workshop Potsdam

Overview

- 1. Climate projections in IAMs towards considering country-level climates and other indices
- 2. Climate econometrics linking climate to growth (and inequality), Adaptation?
- 3. Inequality in IAMs calibration, projections, welfare evaluation, optimization
- 4. Preview of an implementation in Integrated Assessment Models

- Historical data & CMIP5/CMIP6
- Temperature, Precipitation, Climate Extreme Indices (CEIs)
- Scale: spatial/country level; 3 hours daily yearly
- Empirical, Modeling, IAM Optimization

Country temperature projections

- Effect of global forcing from GHG emissions on regional temperatures
- CMIP5 database (Taylor et al., 2011), two RCPs, 26 models
- Population weighted data, N = 169

$$\Delta T_{it} = \alpha_i + \beta_i F_t$$

Example for Italy

Country temperature projections

- Effect of global forcing from GHG emissions on regional temperatures
- CMIP5 database (Taylor et al., 2011), two RCPs, 26 models
- Population weighted data, N = 169

$$\Delta T_{it} = \alpha_i + \beta_i F_t$$

Example for Italy

Estimated effect of Forcing Global average: around 0.7 °C/ W/m² Relatively precisely estimated (R² = 0.950 - 0.999) significant variation (mainly due to latitude) estimated β̂_i across countries and R squared:

Integrating CEIs in an IAM

- Cooling Degree Days
- Heating Degree Days
- Days with higher than 30 degree maximum
- Days with lower than 10 degree minimum
- Yearly heat wave frequency
- Standardised precipitation-evapotranspiration index (12 months)

	Dependent variable:					
	CDD18	HDD18	TXGE30	TMLT10	YHF	SPEI12
	(1)	(2)	(3)	(4)	(5)	(6)
mean_temp_weighted	-23.178***	-366.039***	12.975***	-10.444***	11.778***	0.051**
	(1.721)	(1.650)	(0.275)	(0.179)	(0.703)	(0.020)
mean_temp_weighted_squared	6.123***	5.158***			0.094***	+0.005***
	(0.063)	(0.063)			(0.026)	(0.001)
daily_temp_Variance	4.106***	4.046***	0.490***	-0.167***	0.704***	+0.012***
	(0.061)	(0.068)	(0.021)	(0.014)	(0.027)	(0.001)
mean_temp_weighted*tropical	198.946***	101.234***	25.115***	2.348**	24.019***	-0.077
	(7.234)	(10.686)	(0.513)	(0.927)	(4.213)	(0.100)
mean_temp_weighted^2*tropical	-2.871***	-0.628***			-0.158*	0.006***
	(0.160)	(0.240)			(0.089)	(0.002)
Observations	7,301	5,996	6.093	4,037	5.520	7,870
R ²	0.933	0.956	0.630	0.474	0.391	0.039
Adjusted R2	0.931	0.955	0.620	0.459	0.369	0.015
F Statistic	19,822.380*** (df=5; 7115)	25,488.940*** (df = 5; 5833)	3,365.034*** (df = 3; 5927)	1,178.217*** (df = 3; 3927)	684.906*** (df = 5; 5328)	62.668*** (df = 5; 7673)
Note:					*p**	p***p<0.0

Climate Econometrics and Growth

Burke et al. (2015)

Climate Econometrics and Growth

 Adaptive Capacity? Consider institutions, reduced inequalities, education:

Adaptive capacity flattens out the curve

Johannes Emmerling | EIEE | Engage Workshop Potsdam

Climate Econometrics and Growth

 Adaptive Capacity? Consider institutions, reduced inequalities, education:

Adaptive capacity flattens out the curve

Johannes Emmerling | EIEE | Engage Workshop Potsdam

Climate Econometrics and Growth

 Spatial Analysis (based on Kummu et al. (2019)), 1990 - 2016, 10x10km

Climate Econometrics and Growth

 Spatial Analysis (based on Kummu et al. (2019)), 1990 - 2016, 10x10km

Inequality

- 1. Evolvement of within- and between country inequality in the SSPs
- 2. Impact of inequality on welfare evaluations (discount rate, equity concerns)
- 3. heterogeneous impacts
- 4. heterogeneous savings rates
- 5. varying energy expenditure shares

