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ABSTRACT

Conceptual box models of the interhemispheric thermohaline cir-
culation are studied with respect to bifurcations. Freshwater fluxes
are the main control parameters of the system: they determine
the stable states and transitions between stable states of the large
scale thermohaline circulation. In this study of interhemispheric
box models both numerical and analytical methods are used to
investigate transition mechanisms of the thermohaline circulation.
The box model examined first is an interhemispheric four-box
model. It is shown that the two bifurcations where the present
THC can become unstable — the saddle-node and the Hopf bifurca-
tion —, depend in a different way on hemispheric freshwater fluxes.
A reduction of the model variables leads to the conclusion that two
fixed freshwater fluxes between three surface boxes are the model
feature responsible for the bifurcation behaviour found. The signif-
icance of the Hopf bifurcation for the stability of the thermohaline
circulation is discussed.

An extension of the basic box model, with two circulation cells, is
studied with symmetric and asymmetric boundary conditions. The
results are compared with those from two-dimensional fluid models.
Their bifurcation behaviour, especially the symmetry breaking, can
be reproduced in part.

1. Introduction

The thermohaline circulation (THC) of the Atlantic ocean (sometimes referred
to as 'conveyor belt’) is a density-driven large-scale overturning motion with
relatively warm surface waters flowing northward and cold North Atlantic Deep
Water returning southward at 2-3 km depth. This circulation carries heat
northward at a rate of up to 1 PW (1 PW=10" W) and has a significant effect
on climate, which can be seen e.g. in climate model experiments (Manabe and
Stouffer 1988), or by looking at the winter sea ice margins (Fig. 1 of Rahmstorf
1997) or the deviations of the climatological air temperature from the zonal
mean (Fig. 1 of Rahmstorf and Ganopolski 1999). The air over the northern
North Atlantic is warmed by up to ~10 degrees in annual mean, with the
largest effect occurring in winter when oceanic heat release is at its maximum
and solar heating at its minimum.



Paleoclimatic reconstructions show that the Atlantic circulation has been
subject to large and rapid changes throughout the last Ice Age. Three main
circulation modes have been identified both in sediment data and models (Alley
et al. 1999, Ganopolsi and Rahmstorf 2001): a warm or interglacial mode with
deep water forming in the Nordic Seas and large oceanic heat transport to
northern high latitudes (the present climate operates in this mode); a cold
or stadial mode with deep water forming south of the shallow sill between
Greenland, Iceland and Scotland; and a “switched off” or “Heinrich” mode
with practically no deep water formation in the North Atlantic. In the last
mode, the Atlantic deep circulation is dominated by inflow of Antarctic Bottom
Water from the south.

A full hierarchy of ocean and climate models has been used to study the non-
linear behaviour of the Atlantic circulation, its equilibria, stability thresholds
and mode transitions (see reviews by Weaver and Hughes 1992; Rahmstorf,
Marotzke, and Willebrand 1996 and Rahmstorf 2000). It was found that the
non-linearity stems mainly from two positive feedbacks: an advective feedback
and a convective feedback (Rahmstorf 1999). Simple box models play an im-
portant role in understanding the thermohaline circulation, as they are easy to
understand, individual processes and feedbacks can be studied in isolation, and
bifurcation maps can often be computed analytically. Qualitative agreement
between box models and highly complex circulation models is good in many
respects (Rahmstorf 1996), and box models can be used to interpret results
from coupled general circulation models (e.g., the apparent climate instability
found by Tziperman 1997 can be reproduced and explained with the help of a
box model, Rahmstorf and Ganopolski 1998). The present paper is concerned
with the non-linearity of the circulation arising from advective feedback. This
feedback was first studied in the seminal box model of Stommel 1961, which
consisted of two boxes in one hemisphere. In this model, the stable state of
the THC loses its stability at a saddle-node bifurcation (Stommel’s bifurca-
tion point). Increasing freshwater forcing — the responsible control parameter
— reduces the north-south density difference which determines the overturning
rate, while northward salt advection by the overturning circulation counter-
acts this. At the bifurcation point the northward advection of salty water is
no longer able to balance the surface freshwater input to the northernmost
box in the model, and the THC breaks down. This basic mechanism occurs
in all the variations on Stommel’s model which have subsequently been stud-
ied (e.g., Rooth 1982; Marotzke 1990; Joyce 1991; Huang and Stommel 1992;
Tziperman et al. 1994).

