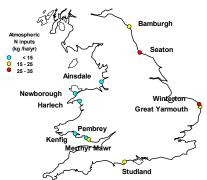
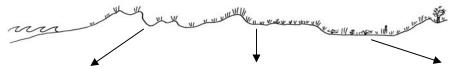
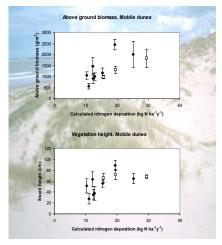
Atmospheric nitrogen and its effects on sand dunes

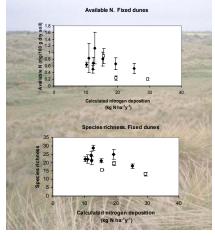

Laurence Jones, Centre for Ecology and Hydrology, Bangor


Background

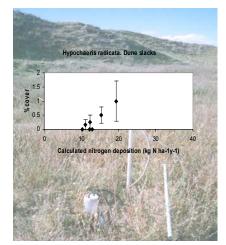
Atmospheric nitrogen (N) has been increasing in the UK since the 1960s. While UK emissions stabilised in 1990 and are now declining, the residual soil and vegetation N pools accumulated over time may lead to long-term consequences for oligotrophic ecosystems. N deposition is already implicated in the degradation of *Racomitrium* moss-heaths and Dutch heathlands, and may be one factor causing overstabilisation of sand dunes in England and Wales.


LJ@ceh.ac.uk

A sand dune survey to detect signals of atmospheric N deposition

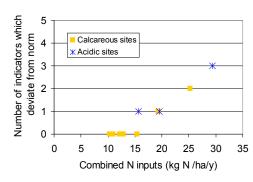


Mobile and semi-fixed dunes


- •Biomass increasing, largely due to:
- •Increase in height of Ammophila arenaria
- •Increase in %cover of A. arenaria

Fixed dunes and dune grasslands

- Biomass increasing
- Soil available N decreases.
- Decline in species richness.


Dune slacks

- •Increase in cover of *Hypochaeris* radicata
- •Increase in cover of Carex arenaria

Critical Loads*

On the basis of the observed relationships at N deposition of 15 kg N har $^1\!y^-1$ and above, and taking a precautionary approach, we suggest a critical load range of 10 – 20 kg N har $^1\!y^-1$ for shifting dunes and dune grassland.

Management options for N removal in sand dunes

Ongoing work

A new experiment comparing interactions between rabbit and pony grazing and the effects of nitrogen additions

* "A quantitative measure of the exposure to one or more pollutants below which significant harmful effects on sensitive elements of the environment do not occur according to present knowledge" (UN-ECE)

