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Methods – Event detection
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In order to identify abrupt transitions in the stalagmite records, we
linearly interpolate the data to obtain a regular time scale
(equidistant time steps).
We then run a two neighbouring 300-year windows over the data
(sketch on the right).
For each time step, we compute the difference in mean values of
the isotope data in each window. When the difference is
above/below a certain threshold (one standard deviation (1σ) of
the whole record of difference in neighbouring windows δ18O) we
mark the first time step crossing the threshold as corresponding to
an abrupt transition.
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In the example plot below we show that procedure for one of the Swiss stalagmite composite records (Marine Isotope
Stage 8). A higher isotope value in the first 300-yr window than in the subsequent 300-yr window (positive difference in
means), marks transitions leading to warmer climate conditions (interstadials, pink dots in example plot below) and vice
versa for transitions leading to colder climate conditions (blue dots in example plot below).
In Chinese stalagmites, the a lower δ18O corresponds to interstadials/transitions leading to warmer conditions (and higher
δ18O to stadials), thus negative differences in means between the running windows here correspond to interstadial
transitions (thus, would be pink dots).
Hit me up if you wanna know about what we think the Swiss stalagmite δ18O is a proxy for!



Methods – Zero-inflated Poisson regression model

1) Logistic regression

2) Poisson regression

Thus, a ZIP regression model consists of three parts:

1. A PMF P(y_i=0) which is used to calculate the probability of observing a zero count.

2. A second PMF P(y_i=k) which is used to calculate the probability of observing k events, given that k > 0.

3. A link function that is used to express the mean rate λ as a function of the regression variables X.
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Methods – Zero-inflated Poisson regression model

Brushing up on Poisson regression

Probability of seeing k events in time t, given λ events 
occurring per unit time
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Methods – Training and testing procedure
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Model training on half of 
the data (predictor

varibales & count data)

Use fitted model to predict 
counts via remaining

predictor variables (test 
data)

Estimate model accuracy
using difference between

predicted vs observed 
counts

Check for overfitting by 
comparing train and test 

accuracy

Different (combinations) predictor variables
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Model training involves hyperparameter optimisation: we include 
nth degree polynomials of the input variables and test weather the 
model accuracy improves for both test and training data (see next 

slides). If increasing the polynomial degree would improve 
prediction accuracy for the train data but not for the test data, while 
the variance of the test data prediction accuracy increases, we have 
overfitted the model (found relationships in the train data which are 

not a description of the data in general).
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By including nth degree polynomials we can model non-linear 
relationship between predictor variables and the dependent 

variable (the count data). However, the underlying model equation 
stays linear! 
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Prediction accuracy = 1 - Misclassification rate 
Misclassification rate is based on confusion matrix 

See example of confusion
matrix on the left. It consists of 
predicted counts (x-axis) vs 
observed counts (y-axis). From 
the confusion matrix we 
calculate the number of false 
predictions and calculate the
fraction of false predictions 
from the total number of 
predictions

By including nth degree polynomials we can model non-linear 
relationship between predictor variables and the dependent 

variable (the count data). However, the underlying model equation 
stays linear! 



Let’s have a chat! ☺

Now or: 
skiba@pik-potsdam.de
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