In addition to Stommel’s bifurcation a Hopf bifurcation occurs in some
models (Tziperman et al. 1994; Scott, Marotzke, and Stone 1999), and the
THC becomes unstable before the saddle-node bifurcation point is reached.

In this paper we use the box model of Rahmstorf (1996) and modifica-
tions of it to systematically investigate the role of freshwater forcing for both
saddle-node and Hopf bifurcations. The model has been designed to mimic
the interhemispheric THC of the Atlantic ocean. Both numerical and (where
possible) analytical bifurcation analysis is performed. We try to make the
box model as simple as possible while retaining the key features of its qualita-



tive behaviour (that is, the topology in phase and parameter space, including
bifurcations). Bifurcation points are followed in parameter space and inter-
preted as instability mechanisms of the box model THC. In section 2 of this
paper the basic box model is described briefly, and a numerical bifurcation
analysis using path-following software is performed. For changing freshwater
fluxes two bifurcations can be found: a Hopf bifurcation and a saddle-node
bifurcation. The analytical solutions for these bifurcations are presented for a
“minimal” version of the box model in section 3. Section 4 describes the im-
pact of the Hopf bifurcation on the stability of the THC in terms of its basin
of attraction in phase space. In section 5 bifurcations of a box model version
with two overturning cells are discussed, both for symmetric forcing and after
symmetry-breaking. In the final section the implications of the analysis are
discussed.

2. The basic 4-box model
a. Description

The basic box model we study and modify is Rahmstorf’s (1996) interhemi-
spheric 4-box-model. It has been designed to cover the qualitative behaviour of
the large scale circulation cell of the THC found in general circulation models
(GCMs). In Fig. 1 it is shown that two boxes represent the surface and deep
water layer in the tropics, whereas one box is set up for the North and South
Atlantic respectively. Mixed boundary conditions are applied, i.e. surface tem-
peratures are relaxed to prescribed values and freshwater fluxes are fixed. The
boxes are connected by a flow with volume transport m as indicated by arrows
in Fig. 1.
For the present circulation direction the model equations read:

T, = %m (Ty —Th) + MN(Ty — Th) (1)
T, = %m(Tg—TQ)JrA(T;—TQ) (2)
T, = %m(Tl—Tg,)—i-/\(T;—Tg) (3)
T, = %m (T, — T0) (4)
S = m(Si— )+ SoF (5)
g = %m (S5 — Sy) — %SOFQ (6)
g = %m(51-53)+%50(F2-F1) (1)

Every box has a homogeneous temperature 7; and salt content S;. Sp is a
reference salinity (Sy = 35.0 psu) used to convert the freshwater fluxes into
the unit psu s~!.

The inverse of the temperature restoring coefficient A is the relaxation time

7, and the 77" are the prescribed restoring temperatures. F; and F5 are hemi-
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spheric freshwater fluxes which not only represent atmospheric water vapour
transport but also wind-driven oceanic transports. The latter is the reason
why F} in the present climate is a freshwater transport directed towards the
Equator (i.e., into the Atlantic; Rahmstorf 1996; a view which is supported by
Weijer et al. 1999), in spite of the Atlantic being an evaporative basin.

