Data

Results

Robustness

Mechanisms o

Conclusion

CO₂ emissions and income inequality Part 2: Empirics

Nicole Grünewald, Stephan Klasen, Inmaculada Martínez-Zarzoso and Chris Muris

Georg-August-Universität Göttingen

April 4, 2011 Georg-August-Universität Göttingen

Data 000 Results

Robustness

Mechanisms o

Conclusion

Introduction

1. Document relationship between emissions, GDP, inequality

2. Identify the mechanisms at work

Introduction o	Data 000	Results	Robustness	Mechanisms o	Conclusion
Findings					

Figure: Relationship between GDP per capita (left), GINI (right) and carbon dioxide emissions

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

Data

.00

Results

Robustness

Mechanisms

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

Structure

- Macro panel
- Number of countries: 138
- Time period: 1960–2009
- 3-year averages: 795 observations
- Unbalanced

Data

Results

Robustness

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

Conclusion

Inequality

- GINI data from Grün and Klasen (Oxford Economic Papers, 2008)
- GINI data are adjusted for comparability
- Much more extensive than existing literature

Robustness

Conclusion

Other variables

- GDP: Penn World Tables, real GDP, constant prices
- CO₂ emissions: CDIAC

IntroductionDataResultsRobustnessMed0000000000000

Mechanisms o

(日) (日) (日) (日) (日) (日) (日) (日)

Conclusion

Specification

- gdp is GDP per capita
- co₂ is CO₂ per capita
- ► Model: fixed effects (country and year) with $log(co_2)_{i,t} = \alpha_i + \lambda_t + \beta_1 log(gdp_{i,t}) + \beta_2 log^2(gdp_{i,t}) + \beta_3 log(GINI_{i,t}) + \beta_4 log^2(GINI_{i,t}) + \beta_5 log(GDP_{i,t}) log(GINI_{i,t}) + \varepsilon_{i,t}$
- Robust standard errors

Data 000 Results

Robustness

Mechanisms o

Conclusion

Coefficients

	EKC	GINI	Preferred
log(gdp)	2.46 (0.24)	2.68 (0.37)	2.17 (0.46)
log ² (gdp)	-0.10 (0.01)	-0.11 (0.02)	-0.11 (0.02)
log(GINI)		-0.21 (0.12)	-6.71 (1.58)
log ² (GINI)			0.74 (0.18)
$\log(gdp) \cdot \log(GINI)$			0.13 (0.07)

ntroduction	Data
00	000

Robustness

Mechanisms o Conclusion

Graphs: GDP

Figure: Relationship GDP per capita and per capita emissions at median GINI

Introduction	
00	

Robustness

Mechanisms o Conclusion

Graphs: GDP

Data

Figure: Relationship GDP per capita and per capita emissions at various values of GINI

troduction	Data	
0	000	

Robustness

Mechanisms o Conclusion

Graphs: GINI

lr

Figure: Relationship GINI and per capita emissions at median GDP

troduction	Dat
0	00

lr

Results

Robustness

Conclusion

Graphs: GINI

Figure: Relationship GINI and per capita emissions at median GDP

ntroduction	Data
00	000

Robustness

Mechanisms o Conclusion

Graphs: GINI

Figure: Relationship GINI and per capita emissions at various values of GDP

Data

Results

Robustness

Conclusion

Aggregation

	Preferred	Annual	Decadal
log(gdp)	2.17 (0.46)	2.03 (0.33)	1.65 (0.53)
log(gdp) ²	-0.11 (0.02)	-0.11 (0.02)	-0.11 (0.03)
log(GINI)	-6.71 (1.58)	-7.22 (1.29)	-8.62 (3.04)
log(GINI) ²	0.74 (0.18)	0.78 (0.12)	0.83 (0.39)
cross	0.13 (0.07)	0.16 (0.08)	0.28 (0.07)

Data

Results

Robustness

Conclusion

Robust (2)

	Preferred	1980-	Other GDP
log(gdp)	2.17 (0.46)	2.42 (0.70)	1.44 (0.61)
log(gdp) ²	-0.11 (0.02)	-0.13 (0.04)	-0.08 (0.03)
log(GINI)	-6.71 (1.58)	-9.47 (2.24)	-6.99 (2.25)
log(GINI) ²	0.74 (0.18)	1.08 (0.25)	0.70 (0.26)
cross	0.13 (0.07)	0.15 (0.08)	0.21 (0.08)

Data

Results

Robustness

Mechanisms

Conclusion

Industry share

	Preferred	Industry
log(gdp)	2.17 (0.46)	-0.18 (0.45)
log(gdp) ²	-0.11 (0.02)	-0.01 (0.02)
log(GINI)	-6.71 (1.58)	-6.74 (1.59)
log(GINI) ²	0.74 (0.18)	0.78 (0.19)
cross	0.13 (0.07)	0.11 (0.05)

a

Results 0000 Robustness

Conclusion

Summary

- Inequality measure should be included in income-emission relationship
 - Theory
 - Empirical evidence
- U-shaped relationship CO₂ and inequality
- This finding is robust against specification changes

ata oo Results

Robustness

Conclusion

To do

- Homogeneity in-sample, complete-sample: offsetting mechanisms
- Mechanism
- Scenarios to evaluate relative size of effects
- Unit roots
- Other inequality measures

・ロト・4日・4日・4日・4日・9への

Missing data in economics

40% of empirical studies work with missing data

70% of those use a *complete case* estimator

Source: Donald and Abrevaya (2010).

Incomplete observations

- an observation is incomplete not all variables are observed
- incomplete observations can be informative

Examples

- missing instruments
- unbalanced panel data
- no gain: OLS

Generalized method of moments

- We are interested in a parameter $\theta_0 \in \mathbb{R}^p$
- We know that moment condition $E(h(X, \theta_0)) = 0$ holds
 - $X \in \mathbb{R}^d$ is a random vector
 - $h: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}^q$ is a moment function
- A random sample for X is available
- Consider the sample moment $\bar{h}_n(\theta) = \frac{1}{n} \sum_{i=1}^n h(X_i, \theta)$
- GMM estimator minimizes a quadratic form of it

Conclusion

Rodrik example (3)

All data available:

$$h = \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{pmatrix}, S_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

constant distance to equator settler mortality trade share constructs

Conclusion

Rodrik example (3)

No instruments available

constant distance to equator settler mortality trade share constructs

Rodrik example (3)

Only trade share constructs available

$$h = \begin{pmatrix} h_1 \\ h_2 \\ \times \\ h_4 \end{pmatrix}, \ S_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

constant distance to equator settler mortality trade share constructs

Rodrik example (3)

Dependent or explanatory variable missing

constant distance to equator settler mortality trade share constructs

Semiparametric efficiency

Definition

The semiparametric efficiency bound is a lower bound on the variance of any regular semiparametric estimator

Theorem

The semiparametric efficiency bound for θ_0 is equal to B^{-1}

IV: setup

Linear IV

- Linear IV model with one endogenous variable and two instruments
- No exogenous variables or constant

•
$$E\begin{pmatrix} Z_1(y-X'\beta)\\ Z_2(y-X'\beta) \end{pmatrix} = 0,$$

Two similar, normalized, partially missing instruments

- Same correlation with the endogenous variable
- Each instruments is equally likely to be missing

IV: results

Figure: Asymptotic variance for estimators of β as a function of ρ .

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Conclusion

- missing data is a very common problem
- often, incomplete observations are informative
- we show how to efficiently combine all information
- the estimator is easy to implement and computationally cheap
- it extends to inverse probability weighting, continuous updating GMM