9 / 15

Inequality

- 1. Evolvement of within- and between country inequality in the SSPs
- 2. Impact of inequality on welfare evaluations (discount rate, equity concerns)
- 3. heterogeneous impacts
- 4. heterogeneous savings rates
- 5. varying energy expenditure shares

Inequality - Data

- Sources
 - 1. World Income Inequality Database (WIID) (UNU-WIDER)
 - 2. Standardized World Income Inequality Database (SWIID) (Solt, 2016)
 - 3. future work: add extreme values (WID, wid.world)
- Country estimates on GDP per capita, Gini, poverty rates, quintiles
- Estimate quintiles (5 agents per region) or parametric distributions

10 / 15

Inequality - Data

- Sources
 - 1. World Income Inequality Database (WIID) (UNU-WIDER)
 - 2. Standardized World Income Inequality Database (SWIID) (Solt, 2016)
 - 3. future work: add extreme values (WID, wid.world)
- Country estimates on GDP per capita, Gini, poverty rates, quintiles
- Estimate quintiles (5 agents per region) or parametric distributions
- ► GINI and GDP: two parameters \Rightarrow mixture of lognormal distribution (2 parameters, within country): $c_{rt} \sim LN(\mu_{rt}, \sigma_{rt}^2)$: $Gini = 2\Phi(\sigma_{rt}/\sqrt{2}) - 1$
- and Beta-Dagum (5 parameters, (Bandourian et al., 2002), within regions)
- SSP Projection: GDP (Dellink et al., 2017), Population (KC and Lutz, 2017), Gini within countries (Rao et al., 2018)

Inequality - Income distribution for 2005

Income distribution (regional)

- Gini index estimated at 68.3 (compare to Milanovic (2009) estimate of 0.68)
- Absolute poverty: 14.6% compared to 22.4% in Ravallion et al. (2009) = > lower tail could be improved!
- Top 10%: 43902 USD, Top 1%: 124755 USD (136000 \$ according to CNN for open household)

Inequality evolvement in the past

Figure: Evolvement of the global income distribution over time

12 / 15

Inequality evolvement and across the SSPs

Figure: Evolvement of the global income distribution over time

Inequality evolvement and across the SSPs

Figure: The global inequality distribution across SSPs in 2100

14 / 15

Conclusion

- Future research areas
 - Integrating policy incidence curves
 - Analytical models of inequality
 - Integrate extreme percentiles (WID)
 - Micro-data based spatial analysis

Thank you!

Bibliography

- Bandourian, R., Turley, R., McDonald, J., 2002. A Comparison of Parametric Models of Income Distribution across Countries and over Time. Estadistica, 135-152URL: http://socionet.ru/publication.xml?h=repec:lis:liswps:305.
- Dellink, R., Chateau, J., Lanzi, E., Magné, B., 2017. Long-term economic growth projections in the Shared Socioeconomic Pathways. Global Environmental Change 42, 200-214. URL: https://www.sciencedirect.com/science/article/pii/S0959378015000837, doi:10.1016/j.gloenvcha.2015.06.004.
- KC, S., Lutz, W., 2017. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change 42, 181-192. URL: https://www.sciencedirect.com/science/article/pii/S0959378014001095. doi:10.1016/j.gloenvcha.2014.06.004.
- Milanovic, B., 2009. Global inequality recalculated : the effect of new 2005 PPP estimates on global inequality. Technical Report. The World Bank. URL: http://ideas.repec.org/p/wbk/wbrwps/5061.html.
- Rao, N.D., Sauer, P., Gidden, M., Riahi, K., 2018. Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures URL: http://www.sciencedirect.com/science/article/pii/S001632871730349X, doi:10.1016/j.futures.2018.07.001.
- Ravallion, M., Chen, S., Sangraula, P., 2009. Dollar a Day Revisited. The World Bank Economic Review 23, 163-184. URL: https://academic.oup.com/wber/article-lookup/doi/10.1093/wber/1hp007, doi:10.1093/wber/1hp007.
- Solt, F., 2016. The Standardized World Income Inequality Database*. Social Science Quarterly 97, 1267–1281. URL: http://onlinelibrary.wiley.com/doi/10.1111/ssqu.12295/abstract, doi:10.1111/ssqu.12295.
- Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2011. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society 93, 485-498. URL: http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1, doi:10.1175/BAMS-D-11-00094.1.