The overturning rate m is proportional to the density difference between
box 1 and box 2. Density depends linearly on temperature and salinity. Thus,
the overturning rate m is:

m = k(B(S2—851) — a(Ta—T1)) (8)

where £ is a hydraulic constant which is the most tunable parameter; here,
we use k = 23 x 107 m?® yr=!. This value yields an overturning rate of about
18 Sv (1 Sverdrup = 1x10® m?® s7!) when the approximated parameter values
of “present climate” (given later) are used. « and (3 are expansion coefficients
for temperature and salinity (¢ = 1.7x 104 K ' and 3 =0.8 x 10 3 psu ).

The salinity of box 4 can be computed from the total salt content Si.; and
the other salinities because of salt conservation in the model:

Sy = Stot =51 — 52— 53 (9)

As the dynamical equations (1)-(7) of the model do not depend on absolute
salinity values but only on salinity differences, we do not need a value for Si;.

In general, we use the following parameter values: 17 = 0°C, Ty = 3.8°C,
Ty = 15°C, F} = 0.05Sv (a conservative estimate), F» = 0.25 Svand 7 = 25 yr,
that is A = 0.04 yr—!. The box volume used for all four boxes is V = 10'7 m?
Some authors use different volumes for different boxes (Rooth 1982, Joyce
1991, Tziperman et al. 1994). For example, they use a smaller box volume for
box 2, as the water column of deeply mixed water is less extended compared
to the tropical water masses. This can be considered as a more realistic setup.
We have studied the box model also with different box volumes but found no
difference in the qualitative behaviour. For simplicity we therefore present the
results with equal box volumes.

If (p — p1) is negative, the advective terms of the model must be adequately
reformulated, because the circulation direction is inverse then. In this case,
the model equations are:

T, = —om(T—T)+A(T; ~T) (10)
7 = % (Ty = To) + A (T3 — T) (11)
Ty = % (Ty = Ty) + (T} —T5) (12)
. 1

T4 == Y (T1 T4) (13)
S = —ym m(Ss — S1) + VSOFI (14)
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. 1 1
SQ — —V (S4 - 52) - V SOF2 (15)
. 1 1
53 = —Vm(52—53)+v5’0 (FQ—Fl) (16)

For the given formulation the model equations are not differentiable with
respect to m at m = 0, but algorithms of numerical bifurcation analysis only
work properly with differentiable models. This shortcoming was eliminated by
a technical trick: instead of m we use the function

mt = (17)

1—eam
for advection terms with northward surface flow, and the function
-m

o= 18
m 1 — eom ( )

for those with southward surface flow. We then use both advection terms
in each model equation. The parameter a has no physical meaning. The
deviation from the physically correct function m can be made arbitrarily small
by increasing the parameter a:

m for m>0
0 for m<0

_|_

limm™ = —limm™ = { (19)

a— 00 a— 00

Qualitative behaviour, and in particular bifurcation points near m = 0, are

always checked with respect to the limit @ — oo. In the numerical bifurcation
analysis, a = 10 is used.

b. Bifurcation study of the basic model

Conceptual models can contribute to a better understanding of some basic
properties of the THC. Although quantitative results cannot be expected to be
exact, the occurrence of bifurcations is a rather robust finding from box models.
Therefore, a numerical bifurcation analysis of the basic model is performed.
We use CANDYS/QA (Feudel and Jansen 1992) for that purpose.

For this ocean box model, the most important control parameters are the
freshwater fluxes £} and F5.

In Fig. 2 the bifurcation behaviour for varied F} is displayed. If the southern
freshwater flux F is increased, the stable steady state (upper branch with
northern sinking) will become unstable at a Hopf bifurcation. It is a subcritical
Hopf bifurcation because the emerging cycle is unstable.

The additional bifurcation point shown in Fig. 2 is a saddle-node bifurcation
where the stationary state remains unstable. This saddle-node bifurcation is
the same bifurcation as in Stommel’s box model where it corresponds to the
loss of stability; the Hopf bifurcation does not exist in Stommel’s 2-box model.

An unstable periodic solution emerges at the Hopf bifurcation. The ad-
vective mechanism which is responsible for the periodic solution is due to the
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fixed freshwater fluxes. The Hopf bifurcation cannot occur in Stommel’s box
model as at least three boxes are needed for the mechanism. Period times of
the unstable periodic solution are on a millennial time scale.

If one chooses the values of state variables at the Hopf bifurcation point
as initial condition for a simulation with Fy > Fj gopr, the new fixed point
attractor will be a state with southern sinking and inverse flow of about -9
Sv (lower stable branch). Thus, we have a bistable system for F} < F} popf -
Decreasing F} on the lower stable branch leads to an other subcritical Hopf
bifurcation (not shown), where the THC switches on again, resulting in a
hysteresis behaviour of the model circulation. But there is a caveat as this
box model with parameters and geometry chosen appropriately for the present
climate is unlikely to cover the behaviour of the THC with weak or inverse
overturning.

The same bifurcation behaviour also holds with different volumes for differ-
ent boxes.

In the box model of Scott et al. (1999), Hopf bifurcations occur on the
stable branches with northern and southern sinking, too. In their bifurcation
diagram, the northern freshwater flux is the bifurcation parameter. Scott
et al. (1999) show a curve of a transient, unstable solution connecting the
two Hopf bifurcations. This transient solution was observed by the authors
in critical perturbation experiments. As Scott et al. (1999) state, it is not
rigorously defined. Using numerical bifurcation analysis, we find that the
emerging unstable cycles are not connected with each other.

The restoring temperature 75 can also be used as a control parameter,
as the atmospheric temperatures of the northern hemispheric high latitudes
will probably increase most in future climate change. The corresponding bi-
furcation diagram is not shown, because it looks very similar to Fig. 2. For
increasing 7%, the upper stable branch becomes unstable at a Hopf bifurcation.

With constant temperatures, the box model can be fitted to a perturbation
experiment with a global circulation model, as shown in Fig. 7 of Rahmstorf
(1996). For this purpose, k and the interhemispheric temperature difference
(Ty — T) are tuned.

By following the two bifurcation points of the upper stable branch in 2-
parameter space of F; and F5, it can be studied when the Hopf bifurcation
occurs. This is shown in Fig. 3. The Hopf bifurcation curve vanishes where it
touches the saddle-node bifurcation curve (in a Takens-Bogdanov (TB) point).
It is obvious that the saddle-node bifurcation does not depend on the northern
freshwater flux F5, which can be shown analytically for reduced box models
(see section 3). In contrast, the Hopf bifurcation curve is determined by both
freshwater fluxes. We can derive a qualitative distinction of paths from present
climate (with a stable THC) to instability of the THC from Fig. 3:

Increase of Fi alone; Fy < Fy 1 saddle-node bifurcation

Increase of F; alone; Fy > F5 g Hopf bifurcation
Increase of F5 alone Hopf bifurcation
Decrease of Fi; increase of F, Hopf bifurcation

Increase of F; and Iy
Increase of Fi; decrease of F,

saddle-node or Hopf bifurcation
saddle-node or Hopf bifurcation
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The outcome of the last two paths depends on the ratio F} / F, and on the
initial parameter values.

Following this qualitative picture of a box model, the THC of the present
climate — or, generally speaking, the THC in a strong pole-to-pole state — can
become unstable due to an increase in one of the hemispheric freshwater fluxes
or due to combined changes.

3. Bifurcations in simpler box bodels
a. Description

A 4-box-model with 7 independent variables is a highly conceptual model.
Nevertheless, we study simpler modifications in order to find the essential fea-
tures needed for the bifurcation behaviour of the basic model. For this purpose
two different models with constant temperatures are considered (as temper-
ature restoring terms are small compared with the advection and freshwater
flux terms). The first one has 4 boxes like the basic model, and in the sec-
ond one the equatorial deep water box (box 4) was omitted. Actually, this
is very similar to the box model of Rooth (1982), although he used a model
with different box volumes for the tropics and the high latitudes. Box 4 can be
neglected when steady states and bifurcations are studied, but it seems to be
necessary for a better representation of the time-dependent system behaviour.
The model equations of the first modified box model read:

Y m(Sy—S1) for m>0
VoL = Sfit { m(S; —S;) for m<0 (20)
Y m(S; — Sz) for m>0
VS, = =Sk + { m(Sy—S;) for m <0 (21)
Yy m(Sy — S3) for m>0
VS; = SO(FQ—F1)+{ m (S5 — Sy) for m <0 (22)
Again, S, is computed from the other salinities (equation (9)):
In the second modified model, only 2 independent variables are left:
v m(Se —Sy) for m>0
VoL = SFi+ { m(S; —S;) for m <0 (23)
Y m(S; — Sz) for m>0
V5 = —Skh+ { m(Sy—S1) for m<0 (24)

In the equation for the overturning rate m the temperature difference is
now a parameter:

m = k (ﬁ (52 - Sl) - aT*), Wlth T* = T2,const - Tl,const (25)



b. Analytical solutions for the bifurcations

We consider the model with positive overturning rate m which is equivalent to
the upper stable branch of the basic model. The stationary state is calculated
for the most reduced model from (23) and (24) by solving S; = 0, i = 1, 2.
Then, linear stability theory is applied: the characteristic equation for the
eigenvalues of the Jacobian at the stationary state can be solved analytically.
It yields equations for the occurrence of local bifurcations of the models (see
Appendix).

The qualitative behaviour turns out to be the same as for the basic model.

The saddle-node bifurcation is independent of F; (as for the basic model)
and of the number of boxes:

ko?
F, = T* 26
1 155, (26)

The Hopf bifurcation depends on F}, Fy, and T™:

c 1 3LKT*? — Sy Fy
- 24— 2
F S + 5 C? + SoFy TG (27)
with
3a? o 1

The curves of the two bifurcation points meet in the TB point which is
independent of F7:

T* = - —S()F2 (29)

Thus, we have an analytic expression for the occurrence of Hopf bifurcations:

ka?

F
2 7 935,

T*? (30)

These equations look very similar for the reduced model with 4 boxes. Equa-
tion (30) says that the minimum value of the freshwater flux F;, required for
a Hopf bifurcation is proportional to the square of the prescribed interhemi-
spheric temperature difference 7 = T const — 11 const -

The qualitative behaviour of the basic model, i.e. a saddle-node bifurcation
and a subcritical Hopf bifurcation which meet in a Takens-Bogdanov point,
is fully represented by the simple 3-box model with constant temperatures.
The model feature which is essential for Hopf bifurcations is the existence of
three surface boxes with two connecting freshwater fluxes. Thus, we have a
“minimal” interhemispheric box model.
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Variable temperatures provide a negative feedback and are important for
the quantitative response (Rahmstorf and Ganopolski 1999 and appendix of
Rahmstorf 1996), but temperatures can be held constant in box model studies
of the qualitative behaviour of the THC. This is supported by the fact that the
qualitative features of the bifurcation diagrams shown do not change whether
the temperatures are variables or not.

4. The unstable cycle of the Hopf bifurcation and the basin boundary

Both the basic box model and the two reduced models can exhibit a subcritical
Hopf bifurcation. At the bifurcation point an unstable cycle emerges. In the
following the role of the unstable cycle is discussed.

The stable state coexisting with the unstable cycle has a certain basin of
attraction which can be computed numerically. Every simulation starting with
initial conditions within the basin of attraction leads to the stable state of the
THC. The unstable cycle turns out to be located on the boundary of this basin.
In the most reduced model it is the basin boundary itself. This is shown in
Fig. 4 for a value of F} near the Hopf bifurcation. All initial conditions within
the cycle converge to the stable steady state. In a box model with a different
heat flux parameterization, Stone and Krasovskiy (1999) investigated this cycle
using Van der Pol’s method which yields an equation for the period of the limit
cycle.

The period of the unstable periodic orbit strongly depends on the box vol-
umes used. As it is very difficult to define realistic box volumes, we think
that periodic behaviour of the THC should not be studied with box mod-
els, since the uncertainties are too big to relate model results to observations
(e.g. paleodata).

When the control parameter Fj is increased, the stable state gets closer
to the Hopf bifurcation and both the unstable cycle and the basin boundary
shrink in size. Thus, there is a critical radius of deviations from the stable state:
Disturbances in the state variables pushing the system beyond that radius
would make the THC become unstable before F; reaches the value of the Hopf
bifurcation. In addition, even those disturbances which cause a temporary
increase of the overturning strength can destabilize the THC and lead to a
collapse.

Subcritical Hopf bifurcations do occur in simple box models, but not in
2D fluid models: Quon and Ghil (1995) and Dijkstra and Molemaker (1997)
found supercritical Hopf bifurcations on the pole-to-pole branches of their bi-
furcation diagrams, that is, a stable cycle emerges at the bifurcation point.
This disagreement between models of different complexity remains an open
question.

5. Box models with two circulation cells

The large scale structure of the present THC appears to be one big circulation
cell, but a superposition of two hemispheric circulation cells is conceivable as
well (Thual and McWilliams 1992). Hence, if we want to understand the basic



mechanisms of a THC consisting of two circulation cells, we need to study the
qualitative behaviour of a box model with two overturning cells.

Fig. 5 shows the box model used for this purpose. There are two overturn-
ing rates m, and my now, which are proportional to the hemispheric density
differences. They can be represented as an asymmetric and a symmetric over-

turning:
(5 e (5
ms = k (ﬁ <S3;S4 —Sl> —a <T3J2FT4 —T1>> (32)
1 1
Masym = 5 (ms +mn) = §k2 (B (SQ - Sl) - a(TQ - Tl)) (33)
1
Mgym = Mp — Masym = 5 (ms - mn) (34)

The flow from box 4 to box 3 in the tropics is the difference between the
hemispheric overturning rates:

my = My — My

kQ (,B (Sl + SQ - Sg — S4) — (T1 -+ T2 — T3 — T4)) (35)

Again, the technical trick of the basic model is used:

mj' = % (’L = 85,1, t) (36)

Thus, we can formulate the dynamical equations of the model:

VT = mf (T,—T)+m; (Ts—Th) +VA(T; =T)) (37)
VT = mi (Ts—T) +m, (Ts—To) + V(T — Tb) (38)
VT = mf (Ty—T3) + my (T = T3) + mf (Tu — T3) + VA (T5 — T3)(39)
VI, = mi (T, —T) +m; (Ty —Ty) +my (Ts — Ty) (40)
VS: = mf(Sy—51)+mg (S5—S)+ SoFy (41)
VS, = mf(Ss—Ss)+mT (Sy—S85) — SoF, (42)
VSy = mf (S —Ss)+my (S2— Ss) +my (Su— Ss)+ So (Fy — Fy)(43)

In this box model, the hydraulic constant k, equals 46 x 10" m?® yr—!
(ko = 2 k). The hydraulic constant is proportional to the inverse of horizontal
distance between the centers of overturning-relevant boxes (Huang et al. 1992),
and as m is split up into hemispheric overturning rates m, and mg here, the
horizontal distance is half the value for the interhemispheric rate m. The
meaning of the other parameters is the same as for the basic box model, and
conservation of total salt content holds as well.

10



At first, symmetric conditions are considered, i.e. F} = —F, and Ty = T5.
The bifurcation diagram Fig. 6 shows the stable and unstable states which
occur when the strength of the symmetric freshwater fluxes F' = —F; = F,
is varied. The diagram is very similar to the schematic representation for the
stationary states of a fluid model with symmetric boundary conditions (Thual
and McWilliams 1992, Fig. 3 (b); see also Quon and Ghil 1992). Thual and
McWilliams (1992) used fixed fluxes for the temperatures instead of restoring
conditions, and their model includes both viscosity and diffusion. Hence, their
model is not fully comparable with the box model described here. Nevertheless,
our box model exhibits a similar qualitative behaviour as a 2D fluid model.
Thual and McWilliams (1992) also compare the qualitative behaviour of their
fluid model with box models but do not show any exact bifurcation diagram
with the freshwater strength as control parameter.

For values of F'in the center of its interval, two asymmetric and two symmet-
ric (overlapping in Fig. 6) stable circulation states are shown. The asymmetric
stable states correspond to Thual and McWilliams’s (1992) superposition prin-
ciple, where one circulation cell is salinity-driven and one is thermally driven.

The multistability of the system can be seen better in Fig. 7 which corre-
sponds to Fig. 3 (a) in Thual and McWilliams (1992). Here, the symmetric
overturning rate mgym, is plotted against the freshwater flux strength F. Pole-
to-pole circulation states overlap in this case.

In Fig. 8, the bifurcation diagram (axes like Fig. 6) after a symmetry break-
ing in the restoring temperatures is shown. All stable states still exist, al-
though strongly distorted. The bifurcation structure has split up: now, due
to an imperfection of the pitchfork bifurcation, two separate branches of sta-
tionary states exist. Whereas in the symmetric case four stable states were
possible for a broad range of the parameter F' (0.02 Sv < F' < 1.5 Sv), this
range shrinks after symmetry breaking (0.02 Sv< F' < 0.38 Sv). A similar
result has been found by Dijkstra and Neelin (2000) in a study with a simple
coupled ocean-atmosphere model of the zonally averaged THC. They argue
that the two stable states of the THC during paleoclimatic conditions might
be the northward pole-to-pole circulation state and the distorted thermally
driven circulation state.

6. Conclusions

Interhemispheric box models with one and with two circulation cells of the
THC were studied with respect to their bifurcations when freshwater fluxes
are varied.

Box models of the first type exhibit bistability. The stable state of “present
climate” THC can become unstable due to a saddle-node bifurcation or due to
a Hopf bifurcation. Which of these occurs depends on hemispheric freshwater
fluxes; this is shown in a specific bifurcation diagram. The two bifurcations
represent two different mechanisms how the present THC can become unsta-
ble: the saddle-node bifurcation can only occur for a change in total freshwater
input into the North Atlantic catchment, but not for a redistribution of fresh-
water between the low and high latitudes of the Northern Atlantic. The Hopf
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bifurcation, in contrast, depends on both freshwater fluxes.

We have reduced the variables of box models of the first type to find a “min-
imal” interhemispheric box model which exhibits both bifurcations described
above. At least three boxes with surface contact connected by two hemispheric
freshwater flux terms appear to be required for the qualitative behaviour. An-
alytical solutions for the two bifurcations are given, so that one can clearly see
how they depend on the parameters.

If a Hopf bifurcation is possible, this has consequences for the stability of the
THC near the bifurcation point. At the Hopf bifurcation, an unstable periodic
orbit emerges which coexists with the stable steady state of the THC. In the
“minimal” model, the unstable periodic orbit is identical with the boundary
of the basin of attraction that belongs to the stable steady state. As this
basin of attraction shrinks when the Hopf bifurcation is approached, small
perturbations may destabilize the THC even if the bifurcation point is not yet
reached.

Whether a Hopf bifurcation may possibly cause a destabilization of the
THC should be investigated with 2D or 3D fluid models. Up to now, Hopf
bifurcations occurring in 2D models were supercritical, that is, the emerging
cycle was stable (Quon and Ghil 1995; Dijstra and Molemaker 1997). Oscil-
lations on a decadal and centennial scale found in GCMs and intermediate
models often are localized on the North Atlantic (with a decadal time scale)
except the 320 yr oscillation found by Mikolajewicz and Maier-Reimer (1990)
in an ocean general circulation model and the 200-300 yr oscillations studied
by Mysak, Stocker and Huang (1993) in a 2D ocean model. It is possible that a
Hopf bifurcation can be found in models of higher resolution in a different pa-
rameter regime, and especially with strongly asymmetric boundary conditions.
A thorough comparison of the underlying mechanism and its dependence on
model setup needs to be done in further studies.

A box model of the second type (2 circulation cells) is studied with sym-
metric boundary conditions and after symmetry breaking. Close similarity to
the bifurcation behaviour of Thual and McWilliams’ (1992) fluid model can
be shown for symmetric boundary conditions. The range of multistability is
strongly reduced by symmetry breaking which is consistent with a study us-
ing a zonally averaged coupled ocean-atmosphere model (Dijkstra and Neelin
2000).

This study shows that methods of Nonlinear Dynamics applied to simple
ocean box models yield valuable information about different transition mech-
anisms of the THC and their dependence on relevant parameters.
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APPENDIX

Bifurcations of the minimal model

After a transformation of variables (5’1 = 5, Sg = Sy — S1), the stationary
state of the most reduced model is:

fo_ 1 S+ FR) ;4

S = 3 (Stot —k(,BS'Q—O/T*)) So (44)
. al* aT*\*  SoFy

%= 95 +\/< 26) ~ %8 (45)

By solving S; = 0 (i = 1,2) the characteristic equation for the eigenvalues
of the Jacobian can be computed.
The characteristic equation yields the eigenvalues of the system:

Mo = A+ \/ A? — % km (285, — oT*)  with (46)
1 . .
A = ﬁ (kﬁ (Stot — 3(51 + 252)) + 3]€OZT*) (47)

If one real eigenvalue becomes zero, a saddle-node bifurcation exists. Hence,
we can find the equation (26) for the saddle-node bifurcation.

At a Hopf bifurcation, two purely imaginary, complex conjugate eigenvalues
must exist, that is, A = 0. Thus, we can calculate the equation for Hopf
bifurcations (27).

At a TB point, both conditions (for the saddle-node bifurcation and the
Hopf bifurcation) must hold.
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Figure 1: The basic box model: Box 3 represents the tropical surface layer,
and box 4 the deep water layer.
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Figure 2: Upper stable (solid) branch: Increasing F} leads to a Hopf bifurcation
(star), where an unstable periodic solution (dashed) emerges. The points of
the unstable periodic solution are the minimum and the maximum overturning
rate. At the saddle-node bifurcation (square) instability remains. Lower stable
branch: inverse flow of the THC.
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Figure 3: 2-parameter bifurcation diagram. The Hopf bifurcation point curve
(dotted) and the saddle-node bifurcation point curve (solid) meet in a Takens-
Bogdanov point (cross).
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Figure 6: Symmetric and asymmetric circulation states are shown. The restor-
ing temperatures at high latitudes are equal: 77 = T = 1°C. Stable states
are plotted as solid lines, unstable states as dotted lines. Filled squares are
pitchfork bifurcations, and empty squares are saddle-node bifurcations. On the
line M,gym = 0 Sv, two stationary states overlap between the two saddle-node
bifurcations.
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Figure 7: The multiple equilibria of the THC are shown in this diagram of
Msym Versus F'. The asymmetric pole-to-pole circulation states overlap. Empty
squares are saddle-node, filled squares pitchfork bifurcations.
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Figure 8: Box model with 2 circulation cells after symmetry breaking in the
restoring temperatures: 1) = 3°C, Ty = 1°C. Empty squares are saddle-node-

bifurcations. The upper and the lower branch do not meet at (masym = 0 Sv,
F =0 5v).
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